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Deep learning analysis of blood flow sounds to detect
arteriovenous fistula stenosis
George Zhou 1✉, Yunchan Chen 1, Candace Chien1, Leslie Revatta2, Jannatul Ferdous2, Michelle Chen2, Shourov Deb2,
Sol De Leon Cruz2, Alan Wang3, Benjamin Lee4, Mert R. Sabuncu3,4, William Browne5, Herrick Wun6✉ and Bobak Mosadegh 7✉

For hemodialysis patients, arteriovenous fistula (AVF) patency determines whether adequate hemofiltration can be achieved, and
directly influences clinical outcomes. Here, we report the development and performance of a deep learning model for automated
AVF stenosis screening based on the sound of AVF blood flow using supervised learning with data validated by ultrasound. We
demonstrate the importance of contextualizing the sound with location metadata as the characteristics of the blood flow sound
varies significantly along the AVF. We found the best model to be a vision transformer trained on spectrogram images. Our model
can screen for stenosis at a performance level comparable to that of a nephrologist performing a physical exam, but with the
advantage of being automated and scalable. In a high-volume, resource-limited clinical setting, automated AVF stenosis screening
can help ensure patient safety via early detection of at-risk vascular access, streamline the dialysis workflow, and serve as a patient-
facing tool to allow for at-home, self-screening.
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INTRODUCTION
The arteriovenous fistula (AVF) is often touted as the “lifeline” for
dialysis patients. According to the National Kidney Foundation
(NKF), vascular access is globally ranked as a top priority for
dialysis patients, healthcare providers, and clinical research1.
Preserving dialysis access is a high priority for providers and
patients because the consequences of AVF dysfunction and
subsequent access failure significantly contributes to patient
morbidity and healthcare costs. Unfortunately, AVF dysfunction is
not uncommon. One 5-year study from 2018 that analyzed AVF
failures found a cumulative patency loss rate of 19.7% and 33.3%
during the early and late period, respectively2. According to the
United States Renal Data System (USRDS), from 2016–2018, the
cumulative incidence of loss of primary unassisted patency at 1
year was 51.8%, the loss of primary assisted patency was 19.0%,
and the loss of secondary patency was 3.3%. It is well documented
that the most common cause of AVF dysfunction and subsequent
failure is stenosis and thrombosis3–6. One study found that the
incidence of stenosis is 4.6–10.8%, and the incidence of
thrombosis is 2.3–7.7%7. Nearly all thrombosed AVFs have an
underlying stenotic lesion8. While patients on hemodialysis are in
a general prothrombotic state, which increases the risk for stroke
and ischemic heart disease, studies have found that vascular
access-related complications are the leading cause of hospitaliza-
tions among dialysis patients9. Once there is access site
thrombosis, urgent intervention is required for salvage in order
to prevent permanent loss of the AVF.
Vascular access complications, such as stenosis and thrombosis,

are significant drivers of resource utilization, cost, morbidity, and
mortality10–14. Screening for AVF stenosis improves the longevity
of AVFs, reduce costs for healthcare systems, and improve the
quality of life for patients. The current Kidney Disease Outcomes

Quality Initiative (KDOQI) guidelines recommend screening for
AVF stenosis through “the examination and evaluation of the
access by means of physical examination to detect clinical signs
that suggest the presence of AV access flow dysfunction”15. A
lesion is considered clinically significant if it contributes to clinical
signs and symptoms, such as arm swelling, prolonged bleeding
after dialysis, or changes in the access bruit (rumbling sound) or
thrill (tactile sensation); regardless of sustained changes in
measurements such as access flow or venous pressures16–18.
Auscultation (i.e., listening for internal body sounds) is a

noninvasive method, compared to digital subtraction angio-
graphy or venous cannulation, and more convenient compared
to ultrasound for detecting abnormal blood flow19. Addition-
ally, a change in access bruit or thrill may be one of the earliest
clinical indicators that a stenosis is developing and can be
measured using a low-cost and widely available digital
stethoscope. However, the reality is that auscultation is a
highly subjective physical exam technique and largely depends
on the skill of the listener20–23. Since the timely diagnosis of
stenosis is crucial for maintaining dialysis access, applying
deep learning to AVF blood flow sounds can enhance the
ability of healthcare providers to screen for AVF stenosis both
reliably and efficiently.
In this Article, blood flow sounds are recorded using a digital

