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Predicting labor onset relative to the estimated date of delivery
using smart ring physiological data
Elise N. Erickson 1,2✉, Neta Gotlieb3, Leonardo M. Pereira4, Leslie Myatt4, Clara Mosquera-Lopez 5 and Peter G. Jacobs5

The transition from pregnancy into parturition is physiologically directed by maternal, fetal and placental tissues. We hypothesize
that these processes may be reflected in maternal physiological metrics. We enrolled pregnant participants in the third-trimester
(n= 118) to study continuously worn smart ring devices monitoring heart rate, heart rate variability, skin temperature, sleep and
physical activity from negative temperature coefficient, 3-D accelerometer and infrared photoplethysmography sensors. Weekly
surveys assessed labor symptoms, pain, fatigue and mood. We estimated the association between each metric, gestational age, and
the likelihood of a participant’s labor beginning prior to (versus after) the clinical estimated delivery date (EDD) of 40.0 weeks with
mixed effects regression. A boosted random forest was trained on the physiological metrics to predict pregnancies that naturally
passed the EDD versus undergoing onset of labor prior to the EDD. Here we report that many raw sleep, activity, pain, fatigue and
labor symptom metrics are correlated with gestational age. As gestational age advances, pregnant individuals have lower resting
heart rate 0.357 beats/minute/week, 0.84 higher heart rate variability (milliseconds) and shorter durations of physical activity and
sleep. Further, random forest predictions determine pregnancies that would pass the EDD with accuracy of 0.71 (area under the
receiver operating curve). Self-reported symptoms of labor correlate with increased gestational age and not with the timing of labor
(relative to EDD) or onset of spontaneous labor. The use of maternal smart ring-derived physiological data in the third-trimester
may improve prediction of the natural duration of pregnancy relative to the EDD.
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INTRODUCTION
Only 5% of the nearly 4 million births occurring in the United
States each year occur on the Estimated Date of Delivery (EDD),
defined as 40 completed weeks from the first day of the last
menstrual period1,2. Term pregnancy, where term labor is
expected to begin, spans from 37–42 weeks of gestation and is
typically associated with better outcomes than labors starting
prior to the 37th week. The latter stages of pregnancy can be
complicated by preeclampsia, problems with inadequate or
excessive fetal growth (macrosomia) as well as concerns for fetal
demise3,4. Obstetric care providers and families in their care,
therefore, must balance these known risks of ongoing pregnancy
with uncertainty and anxiety of when and where labor will start5–8.
This may be particularly worrisome for those living in rural areas or
in expanding ‘maternal care deserts’9 where residents may need
to drive hours to appropriate hospital facilities10.
Symptoms signaling labor onset are difficult to precisely define

as the experience of labor is highly variable between people11. As
clinicians have no reliable way to predict when labor will begin,
labor induction is routinely used in situations where uncertainty
with waiting for labor could be risky, for example, living far from a
hospital, developing an obstetric problem, or in cases where there
is higher potential for a problem like hypertension or fetal demise
occurring. For all of these reasons, nearly one-third (31.4%)12 of
labors are induced; a rate that has more than tripled since 1990
(9.6%)13. However, it has been hypothesized that peripheral
measures of autonomic activity, reflecting the neuroendocrine
state with shifts in inflammation14 and steroidogenesis15 in the
time preceding labor, may therefore be useful in understanding
the shift between pregnancy to labor16. Few studies have

examined these kinds of metrics in humans, though animal
literature notes that changes in parasympathetic activity17 and
body temperature fluctuate in advance of giving birth to
offspring18–23.
In this study, we report on data derived from a multi-modal

smart ring, worn by pregnant participants on a finger. We describe
the change in physiological metrics across advancing gestation,
and present results from a boosted random forest that was trained
to predict whether pregnancies will extend beyond the EDD
compared to those with a naturally shorter length of gestation. We
present the derived physiological metrics that were most useful in
improving prediction accuracy for the random forest. We also
describe labor symptom frequencies across gestation and relative
to timing of onset of labor.

RESULTS
Participant characteristics
From July 2021 through April 2022, 127 pregnant participants
living in the United States enrolled in the Biological Rhythms
Before and After Your Birth (BioBAYB) Study. Six participants
withdrew after consenting and one was lost to follow-up. Two
participants enrolled and then underwent onset of labor prior to
obtaining or wearing the device. For the remaining 118, the mean
(standard deviation) maternal age on enrollment was 32.6 (4.1)
years and the gestational age at enrollment was 30.3 (2.9) weeks
(Fig. 1). Nulliparous individuals (never given birth previously)
comprised 57.1% (n= 68) of the sample. The mean pre-pregnancy
body mass index was 24.0 kg/m2 (SD 4.1). The majority had
employer-based health insurance (n= 102) and had at least an
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undergraduate degree of education (n= 112, 94.6%). All partici-
pants reported being partnered or married. Six participants (4.8%)
had a history of prior preterm birth and were enrolled slightly
earlier in pregnancy, at 27.0 weeks. Timing of enrollment for the
majority of the sample was intended to limit to those without
gestational diabetes, which was tested around 26–28 weeks of
gestation. Other baseline health and demographic characteristics
are reported in Table 1.
Among participants who completed the after-birth survey, 8

(6.7%) reported developing gestational hypertension or pree-
clampsia after enrolling in the study. Spontaneous onset of labor
occurred for 70 (58.8%) participants at a mean (standard
deviation) gestational age of 39.8 (1.3) weeks and a range of
34.1–41.9 weeks. Only one preterm birth was reported (a twin
gestation) when labor began spontaneously at 34 weeks of
gestation. Among individuals who underwent labor induction,
seven were performed for pre-labor spontaneous rupture of
membranes (SROM) without a clear indication of labor symptoms
or cervical dilation at the time of induction; labor induction
occurred prior to the EDD for five of these seven participants. For
the additional 41 labor inductions, nine were attributed to passing
the due date (range of 40.1–41.1 weeks). Only four (3.3%)
pregnancies ended with a Cesarean prior to labor onset due to
obstetric indications (e.g., breech presentation). Figure 2 denotes
the distribution and characterization of the gestational age at
delivery and timing as well as the mode of labor onset relative to
the EDD.