stethoscope at six distinct locations along each patient’s AVF.
The overall schematic of our project is demonstrated in Fig. 1.
We choose to pre-process the recorded one-dimensional blood
flow audio signals into two-dimensional image representations
to leverage the state-of-the-art models developed by the
computer vision community. We trained our models using
supervised learning with labels validated from concurrent
duplex ultrasound. We found that these models could better
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predict patients with a stenosis compared to non-machine
learning analyses of the same sound files. A deep learning
model trained on normal and abnormal blood flow sounds that
can identify AVF stenosis could establish a level of objectivity
to the subjective interpretation of auscultated sounds via the
extraction and quantification of relevant features from the
blood flow audio signals. Deep learning has already been
successfully utilized to help predict AVF failure and successful
maturation based on various patient parameters24,25. Addi-
tionally, deep learning affords a level of automation over the
screening process. Our proposed technology could even serve
as a patient-facing tool to allow for at-home, self-screening of
AVF stenosis. This ability could be especially helpful in under-
resourced areas where patients may not be receiving routine
screening. The timely and accurate detection of AVF stenosis
using deep learning analysis of AVF blood flow sounds can
reduce downstream healthcare costs, and more importantly,
improve the quality of life of patients.

RESULTS
Data
Table 1 summarizes the demographic and clinical characteristics
of the patients enrolled in our study.
Table 2 gives a breakdown of the distribution of stenotic and

patent AVFs by location.

Frequency spectrums
To gain some intuition about how the blood flow sounds differs
by location along the AVF and how patent and stenotic sounds
differ from each other at each location, we computed the
averaged frequency spectrum across all patients in the training
set. We also derived scalar metrics from the averaged frequency
spectrums including the area under the curve, peak frequency,
maximum frequency, and full width at half max height. Fig. 2
displays the averaged frequency spectrums and quantitative
scalar measures.

Fig. 1 Schematic of overall project. a Sound of blood flow captured by digital stethoscope. The one-dimensional blow flow audio signal is
preprocessed into two-dimensional image representations, which were used to train the deep learning models investigated in this paper.
Ultrasound imaging and blood flow velocities measured by concurrent duplex ultrasound were used to inform the binary ground truth label
of either “Patent” or “Stenotic”. The deep learning models are trained following the supervised learning paradigm. b The 6 locations along the
arteriovenous fistula from where blood flow sounds are collected numbered in increasing order from most distal to most proximal based on
the anatomic definitions of the arm: artery, anastomosis (where the artery joins the vein), the distal vein, the middle vein, the proximal vein,
and the arch of the vein. Shown in this illustration is the brachiocephalic fistula, but the brachiobasilic, radiocephalic, and radiobasilic fistula is
also studied in this paper. c, d Laminar flow through a patent arteriovenous fistula (AVF) generates a quiet “whooshing” sound. As an AVF
develops stenosis, laminar flow will transition to turbulent flow. Increasing turbulent flow will result in an increased amount of higher
frequency components in the generated sound. Clinically, the sound heard when auscultating a stenosed AVF is often described as a “high-
pitched systolic bruit or thrill”. The two image representations of sound explored in this study are the mel-spectrogram and the recurrence
plot. The mel-spectrogram is generated from applying the short-time Fourier Transform (STFT) to the waveform. The recurrence plot is
generated from a recurrence quantification analysis (RQA) of the frequency spectrum, which is obtained from applying the Fourier Transform
(FT) on the waveform. The illustrative example patent and stenotic waveforms, frequency spectrums, mel-spectrograms, and recurrence plots
seen here are taken from a patent and stenotic “proximal” vein, respectively.
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Individual, location-based models
First, we studied binary classification of AVF blood flow sound at
each location separately. We studied combinations of two
different pre-processing methods with three different model
architectures. The first method is to create a Mel-spectrogram
image representation of the blood flow sound using a short-time
Fourier transform. For the spectrogram image, we also explore
three different time resolutions at the maximum frequency
resolution. The second method is to create a recurrence plot
image representation of the blood flow sound by applying
recurrence quantification analysis to the signal in the frequency
domain. Each image representation of sound is then used to train
the three different model architectures. The first model is a 6-layer
convolutional neural network (CNN). The second model is a
ResNet-50 CNN pre-trained on ImageNet. The third model is a
vision transformer (ViT). We refer to these models as “location-
based models” since they are only trained on sounds from a
single, given location. Fig. 3 depicts the model architectures and
summary of the results for each pre-processing method and
model architecture combination. For these individual, location-
based models, we further study how important it is to

Table 1. Clinical and demographic characteristics of the patients
included in this study.

Patent
(N= 2113)

Stenotic
(N= 452)

Overall
(N= 2565)

Demographics

Sex

Male 1316 (62.3%) 285 (63.1%) 1601 (62.4%)

Female 797 (37.7%) 167 (36.9%) 964 (37.6%)

BMI

Mean (SD) 25.0 (5.03) 24.6 (3.91) 24.9 (4.85)

Median [min, max] 24.2 [16.1, 66.7] 24.1 [16.1, 40.1] 24.2 [16.1, 66.7]

Age at AVF creation

Mean (SD) 66.0 (13.9) 66.3 (13.9) 66.1 (13.9)

Median [min, max] 67.0 [18.0, 91.0] 67.0 [18.0, 91.0] 67.0 [18.0, 91.0]

AVF characteristics

AVF velocity

Mean (SD) 224 (125) 611 (130) 292 (194)

Median [min, max] 194 [14.0, 639] 620 [0, 984] 233 [0, 984]

AVF type

Brachiocephalic 1202 (56.9%) 250 (55.3%) 1452 (56.6%)

Radiocephalic 405 (19.2%) 99 (21.9%) 504 (19.6%)

Brachiobasilic 408 (19.3%) 79 (17.4%) 487 (19.0%)

Radiobasilic 98 (4.6%) 24 (5.3%) 122 (4.8%)

Past medical history

Comorbidities

Hypertension 2030 (96.1%) 437 (96.7%) 2467 (96.2%)

Cardiovascular disease 1565 (74.1%) 338 (74.8%) 1903 (74.2%)

Peripheral artery disease 1229 (58.2%) 271 (60.0%) 1500 (58.5%)

Diabetes 1118 (52.9%) 222 (49.1%) 1340 (52.2%)

Deep vein thrombosis 8 (0.4%) 3 (0.7%) 11 (0.4%)

Smoking status

Never 1414 (66.9%) 297 (65.7%) 1711 (66.7%)

Former 603 (28.5%) 127 (28.1%) 730 (28.5%)

Current 95 (4.5%) 28 (6.2%) 123 (4.8%)

Renal disease etiology

ESRD, unspecified 1524 (72.1%) 339 (75.0%) 1863 (72.6%)

Hypertensive
nephropathy

294 (13.9%) 46 (10.2%) 340 (13.3%)

Diabetic nephropathy 110 (5.2%) 19 (4.2%) 129 (5.0%)

Polycystic kidney
disease

71 (3.4%) 22 (4.9%) 93 (3.6%)

Chronic
glomerulonephritis

43 (2.0%) 9 (2.0%) 52 (2.0%)

IgA nephropathy 35 (1.7%) 10 (2.2%) 45 (1.8%)

Renal cancer 23 (1.1%) 7 (1.5%) 30 (1.2%)

Congenital etiologies 12 (0.6%) 0 (0%) 12 (0.5%)

Complications

AVF revision

No 551 (26.1%) 132 (29.2%) 683 (26.6%)

Yes 1556 (73.6%) 319 (70.6%) 1875 (73.1%)

Number of revisions

Mean (SD) 3.45 (4.77) 3.27 (4.82) 3.42 (4.78)

Median [min, max] 2.00 [0, 31.0] 2.00 [0, 31.0] 2.00 [0, 31.0]

Month to earliest revision

Mean (SD) 14.5 (24.0) 14.7 (27.0) 14.5 (24.5)

Median [min, max] 5.00 [1.00, 143] 4.00 [1.00, 143] 5.00 [1.00, 143]

Physical exam

Heart rate at visit

Mean (SD) 77.9 (11.9) 78.1 (11.9) 77.9 (11.9)

Median [min, max] 76.0 [52.0, 118] 76.0 [52.0, 118] 76.0 [52.0, 118]

Systolic blood pressure at visit

Mean (SD) 136 (20.1) 139 (20.5) 137 (20.2)

Median [min, max] 138 [90.0, 182] 140 [90.0, 182] 138 [90.0, 182]

Table 1 continued

Patent
(N= 2113)

Stenotic
(N= 452)

Overall
(N= 2565)

Diastolic blood pressure at visit

Mean (SD) 72.1 (11.1) 73.6 (11.7) 72.4 (11.3)

Median [min, max] 71.0 [43.0, 102] 72.0 [43.0, 102] 71.0 [43.0, 102]

Table 2. Breakdown of patent versus stenotic lesions per location
(based on the anatomic definitions of the arm).

AVF Location Status Count

Artery

Patent 441 (99%)

Stenotic 6 (1%)

Anastomosis

Patent 424 (88%)

Stenotic 57 (12%)

Distal vein

Patent 252 (54%)

Stenotic 213 (46%)

Middle vein

Patent 399 (89%)

Stenotic 48 (11%)

Proximal vein

Patent 332 (84%)

Stenotic 62 (16%)

Venous arch

Patent 240 (81%)

Stenotic 55 (19%)

Total

Patent 2088 (83%)

Stenotic 441 (17%)
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contextualize these models with metadata regarding the anato-
mical origin of the artery and vein used to create the AVF. Results
from these studies are depicted in Supplementary Figs. 12 & 13
and Supplementary Table 1.