Physiological metrics
Thirty metrics were available for analysis from the smart ring. For
activity metrics, these data were available as averages across a 24-
hour period. Sleep metrics represent an average during the sleep
period. Waveform data was not available for analysis; thus, the
metrics are based on the manufacturer’s algorithms for transform-
ing or interpreting the data (e.g., sleep state or heart rate
variability). The mixed effects regression revealed that a number
of the daily physiological metrics acquired from the ring were
significantly related with advancing days of gestation. Results from
the regression analysis for each physical activity and sleep metric
are shown (Table 2).

We then compared the smart ring derived metrics between the
analytic groups: those experiencing labor before the EDD to those
whose pregnancies passed the EDD. Figure 3 demonstrates
the median and interquartile range values for a subset of the
physiological metrics from 30 weeks to 40 weeks of gestation
separated by the primary analytic comparison groups. Table 3
shows the differences between these groups’ metrics in mixed
effects linear regression models, adjusted for gestational age at
the time of analysis. The individuals who had labor induction or
pre-labor Cesarean birth prior to the EDD were excluded as the
primary research question was focused on the timing of
spontaneous labor onset prior to vs. after the EDD and these
individuals had a shortened pregnancy due to medical recom-
mendation. After Bonferroni correction for multiple comparisons,
only the medium MET metric appeared to differ across the study
period (p < 0.002). That is, those experiencing labor after the EDD
had higher average medium intensity physical activity across the
measurement period compared to those who had labor start
before the EDD.
We examined smart ring metrics (resting heart rate, tempera-

ture change, total sleep, medium activity, RMSSD, average breaths,
total caloric expenditure) relative to participant characteristics of
pre-pregnancy BMI, fetal sex, maternal age and parity using mixed
effects regression, controlling for gestational age day. We did not
find any statistically significant findings using a p < 0.002.

Predicting delivery after EDD using physiological metrics
We designed a boosted random forest to predict whether
participants in the study would have a longer gestation compared
to those who would labor and deliver prior to the EDD. We
included all of the features available from the smart ring (Table 2)
and we also included the following clinical and demographic
features: age, BMI, sex of baby (if known during gestation), and
nulliparity (participant’s first birth). In addition, we included the
gestational age on the day of the physiological metric as a feature
in the model. Participants who delivered via induced labor or pre-
labor Cesarean prior to the EDD were excluded. The data set was
divided into those participants who gave birth on or before their
EDD following spontaneous labor (n= 39) and those who had a
pregnancy pass the EDD (n= 48). The longer pregnancies

Fig. 1 Flow diagram of participants and study procedures for BioBAYB study. Of the 127 participants gave consent and enrolled into the
study, 118 completed data collection with prelabor/birth data from the wearable smart ring. Comparison groups for analysis included those
who gave birth prior to the Estimated Date of Delivery (EDD) through planned prelabor Cesarean or induced labor, those who experienced
labor starting before the EDD and those whose pregnancies lasted beyond the clinical EDD. Study procedures listed in blue box, sent via
REDCap questionnaires, smart ring metrics gathered.
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Table 1. Demographic, pregnancy and birth characteristics of the BioBAYB study participants.

n= 31 Induced Labor or Planned
Cesarean Before EDD n (%)

n= 39 Spontaneous Labor
Before EDD n (%)

n= 48 Birth after
EDD n (%)

Test Two-
tailed t/χ2

p

Age, years, mean (SD) 32.7 (4.3) 32.5 (4.3) 32.6 (3.8) 0.07 0.94

Self-reported race/ethnicity/ancestry (may have selected more than one)

White/European 29 (90.6) 32 (82.1) 46 (95.8) 4.41 0.04

Asian or Pacific Islands 2 (6.3) 3 (7.7) 6 (8.4)

Latin American/ Hispanic 2 (6.3) 7 (17.9) 1 (2.1)

Black/African 0 (0) 2 (5.1) 0 (0)

Other/Chose not to answer 1 (3.1) 2 (5.1) 1 (2.1)

Gestational age at enrollment,
weeks

29.4 (3.1) 29.9 (2.8) 31.2 (2.6) 2.14 0.04

Nulliparous 26 (81.3) 18 (46.2) 24 (50.0) 0.13 0.72

Pre-pregnancy body mass index
kg/m2

24.6 (4.3) 23.9 (4.1) 23.7 (4.1) −0.23 0.82

Medication/substances in pregnancy

Daily aspirin 5 (15.6) 4 (10.3) 7 (14.6) 0.36 0.55

Anti-depressant (SSRI) 4 (12.5) 4 (10.3) 3 (6.3) 0.47 0.49

Iron supplement 8 (25.0) 10 (25.6) 21 (43.8) 3.08 0.08

Prenatal multivitamin 30 (93.8) 39 (100.0) 47 (97.9) 0.82 0.37

Fish oil supplement 13 (40.6) 22 (56.4) 18 (37.5) 3.10 0.08

Acetaminophen >3 times 9 (28.1) 5 (12.8) 9 (18.8) 0.56 0.45

Thyroid medication 0 (0) 4 (10.3) 5 (10.4) 0.0006 0.98

Sleep aids 5(15.6) 2 (5.1) 4 (8.3) 0.34 0.56

Edinburgh Postnatal Depression
(EPDS)

6.6 (3.2) 5.6 (2.5) 5.3 (2.2) −0.65 0.51

Generalized Anxiety Disorder
(GAD 7)

3.5 (3.30 3.2 (2.5) 2.4 (1.9) −1.58 0.12

Febrile illness, influenza,
SARS-CoV-2

4 (12.5) 7 (17.5) 14 (29.2) 2.31 0.13

Pregnancy conditions after enrollment

Hypertension or preeclampsia 4 (12.9) 2 (5.0) 2 (4.2) 0.05 0.83

Oligohydramnios/
polyhydramnios

2 (6.3) 0 (0) 0 (0)

Fetal growth restriction 4 (12.5) 1 (2.5) 1 (2.1) 0.02 0.88

Weight gained during pregnancy
(lbs.)