Universal model with and without location metadata
Next, we study the importance of contextualizing AVF blood flow
sounds with location metadata. For this we study the ViT
architecture trained on the Mel-spectrogram images. We refer to
these models as “universal models” since they are trained on
sounds from all the locations. In experiment II, we aggregate all
the sounds from each location to train one ViT, but without any

location metadata given to the model. In experiment III, we
aggregate all the sounds from each location and supply location
metadata to the ViT. We study various categorical encoding
methods for encoding the location metadata including ordinal
encoding, one-hot encoding, and learned embeddings. Fig. 4
shows the results from training our universal ViT with and without
location metadata.

Evaluation on held-out test set
Finally, we study how well our models perform on our held-out
test set. In particular, we look at the individual location-based
ViT models trained on 368 × 128 spectrogram images, the

Fig. 2 Averaged patent and stenotic frequency spectrums across all patients, stratified by location. We computed the averaged frequency
spectrum of blood flow sounds for patent (blue) and stenotic (red) fistulas across all patients in the training and validation sets (311 patients
total) at a the anastomosis site, b the distal vein site, c the middle vein site, d the proximal vein site, e and the venous arch site. f Descriptive,
numerical summary of the averaged frequency spectrums include the area under the curve (AUC), peak frequency, maximum frequency, and
full width at half max.
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universal ViT model trained on 368 × 128 spectrogram images
with location metadata encoded via learned embeddings, and a
non-deep learning, rule-based algorithm that classifies sound
based on how loud the sound is as measured by the AUC of the
frequency spectrum. For the two deep learning methods, the
threshold that corresponds to the largest geometric mean of
sensitivity and specificity based on the averaged ROC curve from
10-fold cross-validation was selected as the final threshold
value. Fig. 5 shows confusion matrixes stratified by location to
allow for direct comparisons and the sensitivity, specificity and
F1 scores.

Calibration plots
Fig. 6 display calibration plots for each individual, location-based
ViT models trained on 368 × 128 spectrogram images along with
each model’s Brier score.

Patient level analysis
Lastly we study how well the individual, location-based ViT models
trained on 368 × 128 spectrogram images performs at the patient
level. Fig. 7 shows the confusion matrix at the patient level and
the sensitivity, specificity, and F1 scores.

Fig. 3 Schematic of model architectures and summary of results of location-based models. a The models explored in this study: a
Convolutional Neural Network (CNN), a ResNet-50 pre-trained on ImageNet weights, a Vision Transformer (ViT). b Summary of results of
Experiment 1: independent binary classifiers to distinguish patent vs stenotic at each location. In experiment 1, we compare the three model
architectures and the two pre-processing methods – spectrograms and recurrence plot images – at each location. For the spectrogram
images, we tested 3 different sizes of varying time resolution at the constant, maximum frequency resolution of 128: 374 × 128, 128 × 128, and
32 × 128. *Note that for the ViT, the 374 × 128 spectrogram image is resized to be 368 × 128 to be compatible with the 16 × 16 patch
tokenization step. For the recurrence plot images, we used a resolution of 128 × 128. Model performance is quantified by the area under the
receiver operating characteristics curve (AuROC) and the area under the precision recall curve (AuPRC) from 10-fold cross validation. c The
ROC (top) and PR curves (bottom) for detecting stenosis at each location for the best performing model in Experiment 1: ViT trained on
368 × 128 spectrogram images. The ROC and PR curves for the other model architectures and pre-processing methods are shown in the
Supplementary Figs. 3–8. The gray shading represents ± 1 standard deviation. Variance is calculated from the 10 different folds used in the 10-
fold cross validation.
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DISCUSSION
Examining the frequency spectrums in our illustrative examples of
stenosis at each location (Supplementary Fig. 1b–f, Supplementary
Fig. 2a–f), one can see that a stenosis is characterized by a
“double-peak”. The left (lower frequency peak) corresponds to

diastole (when the heart’s ventricles relax) and the right (higher
frequency peak) corresponds to systole (when the heart’s
ventricles are contracting). During systole, there is a momentary
increase in the velocity of blood flow all throughout the
vasculature, including the AVF. The increased velocity through a
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stenosed AVF directly contributes to increasing the jet Reynolds
number. The flow regime is more likely to transition to turbulent
flow at the site of the stenotic lesion during systole because at
baseline (during diastole) the stenotic lesions is already character-
ized by higher Reynolds number by virtue of the diminished
lumen diameter and its direct effect on increasing velocity. This
increased propensity to develop turbulent flow during systole at
the stenotic site is responsible for the second higher frequency
peak seen in our frequency spectrums and clinically corresponds
to the “high-pitched systolic bruit of thrill” heard during
auscultation. A patent AVF is better able to accommodate the
increased throughput of blood during systole, and the second
higher frequency peak is not as prominent or entirely absent.
Supplementary Figs. 1 and 2 provides more illustrative examples
of patent and frequency spectrums at each location.
To gain a better understanding of the data and to see how well