36.9 (11.9) 34.1 (12.9) 34.1 (10.8)

Labor onset

Spontaneous labor 0 (0) 39 (100) 31 (64.6) 17.17 <0.001

Labor induction 27 (87.5) 0 (0) 17 (35.4)

Pre-labor rupture of
membranes

5 2

Medical/obstetric condition 20 15

Elective 3 1

No Labor: Cesarean before
labor

4 (12.5) 0 (0) 0 (0)

Location of birth

Hospital 32 (100) 30 (76.9) 40 (83.3) 1.27 0.53

Home (planned/unplanned) 5 (13.8)* 6 (12.5)

Freestanding birth center 4 (10.3) 2 (4.2)

Mode of birth

Vaginal birth 21 (67.4) 32 (82.1) 36 (75.0) 1.41 0.49

Assisted vaginal birth 1 (3.1) 1 (2.6) 4 (8.3)

Cesarean 9 (29.1) 6 (15.4) 8 (16.7)

Duration of labor, hours
(mean, SD)

14.1 (12.1) 19.0 (17.7) 16.3 (12.0) −0.68 0.49

Infant weight, lbs. (mean, SD) 7.0 (0.9) 7.5 (0.9) 8.1 (1.0) 2.75 0.007

38.7 (1.0) 38.9 (1.1) 40.8 (0.55) 10.44 <0.001
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eventually ended via spontaneous labor (n= 31) or after labor
induction (n= 17).
To train the random forest, we used only data collected prior to

40 weeks of gestation. Specifically, we included gestational days
234–275 (data from 33.4–39.3 weeks of gestation) to do the
prediction. We further limited the training dataset by excluding
metrics in the 4 days prior to the onset of labor or labor induction.
For example, for a person starting labor at 39.0 weeks of gestation
(273 days) we included any available data from gestational day
234 to gestational day 269. For those laboring >40 weeks data

were included through day 280 only. Our rationale for this
approach was to use only data from several days before the due
date excluding data whereby labor symptoms in the 4 days just
prior to labor were present.
We performed a greedy search24 to determine the combina-

tions of features achieving the highest prediction accuracy as
defined by AUC of the ROC curve. To do the greedy search, we
started with a single-feature predictor and determined which
feature yielded the largest AUC. We then sequentially added
features and determined which 2-feature combination yielded the

Table 1 continued

n= 31 Induced Labor or Planned
Cesarean Before EDD n (%)

n= 39 Spontaneous Labor
Before EDD n (%)

n= 48 Birth after
EDD n (%)

Test Two-
tailed t/χ2

p

Gestational age birth, weeks
(mean, SD)
Labor and birth complications

Umbilical cord prolapse 1 (2.5) 1 (2.5) 0 (0)

Fever/infection 4 (12.5) 2 (5) 1 (2.1) 0.59 0.44

Received antibiotics during
labor

6 (19.3) 3 (7.7) 11 (22.9) 3.69 0.06

Postpartum hemorrhage 2 (6.3) 2 (5.1) 4 (8.3) 0.34 0.56

Neonatal intensive care unit 4 (12.5) 6 (15.4) 3 (6.3) 1.94 0.16

Data grouped by timing of delivery relative to the Estimated Delivery Date (EDD) of 40.0 weeks of gestation. Bivariate tests, p-values compare spontaneous
labor (n= 39) prior to the EDD to births occurring after the EDD (n= 48). No differences were observed in insurance provider, fetal sex or educational
attainment.
SSRI selective serotonin reuptake inhibitor.
*n= 1 home birth was unplanned.

Spontaneous Labor After EDD Induced Labor After EDD

Induced or Non-Labored Cesarean Before EDD Spontaneous Labor Before EDD

34 36 38 40 42 34 36 38 40 42
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Fig. 2 Distribution of the gestational age at delivery relative to timing of labor onset among 118 pregnancies enrolled in BioBAYB. Grey
bars represent those with labor induction or pre-labor cesarean birth prior to the EDD. Blue bars denote spontaneous labor onset prior to the
EDD. Orange bars denote the pregnancy passing the EDD with eventual spontaneous labor (n= 31) and white bars were labor inductions
after the EDD (n= 17). No pre-labor cesarean births occurred among the births after the EDD.
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largest AUC. We proceeded with this for 3-feature, 4-feature and
up to 33-feature combinations. During the search, we used cross
validation to train and evaluate the algorithm whereby we used
80% of the participants for the training and evaluated the
accuracy of the predictor on the 20% of the held-out participants.
This was repeated 10 times with a different 20% of held-out
participants each time. The accuracy for each of the 10 folds was

stored. Cross validation of the features was repeated five times.
Figure 4 shows how the features ranked across the five runs with
the highest ranked features as determined by greedy search are
listed from left (best) to right (worst). Each feature’s rank was
averaged across the five folds and the standard deviation of the
rank is also shown for each feature across the five folds.
Supplementary Fig. 1 shows the individual ranking of features
across each of the five runs. While gestational age was the
highest- ranking feature on average, it was not found to be the
highest-ranking features on any of the individual folds (Supple-
mentary Fig. 1). When the random forest was trained only on the
gestational age, the performance was significantly worse than
when additional physiologic features were included, with a mean
sensitivity across 10-fold validation of 0.55 (specificity= 0.56,
AUC= 0.58) (Supplementary Fig. 2).
Figure 5 shows the ROC curve for the best feature set of each of

the 5 runs using cross-validation data sets. Hyperparameter tuning
was done by cross validation and the final number of trees was
found to be 100 with a learning rate of 1.0 and a maximum
number of splits of 10. We repeated the greedy search 5 times to
determine whether the ranked features would change order
based on the training/testing sets randomly selected. We found
that there was some variability in the ranking of the optimal
features, which was most likely due to the fact that many features
were highly correlated with each other because they were derived
from a small set of sensors on the ring. Regardless, certain features
consistently ranked higher than others and yielded a higher
prediction accuracy. Overall, the performance of the model was
demonstrated by an AUC of 0.71 and optimal sensitivity (0.66) and
specificity (0.64) based on the harmonic mean (and IQR) across the
5 runs.
The best ranked features for predicting if a pregnancy will pass

the EDD were the gestational age at the time the prediction was
made, temperature trend values, MET (medium, high activity) and
sleep measures (REM-stage sleep, total, and rest). The next best-
ranked features were BMI, sleep onset/midpoint, MET: high, and
resting heart rate, temperature change and respiratory rate.
Among the least predictive features were sleep efficiency, target
kilometers, average heart rate, daily movement, low activity, active
calories, participant age, inactivity, average/low metabolic equiva-
lents, total steps, parity, deep sleep duration, end of bedtime, total
calories, RMSSD, fetal sex and duration restless sleep.