these individual observations generalize, we computed the
average frequency spectrum across all patients, stratified by
location and patency status (Fig. 3). The “double-peaking” is not as
distinct compared to the individual examples likely because the
higher frequency peaks blend together when averaged. However,
the distributions do appear to be bimodal, correlating with systole
and diastole of the heart cycle. On average, the stenotic frequency
spectrums have higher AUC values compared to their location-
controlled counterparts, at all five studied locations. The AUC for
the frequency spectrum corresponds to energy, which we
perceive as loudness. Additionally, on average, the stenotic
frequency spectrums reach higher maximum frequencies com-
pared to the location-controlled counterparts, at all five studied
locations. This is consistent with higher degrees of turbulent flow
(caused by the stenosis) resulting in higher frequency components
in the generated sound. Finally, on average, the stenotic
frequency spectrums all have peak frequencies that are right
shifted compared to the patent frequency spectrums, at all five
studied locations, which correlate with the fact that even during
diastole, blood is flowing faster at the stenotic site due to the
reduced lumen size. In short, from our data we observe that, on
average, blood flow through a stenotic lesion is louder and has
higher pitch, which is consistent with the clinical physical exam19.
Through a series of experiments, we see if we can train a deep

learning model to learn this difference in blood flow sound
between a patent and stenotic AVF. In addition to the overall goal
of building the best classifier, our experiments also help assess (1)
how important is it to contextualize the sound with information
about the location along the AVF from which the sound was
sourced from and (2) how important it is to contextualize the
sound with information regarding the anatomical original of the
artery and vein used to construct the AVF.
Experiment one allows a direct comparison of the three

different models architectures and two different pre-processing
methods explored. In experiment one, we build independent
classifiers trained on patent and stenotic sounds at each location,
testing every combination of the three model architectures with

the two pre-processing methods. The three model architectures
explored are a CNN, and ResNet-50 pre-trained on ImageNet
weights, and a ViT. The two pre-processing methods explored are
spectrogram images and recurrence plot images.
From experiment one, we observe that spectrogram images

outperform the recurrence plot image, achieving higher AuROC
and AUPRC values for each model architecture (note that the
AuPRC values should be interpreted in the context of the true
positive rate for each location as precision and recall do not
consider the true negative rate). The spectrogram images
represent frequency as it varies with time, and so the spectro-
grams contain information from both the time and frequency
domain. The recurrence plots are constructed from the frequency
spectrum, and so the recurrence plots contain information only
from the frequency domain. At first thought, it may be intuitive to
believe that the differences between patent and stenotic sounds
are only encoded in the frequency domain, as suggested by our
analysis on the frequency spectrums of the sounds. However, the
spectrograms outperforming the recurrence plots means there is
also useful information encoded in the time domain that is
helping the model learn the difference between patent and
stenotic sounds. For the spectrogram images, we also explored
three different time resolutions at a constant frequency resolution
(374 × 128, 128 × 128, 32 × 128), and the best performing spectro-
gram resolution was the largest (374 × 128). Note that for the ViT,
we resized the time resolution of 374 to 368 to be compatible with
the 16 × 16 patch tokenization step. This further supports the
argument that there are distinguishing features in the time
domain and is consistent with the general idea that the model
performs better when given more information to learn from. In
our patient population of mature fistulas, we do not expect there
to be any changes in heart rate or blood pressure based on degree
of AVF stenosis and this is corroborated in Table 1. Thus, it seems
unlikely that the time-dependent information being leveraged by
the models is related to heart rate. We speculate that the time-
domain phenomenon the models are learning is related to
stenosed AVF’s having higher blood flow velocities.
From experiment one, we also observe that the vision

transformer outperforms both convolutional neural network
architectures on the spectrogram images. The convolution
operator aggregates information via spatial sliding windows or
kernels which use the same learned weights as it slides across an
image. This architecture structurally introduces two important
inductive biases inherent to CNN: translational equivariance and
locality. Pooling layers, used in conjunction with convolutional
layers in our models, helps the model achieve translational
invariance. Translational equivalence and invariance mean that an
object can be detected irrespective of its location in the image.
The locality bias is the notion that closely space pixels are more
correlated than pixels that are far away.
While spectrograms and natural images are both images from a

data structure point of view (i.e. a grid of pixel values), the two
images represent fundamentally different natural phenomenon.

Fig. 4 Universal Vision Transformer with and without location metadata. aModified ViT architecture that also takes an encoded categorical
input (i.e. location metadata) via concatenation to the flattened feature vector coming out of the last transformer encoder layer. b The ROC
(top) and PR curves (bottom) for Experiment 2: universal binary classifier to distinguish patent vs stenotic, with no location metadata. The
368 × 128 spectrogram images from every location are aggregated together and used to train the conventional ViT (Model 3) without
supplying the model any metadata about the location from which the spectrogram is sourced from. c The ROC (top) and PR curves (bottom)
for Experiment 3 : universal binary classifier to distinguish patent vs stenotic, with location metadata. The 368 × 128 spectrogram images from
every location are aggregated together to train the modified ViT (shown here), this time with location metadata supplied to the model. The
categorical location information is first one-hot encoded, then fed into an embedding layer that converts the one-hot encoded vectors into a
dense numerical vector representation that is then concatenated to the flattened feature vector. The embedding layer is trained along with
the ViT. The gray shading represents ± 1 standard deviation. Variance is calculated from the 10 different folds used in the 10-fold cross
validation. d Summary statistics of the universal model with and without location metadata. Results from other methods of encoding
categorical information are shown in the Supplementary Fig. 11.
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The inductive biases of translational invariance and locality
structurally built into the CNN architecture are not as suitable
for processing and interpreting spectrograms. While translation
invariance is a good assumption for natural images whose axis
convey a measure of physical distance (i.e. a cat in the upper left
corner is the same as a cat in the lower right corner), the same is
not true for spectrograms. A spectrogram conveys time on the
x-axis and frequency on the y-axis. It may be a fair assumption that
translational invariance applies to the time axis (i.e. a sound event
happening at 5 s is the same as happening at 10 s), but it does not
make much sense to uphold translational invariance to the
frequency axis because semantic meaning is encoded in the
frequency domain. Furthermore, the spectral properties of sound
are non-local. The pitch of a sound is determined by the
fundamental frequency, while the quality or timbre of a sound
is determined by its harmonics (the nth harmonic has a frequency
Fn= nF1, where F1 is the fundamental frequency). The funda-
mental frequency and its harmonics are not locally grouped
despite originating from the same sound source. For example, if
the fundamental frequency is 100 Hz, then its harmonics are
200 Hz, 300 Hz, etc. The locality bias, again while useful for natural

images, is not a good inductive bias for spectrogram images
because the frequencies associated with a given sound event are
non-locally distributed.
The vision transformers, by using the self-attention mechanism,

structurally lack these two inductive biases of translational
invariance and locality, which are usually quite useful biases for
natural images. Typically, the vision transformer must learn these
inductive biases from the data itself; however, for spectrogram
images it makes good sense to disregard these biases as the they
do not pertain to spectrogram images. The ViT is not structurally
constrained to the inductive biases of translational invariance and
locality like the CNN, which allow the model to explore the
parameter space more freely to find a better set of generalizable
rules for classifying spectrograms. This explains the superior
performance of the ViT over the convolution-based neural
networks in classifying the spectrogram images of blood flow
sound. Moreover, the convolution operator is a local operator,
meaning only information that falls within the predefined window
size can be aggregated. ViT maintain a global receptive field at
every layer. Thus, ViT can learn long range dependencies and

Fig. 5 Evaluation on held-out test set. a Confusion matrices for the individual, location-based ViT trained on 368 × 128 spectrogram images.
b Confusion matrices for the “universal” ViT trained 368 × 128 spectrogram images with location metadata. We stratify the results by location
to allow for side-by-side comparison. c Confusion matrices for a simple, non-deep learning approach for detecting stenosis at each location.
Here we used the averaged area under the curve (AUC) value of the averaged patent and stenotic frequency spectrums from Fig. 3 as a
threshold for deciding how to classify each sound in the test set. For example, at the anastomosis site the AUC of the averaged patent
frequency spectrum is 2772 and the AUC of the averaged stenotic frequency spectrum is 4142. The average of the two AUC values is 3457. In
the test set, if a sound has a frequency spectrum AUC greater than 3457, we classify the sound as stenotic, and vice versa. d Summary of
sensitivity, specificity, and F1 score for the three approaches.
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aggregate global information in early layers, resulting in improved
performance26.
After establishing that the ViT trained with 368 × 128 spectrogram

images performs the best, we use this combination to understand
how important location metadata is. From qualitative inspection of
the averaged frequency spectrums in Fig. 2a–e, we see how each
location’s averaged frequency spectrum has a distinctive global
shape, which suggests that the blood flow sounds differ from each
other depending on the location. From Fig. 2f, see that at the
anastomosis site, the sounds have the largest average AUC value.
The sounds have the smallest average AUC value at the venous arch
location. In other words, the blood flow sound is loudest at the
anastomosis and softest at the venous arch, again highlighting how
the characteristics of blood flow sounds changes as a function of
location. Thus, it appears to be important to contextualize the blood
flow sounds with location metadata.