Maternal self-reported labor symptoms associated with
advancing gestational age but not with mode of labor onset
or eventual duration of pregnancy
Participants completed weekly labor symptom surveys adminis-
tered through automated REDCap25 invitations after enrollment.
We used mixed effects logistic regression models, with the
participant as the random effect, to estimate the likelihood of
labor symptoms being reported with advancing gestation. We
found that reports of uterine activity, vaginal discharge,
menstrual-like cramping and low back pain increased as gestation
advanced as a whole (main effects) (Table 4). With two exceptions,
interaction models did not demonstrate any significant differ-
ences between the group of individuals who experienced
spontaneous onset of labor compared to those who did not have
spontaneous labor (labor induction or Cesarean birth without
labor). Those who eventually had labor begin spontaneously were
25% more likely to report contractions occurring while at rest and
16% more likely to report vaginal discharge compared to those
who ended up with labor induction or delivery without labor. Both
odds ratios were significant using a p < 0.05, which may be
spurious findings given the number of comparisons performed in
Table 4. No symptom differences were noted between those with
pregnancies passing the EDD versus labor starting before
40 weeks. Clinical and demographic data including parity, body

Table 2. Correlation of daily activity-based or sleep-based
physiological metrics and gestational age in days.

Metric Intercept
(mean)

β(mean) 95% CI p-value

Resting heart
rate

72.33 −0.051 −0.056 to −0.046 1.00E-84

RMSSD 17.35 0.12 0.10–0.13 2.46E-79

Heart rate
average

76.24 −0.038 −0.043 to −0.033 1.72E-50

Sleep
efficiency

106.83 −0.072 −0.082 to −0.062 2.11E-44

Total sleep 36653 −21.77 −27.74 to −15.79 1.04E-12

REM 11067 −10.87 −13.90 to −7.83 2.49E-12

Inactive 269.78 0.70 0.49–0.90 2.38E-11

Respiratory
rate

18.34 −0.0023 −0.0030 to
−0.0015

3.81E-09

MET medium 172.77 −0.28 −0.39 to −0.17 1.50E-06

Calories active 363.33 −0.53 −0.75 to −0.31 2.84E-06

Daily
movement

9232 −9.59 −13.81 to −5.36 8.83E-06

Bed start −3515 16.67 9.17–24.17 1.34E-05

Medium
activity

46.00 −0.07 −0.11 to −0.04 1.35E-05

Bed end 32603 14.49 7.78–21.20 2.36E-05

Deep sleep 2209 5.19 2.74–7.63 3.27E-05

MET inactive 8.77 −0.012 −0.017 to −0.006 5.08E-05

Temp
deviation

−0.19 0.0005 0.0003–0.0007 5.23E-05

Caloric
expenditure

1534.5 −0.57 −0.86 to −0.27 0.000151

Low activity 278.96 −0.20 −0.34 to −0.07 0.003146

MET 1.43 −0.00024 −0.00041 to
−0.00007

0.006786

MET high 40.22 −0.08 −0.14 to −0.02 0.007032

Steps 8456.8 −5.47 −9.62 to −1.32 0.009766

Rest time 636.7 −0.21 −0.38 to −0.05 0.012659

High activity 4.70 −0.01 −0.02 to −0.0017 0.017516

MET low 196.97 −0.09 −0.19–0.01 0.067587

Non-wear
time

230.74 −0.22 −0.54–0.11 0.196156

Temperature
trend

−0.03 −0.00009 −0.00025–0.00008 0.311622

Restless sleep 24.34 0.0045 −0.0043–0.0132 0.320527

Sleep
midpoint

18407.8 −1.18 −5.09–2.74 0.555642

Sleep onset 1096.21 −0.14 −1.13–0.86 0.790827

Metrics sorted by p-value from smallest to largest using mixed effects
regression with the individual participant as the random effect, adjusted
for pre-pregnancy body mass index, age, parity and sex of fetus.
Significance was determined to be p < 0.002 (shown as italic).
RMSSD root mean square of successive differences, REM rapid eye
movement, MET metabolic equivalent.
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mass, ethnicity, age, educational attainment, employment, insur-
ance method, or family income did not differ between those who
labored prior to their EDD and those with longer pregnancies
(Table 1).
Finally, no differences were observed between groups in

symptom burden (Fig. 6). In sum, these data demonstrate that
self-reported symptoms of labor were well-correlated with
advancing gestational age, but the likelihood of reporting the
symptom was not related to labor occurring spontaneously, nor
related to longer vs. shorter gestation.

DISCUSSION
The purpose of this study was to (1) evaluate how physiological
data acquired from a smart ring device during pregnancy are
associated with gestational age and (2) evaluate whether these
physiological data can be used to predict the natural length of
gestation relative to the clinical due date. Our key findings were
first that daily physiological metrics (e.g., heart rate, temperature)
and sleep and activity measures from the smart ring were
statistically related to gestational age, and second that these
metrics were useful when used in a random forest model for
predicting which participants were likely to pass their EDD
compared to those who would give birth earlier in gestation.
We also found that increased self-reported labor symptoms
correlated to advancing gestational age, but were not helpful
predicting which participants were likely to pass their EDD
compared to those who would give birth earlier in gestation.
Together, these findings indicate that physiological metrics

derived from a smart ring worn during pregnancy are most closely
mapped to the advancement of the gestation, particularly given
adjustment for multiple comparisons. Comparisons between