We set out to experimentally confirm our observations through
experiments I-III. In experiment I, we built independent classifiers,
one for each location. In experiment II, we aggregate all the
sounds from each location to train one ViT, but without any
location metadata given to the model. In experiment III, we
aggregate all the sounds from each location and supply location
metadata to the ViT. Comparing the results between experiment II
and III, we see that the AuROC and AuPRC improves from
0.68 ± 0.05 and 0.28 ± 0.09 (for the model lacking location
information) to 0.82 ± 0.04 and 0.54 ± 0.08 (for the model
considering location information), respectively. This jump in
performance confirms the importance of accounting for the
location along the AVF from which the sound was sourced from.
Using learned embeddings to encode the categorical location
information gave us the best performance results. Supplementary
Fig. 11 shows the results for integer encoding and one-hot

Fig. 6 Calibration plots. Calibration plots for the individual, location-based vision transformer trained on 368 × 128 spectrogram images
evaluated on the test set at each location: a anastomosis b distal c middle d proximal and e arch. The dotted black line represents a perfectly
calibrated model. The solid orange line represents a logistic regression curve fitted to the points. f The Brier score for each individual, location-
based vision transformer.
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encoding. Interestingly, we see that using increasing scalar
multiples of our integer encoding scheme (i.e. encoding “venous
arch” as 1,10,100) results in progressively improved performance
metrics (Supplementary Fig. 11a–c). These results are counter-
intuitive because in theory it should not matter what the integer
values are since we are optimizing the same loss function in each
case; the model can learn to increase or decrease the weights
associated with location metadata and converge on the same
solution. However, it seems that artificially increasing the
importance of the location metadata at initialization (via larger
integer values) leads to better performance. In the setting of
limited data and computation resources, we speculate that
increasing the importance at initialization either leads to faster
convergence or helps the model escape a local minimum. The fact
that we achieve progressively better results with increasing scalar
integer encoding values further emphasizes the importance of
contextualizing the sounds with location metadata.
Next, we seek to understand if it is important to contextualize

the blood flow sound with metadata regarding the anatomical
original of the artery and vein used in the creation of the AVF. In
this study we used AVFs made from the brachial and radial artery,
and the cephalic and basilic vein. In experiment IV, we test if a ViT
can distinguish the brachial from the radial artery based on blood
flow collected at the “artery” location. Results are shown in
Supplementary Fig. 12. An AuROC value of 0.78 ± 0.11 suggest
that there is a difference in blood flow sound between the radial

from brachial artery. The difference in sound likely stems from the
fact that the brachial artery is almost two times larger than the
radial artery and has thicker vessel walls27,28. In experiment V, we
test if a ViT can distinguish the cephalic from the basilic vein
based on blood flow collected at the “arch” location. Results are
shown in Supplementary Fig. 13. An AuROC value of
0.52 ± 0.13 suggest that there is not much difference in blood
flow sound between a cephalic and basilic vein. The difference
between the basilic and cephalic vein is only about 1–2mm in
most people, which likely explains the model’s lack of ability to
differentiate the sound of blood flow between the veins29,30. In
experiment VI, we test how well the individual, location-based ViTs
perform when also given metadata regarding the anatomical
origin of either the artery or the vein. We notice no improvement
between the models given venous origin metadata in experiment
VI compared with the models in experiment I (Supplementary
Table 1), consistent with our model’s lack of ability to discern
cephalic from basilic vein in experiment V. Interestingly, despite
our model being able to distinguish the radial from the brachial
artery, there is no improvement between the models given artery
origin information in experiment VI compared with the models in
experiment I (Supplementary Table 1). Thus, the anatomical
original of the artery or vein seems to be unimportant in the
context of building classifiers to identify AVF stenoses based on
blood flow sound.
On evaluation on the held-out test set, we see that the

individual, location-based ViTs outperform the universal ViT with
location metadata (Fig. 5a, b). The individual, location-based
models implicitly contextualize the sounds with location informa-
tion since they are only trained on sounds coming from the given
location. The individual, location-based ViTs can focus exclusively
on learning the features that distinguish patent from stenotic at
that given location. The “universal” ViT must learn a feature
extractor that generalizes across all six locations, which likely
hinders performance because the relevant features that define
patent vs stenotic varies with location due to inherent differences
in sound at each location. What it means to be “stenotic” at the
“arch” location is different than “stenotic” at the “anastomosis”
location, despite both receiving the same “stenotic” label. We can
qualitatively see these differences in Fig. 3a, e. For example, on
average, the blood flow sound is louder at a patent anastomosis
site compared to a stenotic venous arch site.
In evaluation on our test set, we also tested a simple non-deep