before/after EDD analytic groups using single metrics were less
robust to correction for multiple comparison than the relationship
with gestational age, with only medium MET demonstrating
significance. In these data, other clinical and demographic
characteristics were not robustly associated with the physiological
data and participants’ symptoms of labor were also unrelated to
timing of labor onset. However, the use of multiple physiological
metrics in the boosted random forest model provided for modest
prediction of labor beginning before/after the clinical EDD, which
was a significant improvement over gestational age alone.
Physiological metrics collected by the smart ring were found to

be predictive of timing of birth before or after the EDD. An
algorithm that can accurately predict the approximate gestational
age of delivery could help to inform clinical decision-making and
personal planning around expectations of labor onset. The
prediction accuracy of the algorithm may be improved in the
future by utilizing data sampled at a higher frequency to capture
ultradian patterns26,27. A high accuracy algorithm may be useful in
planning delivery around term. In cases where balancing
uncertainty of risks with ongoing pregnancy are present (e.g.,
high blood pressure), which may indicate the need for labor
induction, knowledge of the approximate time to the natural start
of labor would be valuable for providers and patients. Some
pregnancies will end naturally weeks before others (Fig. 2)—and
knowing the time to labor onset would enable opportunities for
personalized recommendations. Forecast of labor timing would
also be useful in instances where labor is contraindicated, for
example, with placenta previa or certain fetal conditions or if a
patient is living a long distance from the hospital.
Our sample was not able to specifically study the prediction of

labor starting before term (37 weeks) as we had only one case of
spontaneous preterm labor onset at 34 weeks. Future work in

labor before EDD pregnancy passed EDD
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Fig. 3 Trends in data derived from smart ring device among 118 pregnant participants from 30 gestational weeks to the estimated
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larger samples or more high-risk populations are needed to
develop models that predict preterm labor. Studies using a
WHOOPTM device and HRV data reported there was a prominent
rise in HRV around the 33rd week of pregnancy28. A preprint using
similarly-derived data from WHOOPTM indicated that this inflection
was notable around 7 weeks prior to the onset of labor for term
and preterm deliveries29. Our findings are consistent with this
observation from the perspective of increased RMSSD with
advancing gestational age. While we did not find RMSSD (heart
rate variability) to be a top ranked feature in the boosted random
forest model; we did see that RMSSD was related to gestational
age in the mixed-effects model. More work is needed on
understanding intergroup as well as inter-individual changes
across pregnancy and in relation to delivery across the span of
gestation.

On average, the most useful physiological metrics in predicting
delivery past the EDD included the temperature trend, the
metabolic expenditure in the medium range, the high activity
metric, and the time spent in REM and total sleep. The most
predictive physiological metrics in the random forest varied
somewhat based on which validation data sets were used
(Figs. 4, 5), which was likely due to the fact that many of the
metrics were correlated with each other thus there was not a
substantial difference in how these metrics impacted the
prediction accuracy. Demographic features including age, fetal
sex, and parity ranked poorly in improving model accuracy. The
gestational age when a forecast was being done was one of the
more predictive variables on average when assessed alongside
the smart-ring data, however, adding the physiological metrics
increased the model’s predictive ability as a whole. More
specifically, the prediction based on gestational age alone was
little better than a flip-of-a-coin with and AUC of 0.58. Adding the
physiological metrics improved the AUC to 0.71 across the runs.
Further, while temperature trends alone were not significantly

related to delivering past the EDD, this metric consistently ranked
near the top of features in the random forest. Existing mammalian
literature indicate that body temperature changes precede the
onset of labor reliably enough to be used as a metric in animal
husbandry or to discern the proximity to giving birth in a variety of
species (e.g., cow, dog, horse, moose, monkey, orca, rabbit, sheep,
squirrel, wolverine)18–23,30–39. To our knowledge, this change in
temperature as a function of gestational age has not been
thoroughly examined in the human literature40 and would
therefore be useful to study in future research utilizing high
temporal resolution. Heart rate variability also has been used to
study and predict parturition in pregnant cows23.
It is hypothesized that mechanisms governing spontaneous

labor in humans could be visible as trends in peripheral
physiological output data because physiological metrics (e.g.
temperature, heart rate variability) are correlated with changes in
inflammation, neuroendocrine or autonomic activity16. The transi-
tion from pregnancy into labor results from alterations in
numerous hormones, gene/protein expression and reproductive
tissue modifications14,15,41,42. Briefly, placental progesterone pro-
duction (which maintains uterine quiescence) is progressively
subdued by greater placental/fetal corticotropin releasing hor-
mone (CRH) production as well as estriol dominance43. The rise of
estriol is partly dependent upon the fetus’ nervous system and
adrenal gland maturation, which leads to greater dehydroepian-
drosterone sulfate (DHEA-S) production44. As such, the fetal
production of CRH not only contributes to lung maturation
through surfactant production, but also impacts the timing of
labor onset45. Estriol and CRH, as well as inflammatory changes,
feed-forward transforming maternal uterine and cervical tissues in
preparation for labor14,46. Progesterone is a respiratory47 and body
temperature stimulant48–50, and higher progesterone is associated
with higher heart rate and lower heart rate variability28,51–54.
Therefore, the functional progesterone withdrawal55 in the lead-
up to labor onset could potentially be apparent by tracking
peripheral metrics, such as respiration, temperature and heart rate.
In addition to these mechanisms, studies with non-human
mammalian models also show that the autonomic nervous system
(ANS) contributes to labor onset and progress and can therefore
be inhibited or stalled by experiences that trigger sympathetic
dominance17,56. Heart rate variability is a commonly utilized
measure of the parasympathetic/sympathetic balance of the
ANS56,57, which could be monitored non-invasively with wearable
sensors23,28,58.
Current clinical methods for counseling pregnant individuals on

how and when to prepare for labor onset involve considering the
current date relative to the EDD, monitoring symptoms, cervical
examination (digital or via ultrasound) and general advice based
on population-based data from non-specific demographic

Table 3. Average smart ring metrics in relationship to pregnancy
extending beyond the EDD compared to labor beginning before the
EDD.

Metric Adjusted β 95% CI p-value

MET medium 43.69 17.51–69.86 0.001

Medium activity 12.81 21.12–4.50 0.003

Calories active 72.47 17.37–127.56 0.010

Daily movement 1308.4 224.52–2392.27 0.018

Average MET 0.43 0.004–0.08 0.028

Steps 1036.78 −84.40–2157.96 0.07

MET high 7.51 −0.67–15.7 0.072

Caloric expenditure 100.37 −10.95–211.70 0.077

Heart rate average −2.54 −5.37–0.28 0.078

RMSSD 6.45 −0.89–13.81 0.085

High activity 0.97 −0.15–2.10 0.09

Resting heart rate −2.18 −4.67–0.66 0.114

Restless sleep −2.44 −5.50–0.62 0.118

Bed start −1185.78 −2687.43–315.86 0.122

Sleep efficiency 1.46 −0.40–3.33 0.124

Non wear time −29.06 −68.13–10.00 0.145

Total sleep 718.07 −271.73–1707.87 0.155

Temperature
deviation

−0.008 −0.02–0.005 0.252

Deep sleep 0.144 −0.10–0.39 0.265

Respiratory rate 0.35 −0.29–1.01 0.284

Bed end −724.82 −2345.75–896.12 0.381

Sleep midpoint 238.21 −346.28–822.71 0.424

MET inactive 0.45 −0.66–1.57 0.426

REM −0.06 −0.29–0.16 0.59

Rest 4.56 −15.58–24.71 0.657

Low activity 7.18 −25.56–39.92 0.667

MET low 5.13 −18.94–29.22 0.676

Temperature trend −0.002 −0.02–0.01 0.78

Inactive 3.89 −31.03–38.80 0.827

Sleep onset −10.93 −111.91–90.04 0.832

Mixed-effects regression model was used for each daily metric, which was
regressed onto the groups of participants: those passing their EDD (n= 48)
versus those with pregnancies ending before the EDD in spontaneous
onset of labor (n= 39). Adjusted β for gestational age on the day of
evaluation. Significance was determined to be p < 0.002 (shown as italic).
RMSSD root mean square of successive differences, REM rapid eye
movement, MET metabolic equivalent.
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characteristics (e.g., first pregnancies tend to be a little longer than
subsequent pregnancies). Conventional and clinical advice centers
on monitoring symptom patterns in anticipation of when labor
might be beginning. However, symptoms are typically most useful
to diagnose labor in the moment, despite being highly variable
from person to person11,59. In our study, weekly self-reported
symptoms did not vary by timing of labor relative to the EDD or
whether labor was spontaneous vs. induced. This finding under-
scores the difficulty (or flawed assumptions) in using symptoms to
help guide prediction of future labor onset in personal or clinical
decision making. This observation may be limited by our use of a

weekly sampling method. Daily questionnaires may improve
observations of subtle changes in labor-related symptoms, though
individual burden and attrition may increase as well.
Interestingly, in our sample, few demographic or clinical

features were associated with a pregnancy passing the EDD
compared to laboring spontaneously before the due date. Our
enrollment criteria for the study (generally healthy, low-risk for
complications in pregnancy) likely played a role limiting our ability
to detect differences in pregnancy complications through the
smart ring metrics. In addition, the homogeneity in the sample in
terms of educational background and income also likely
influenced these null findings. Of the self-reported ethnicity/
ancestry, the majority of individuals who identified as Hispanic/
Latina were among those giving birth spontaneously prior to the
EDD (p < 0.05) (n= 7 of 10 Hispanic participants), though, overall,
the sample was mostly made up of those reporting European
ancestry/White identity. Repeating this study in a larger, more
diverse sample or among those with higher-risk obstetric histories
would be valuable.
Several studies have utilized a variety of clinical60,61 or

ultrasound derived measures62–64 to help predict the future
spontaneous onset of labor, while others have used multi-omics
data gathered from blood samples across gestation65. Clinical
use of the fetal fibronectin test is currently used to predict
preterm birth (prior to 37 weeks) in high-risk patients, typically
presenting with risk factors or labor symptoms. This vaginal
swab test used for screening has a sensitivity of 43–92% and
specificity of 52–93% in high-risk patients66. However, fetal
fibronectin has no proven utility in predicting term labor onset.
Each of these approaches/tools has a similar objective, to
forecast the natural expected length of the pregnancy; however,
each method cited above performs with varying degrees of
accuracy and requires patients to undergo specific procedures
or tests performed at the clinic. A method using maternal
remote physiological monitoring would offer the opportunity to
evaluate the likelihood of labor starting using non-invasive tools
in the person’s home environment. Other approaches for

Fig. 4 Average predictive rank of features used in boosted random forest model across five runs. Features are shown based on their rank
as determined by greedy search in predicting that a pregnancy would pass the EDD. The rank of the feature within the greedy search is shown
on the y-axis while x-axis lists the features from left (best) to worst (right) based on the average of their rank across the five-fold cross
validation. The error bars show the standard deviation of each feature’s rank, indicating its consistency at that rank across the five folds.

Fig. 5 Receiver operating characteristic (ROC) curve showing the
sensitivity vs. 1-specificity for predicting if a pregnancy would
pass the EDD. The area under the curve on average across the five
folds was 0.71 with a sensitivity of 0.66 and specificity of 0.64.
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wearable non-invasive labor prediction have included use of
electrohysterography (measuring electrical activity from uterine
muscle) with or without maternal heart rate data67,68, which
appear to characterize the early stages of labor itself and may

have particular utility in signaling preterm labor when overt
symptoms are not perceived.
One of the limitations of the study is that it assessed proprietary

metrics acquired from a commercial smart ring. The accuracy of

Table 4. Symptoms reported by participants during pregnancy in comparison to advancing week of gestation and in relation to labor onset or
timing of labor relative to the Estimated Date of Delivery (EDD).

Reported Symptom Gestational Age Interaction: Gestational Age
× Spontaneous Labor

Interaction: Gestational Age
× Pregnancy > EDD

Labor symptoms OR (95% CI) OR (95% CI) OR (95% CI)

Irregular contractions 1.68 (1.53–1.85)*** 1.02 (0.86–1.22) 1.03 (0.82–1.29)

Regular contractions 2.11 (1.67–2.67)*** 0.87 (0.52–1.45) 0.71 (0.38–1.36)

Contractions at rest 1.72 (1.53–1.92)*** 1.25 (1.02–1.55)* 0.98 (0.75–1.29)

Contractions waking at night 1.84 (1.55–2.18)*** 1.27 (0.96–1.71) 0.88 (0.61–1.25)

Contractions with movement 1.56 (1.42–1.72)*** 1.19 (0.99–1.44) 0.80 (0.60–1.05)

Painful contractions 1.62 (1.40–1.89)*** 0.93 (0.69–1.23) 1.15 (0.80–1.63)

Vaginal discharge 1.31 (1.23–1.40)*** 1.16 (1.03–1.32)* 0.93 (0.78–1.09)

Low back pain 1.13 (1.07–1.19)*** 1.04 (0.94–1.15) 0.96 (0.85–1.08)

Menstrual-like cramping 1.77 (1.61–1.94)*** 1.02 (0.86–1.21) 1.12 (0.90–1.40)

Measures of Fatigue/Pain β (95% CI) β (95% CI) β (95% CI)

PHQ-15 0.10 (0.001–0.20)* −0.01 (−0.22–0.18) 0.14 (−0.08–0.38)

PROMIS®- Fatigue SF 0.21 (0.11–0.30)*** 0.14 (−0.04–0.33) −0.19 (−0.41–0.02)

EPDS 0.004 (−0.08–0.08) −1.87 (−2.73 to −1.00)***a 0.35 (−0.42–1.12)a

GAD-7 0.12 (0.04–0.20)** −0.18 (−0.34 to −0.02)* 0.30 (0.13–0.47)**

PHQ-15 patient health questionnaire 15, PROMIS® patient-reported outcomes measurement information system.
SF short-form, EPDS Edinburgh postnatal depression scale, GAD generalized anxiety disorder 7 scale.
*p < 0.05; **p < 0.01; ***p < 0.001.
aNot interaction model, no association with advancing gestational age noted.
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the metrics could not be independently validated by our team;
however, there have been prior publications demonstrating the
accuracy of its calculation of heart rate variability69 and skin
temperature70. Many of the metrics are derived from a small set of
sensors, which means that they are correlated with each other.
Another potential limitation for interpreting the sensor data is
related to differences in physical activity between groups in which
the individuals’ work/home life patterns or exercise routines differ,
as these activity habits potentially mediate patterns in other
metrics (i.e., heart rate or respiratory rate). Future work can
elucidate these differences using experimental or statistical
methods. Replication of this approach in another independent
physiological dataset gathered in pregnancy is needed to validate
these findings. Given our enrollment period was largely limited to
the third trimester, future studies should aim for monitoring for a
greater proportion of the entire pregnancy. These data will help
researchers discern a larger baseline, examine trends across each
trimester, and determine the minimum number of days/weeks of
data necessary to obtain reliable predictions on the timing for
labor onset. We also note the limitations in generalizability, given
the sample was largely self-identified as White and a majority had
at least a college-level of education. Despite the limitations, the
strengths of the investigation include use of a device that was
relatively easy/comfortable for the participants to wear; only two
participants withdrew from the study because of device dis-
comfort issues. This resulted in high wear time and limited missing
data. Our findings are augmented by the use of weekly survey
data on labor symptoms to compare to the physiological metric
utility. The use of a predictive training/testing methodology allows
the data to forecast clinical utility of this kind of physiological data
driven approach to labor prediction. Another strength is the use of
data gathered prior to the EDD (and several days in advance of
labor) which, if replicable or improved upon, could offer a window
of time for a person to make important decisions and for their care
providers to offer more personalized recommendations or
consider alternative testing/treatment if labor was unlikely to
begin prior to the EDD.
We demonstrate how multi-modal data derived from a

commercially available wearable smart ring device is associated
with the maternal physiological state across gestation and how
these data can be used to help predict whether birth may occur
before or after the clinical Estimated Delivery Date.

METHODS
Study oversight
The institutional review board for Oregon Health and Science
University (Study #20059) reviewed and approved the protocol for
this study. This research was carried out in accordance with the
Declaration of Helsinki.

Participants
Participant recruitment strategies included social media advertis-
ing across the United States as well as posted paper and digital
announcements in the metro Portland, Oregon region. Inclusion
criteria included: adults (at least 18 years of age), able to provide
written (e-consent model) informed consent71 in English who
were having a generally healthy pregnancy, at least 26 weeks of
gestation (after gestational diabetes testing), had no contra-
indication for vaginal birth and pre-pregnancy body mass index of
less than 40 kg/m2. Exclusion for enrollment included: current
gestational diabetes, hypertension or uncontrolled thyroid dis-
orders, plans to undergo unlabored Cesarean or to induce labor
prior to 41 weeks of gestation, history of ovulatory dysfunction or
use of assisted reproductive technology (e.g., in vitro fertilization)
for current pregnancy, working rotating or night shifts. A smaller
group of participants were enrolled prior to 26 weeks’ gestation if

they had a history of prior preterm birth or current twin gestation
and the participant otherwise met inclusion criteria.

Study design and procedures
This study used a prospective observational design. After
enrollment, participants completed an online survey including
demographic data, health/pregnancy history, social determinants
of health and an array of psychometric and symptomatology
surveys. Surveys included questions on stress (Perceived Stress
Scale), sleep (PROMIS® Sleep Related Impairment—SF), sleep
patterns (Munich Chronotype Questionnaire), occupational strains,
depression and anxiety scores (Edinburgh Postnatal Depression
and Generalized Anxiety Disorder-7), Antenatal Attachment Scale,
adverse childhood experiences (ACES), social support (MOS),
fatigue (PROMIS®-SF), physical symptoms/pain (PHQ-15), emo-
tional support (PROMIS®-SF) and self-efficacy (PROMIS®-SF).
A weekly survey of labor symptoms was sent to participants and

asked the respondent to indicate (Yes/No) if they had experienced
any of the following across the last seven days: different patterns
of contractions (irregular, regular, contractions while at rest,
painful, waking at night with contractions, and/or with move-
ment), low back pain, vaginal discharge or menstrual-like
cramping. We also repeated the PROMIS®-SF scales on emotional
support, self-efficacy, sleep and fatigue weekly. After baseline,
mood and anxiety scores were assessed monthly throughout the
study period (GAD-7 and EPDS).
Participants were sent a ring-fitting kit made by the manufac-

turer (Oura, Finland) which contains eight different ring sizes and
were instructed to wear the best-fitting ring for 24 h to ensure
comfortable fit and ability to remove it after sleep. Each
participant was provided a dummy-coded email address for
signing up and syncing their ring with the smartphone applica-
tion. Data would sync and upload to a cloud-based platform upon
opening the Oura App. In the event the app was not opened, the
ring would store several days’ worth of data. Rings were charged
as needed, typically lasting several days before the application
prompted the participant to charge the ring.
Follow-up surveys were sent either weekly or monthly

depending on the questionnaire until birth occurred. Upon giving
birth, participants notified the study staff via email. A birth
experience survey was sent and any clarifying questions were
asked by staff via email, when needed. Self-reported outcomes
included any pregnancy associated conditions (gestational
hypertension, preeclampsia, abnormally low amniotic fluid, or
growth restriction etc.). Participants also reported if they
experienced labor prior to delivery (versus Cesarean birth before
labor began), the date of delivery, mode of birth (vaginal,
Cesarean or instrument-assisted vaginal birth), and their new-
born(s)’ weight(s). For those who experienced labor, participants
reported if the labor began spontaneously versus a labor
induction via pharmaceutical (e.g., oxytocin, prostaglandin) or
mechanical methods (e.g., artificial rupture of membranes).

Smart ring data
The Oura Ring is a commercial health tracking device worn on the
finger. The Gen2 Oura Ring is equipped with temperature
(negative temperature coefficient (NTC)), 3-D accelerometer, and
infrared photoplethysmography (PPG) sensors and measures
physiological signals, such as heart rate (HR), heart rate variability
(HRV), temperature trends, respiration, and movement. The
sensors are located in the inner part of the ring on the palm
side of the finger and the ring is water resistant up to 100 m. Data
is transmitted from the ring to the user’s phone via Bluetooth, and
from the phone it is uploaded to the cloud. Users can view their
physiological measurements and insights in the Oura App.
Participants wore an Oura Ring throughout the study on
whichever finger that they could achieve the best fit on the
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non-dominant hand. The continuous data collection enables the
establishment of personalized biometric baselines for each user.
Thirty features from the wearable-derived data across gestational
age were available from the manufacturer of the smart ring
including the following: activity (inactive, rest, low, medium, high,
steps, total daily movement), metabolic equivalents (MET)
(average, low, medium, high, inactive), calories (active, total),
heart rate (average, resting), HRV (root mean square of successive
differences (RMSSD)), sleep (start, onset, midpoint, end, efficiency,
total, restless, deep, rapid-eye-movement (REM)), average breaths
per minute, temperature deviation (weighted average across days)
and delta from prior day, and non-wear time.

Outcomes
Outcomes were assessed across the sample relative to gestational
age and then between two groups. The first group was made of
participants experiencing the onset of spontaneous labor at or
before the EDD, and was compared to the second group,
consisting of participants whose pregnancies lasted more than
40 weeks. This dichotomy was chosen as the pregnancies passing
the EDD would all have hypothetically started labor eventually if
intervention had not been undertaken for another indication. The
EDD was reported by the participant and we also recorded the
manner in which the EDD was determined (using the last
menstrual period or ultrasound). Labor and birth times were
self-reported. First, we examine the relationship between gesta-
tional age at the time of measurement with each smart ring metric
followed by a comparison of the physiological metrics between
the groups. Then we report the labor-related symptoms, symptom
burden, and pain, fatigue and mood scores in relation to shorter
versus longer gestation.

Statistical analyses
Descriptive baseline data and self-reported birth outcomes were
compared between groups having spontaneous labor onset prior
to 40 weeks’ gestation versus a longer pregnancy using bivariate
statistics (parametric or non-parametric as appropriate).
In assessing whether the physiological metrics varied with

gestational age we performed a mixed effects linear regression
analysis whereby gestational age in days was the independent
variable used to predict each physiological metric when control-
ling for body mass index (BMI), age of the mother at the start of
pregnancy, parity (number of prior births), and sex of the baby if
known during pregnancy. Given that some of the metrics were
correlated with each other due to the fact that they were derived
from a minimal set of sensors, we used a Bonferroni adjustment to
divide p= 0.05 by the 30 features evaluated with gestational age,
to obtain a significance level of p < 0.001667 (p < 0.002). We also
measured differences in the physiological metrics relative to
participant characteristics (BMI, parity, maternal age or fetal sex).
Using mixed effects logistic regression, we compared presence/

absence of individual symptoms of labor in relationship to
advancing gestational age, again using an interaction term for
spontaneous labor onset compared to labor that was induced.
Next, we tested an interaction term between groups of
participants with labor starting before the EDD versus those with
longer gestations. Measures of mental health (mood, depression/
anxiety), fatigue were compared against gestational age with
mixed effects linear regression and interactions. We also examined
a weekly symptom burden as the sum of the number of symptoms
reported by each participant during each week of gestation and
compared the symptom burden at each week from 32–40 weeks
between those who experienced induced birth prior to the EDD
compared with those who had labor begin spontaneously or
those with a longer pregnancy with a Poisson regression model.

Predictive model
A boosted random forest (Adaboost1) was trained using 10-fold
cross validation whereby 80% of the participants were included in
the training of the model and for hyperparameter tuning, and 20%
were used for testing the accuracy in the test set. The objective was
to determine which combination of features yielded the highest
cross-validation accuracy on the test set. This was done using a
greedy search of optimal features by starting with a single feature
and determining the most accurate predictor based on the area
under the curve (AUC) of the receiver operative characteristic (ROC)
curve. After the first optimal feature was identified, that feature was
combined with each additional feature to determine the best
combination of two features that would yield the highest AUC. This
process was repeated across all of the features.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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