learning approach based on our conclusion that, on average, the
blood flow through stenotic lesions is louder than through patent
vessels (Fig. 3). For each location, the half-way point between the
averaged patent frequency spectrum AUC value and the averaged
stenotic frequency spectrum AUC value is used as a threshold for
evaluating the test set. For the test set, sounds with frequency
spectrums AUC values that fall above the threshold are classified
as stenotic, and those with AUC values below the threshold are
classified as patent. This approach gives us inferior results
compared to the two deep learning approaches. While general
spectral properties that correlate clinically seem to emerge from
the averaged frequency spectrums, judging from both the large
standard deviations in Fig. 2f and from visual inspection of the
individual frequency spectrums in Supplementary Figs. 1 and 2,
there seems to be large degree of heterogeneity among the
sounds on an individual level. This underscores the need for highly
parameterized deep learning models over simpler rule-based
algorithms for screening for AVF stenosis based on blood flow
sound. Finally, we perform a patient-level analysis on our held-out
test set using our best performing model, and we achieve a
sensitivity, specificity, and F1 score of 0.924, 0.791, 0.907,
respectively (Fig. 6). As a reference for performance, a clinical trial
that studied how well a single expert nephrologist could identify
stenosis in hemodialysis arteriovenous fistulas based on a physical
exam, also using ultrasound as the ground truth, reported a

Fig. 7 Patient level analysis. a Confusion matrix for the individual,
location-based vision transformer trained on 368 × 128 spectrogram
images evaluated on the test set at the patient level. At the patient
level, the patient is considered a “stenotic patient” if the patient has
a stenotic lesion anywhere along their arteriovenous fistula. If the
patient has no stenotic lesions anywhere, then the patient is
counted as a “patent patient”. For the predicted label for each
patient, each individual, location-based model must predict patent
at every location for the overall prediction to be a patent prediction.
If any of the individual, location-based models predicts stenosis,
then the overall prediction is counted as stenotic. b Sensitivity,
specificity, and F1 score for the patient-level analysis.
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sensitivity of 0.96 and a specificity of 0.7631. Thus, our model is
able to screen for stenosis at a level comparable to that of an
expert nephrologist performing a physical exam.
One of the limitations of this study is that we only studied

brachial/radial – cephalic/basilic fistulas. Although the most
common types of fistulas, other fistula types using other artery
and veins exist, and our conclusion that the anatomical origin of
the artery and vein is not important may not generalize.
Additionally, our model cannot be used to identify stenosis on
the arterial side of an AVF, although this is much rarer than
stenosis on the venous side. This is due to the lack of training data
we have of arterial stenosis (only 6 examples). Furthermore, an
important clinical implication of adjusting for class imbalance
during our training process is that this can potentially cause the
model to be mis-calibrated. In our case, we are using a weighted
loss function (in essence, oversampling the minority class), which
can potentially cause the model to be overconfident when making
positive class (i.e. stenotic sounds) predictions. Empirically from
our calibration plots for the individual, location-based ViT shown
in Fig. 6, we do see that our model tends to be overconfident,
which is another limitation for our model. While overconfident
predictions may be the result of our class imbalance adjustments,
we find our class imbalance adjustments necessary to achieve
good model discrimination. We show the ROC and PR curves from
10-fold cross-validation for the ViT trained on
368x128 spectrogram images without using a weighted loss
function in Supplementary Fig. 14. Compared to the ROC and PR
curves shown in Fig. 3c, we can see how adjusting for class
imbalance improves model discrimination in our case. Another
important limitation of this study is how we validated our data.
Stenotic lesions were identified with duplex ultrasound. Clinically,
a stenotic lesion identified on ultrasound does not always
necessitate a percutaneous angioplasty (the procedure for
treating a stenotic AVF). An important clinical question is when
to intervene on a stenotic AVF once found. While our study
demonstrates promise for using deep learning analysis on blood
flow sound as a quick and economical screening tool for
identifying the presence of stenotic lesions, future work correlat-
ing sound to AVFs that ultimately require percutaneous angio-
plasties may further improve the utility of such technology.
In summary, our study presents a novel, fast, and easy approach

for screening for AVF stenosis in hemodialysis patients using deep
learning to analyze the sound of AVF blood flow. The final models
we recommend for deployment are the individual, location-based
vision transformer models trained on 368 × 128 spectrogram
images. Our preliminary model evaluation shows that this
technology can screen for stenosis at a level comparable to that
of a nephrologist performing the physical exam, but with the
advantage of being automated and scalable. In routine practice,
the onus of performing the physical exam to screen for stenosis
during dialysis sessions typically falls on the dialysis technician.
Thus, this technology could help dialysis technicians, who are
often challenged with a high-volume of patients each day, ensure
patient safety while also streamlining workflows to reduce costs.
The clinical implication is that our new screening tool can help
catch cases of stenosis that may otherwise be missed due to
understaffed dialysis centers (the patient to staff ratios at dialysis
centers can exceed 90:1 and reach upwards of 300% the
recommended limit by the NKF)32,33. Additionally, our technology
could serve as an indirect gateway to ultrasound in the diagnostic
workup. Instead of performing an ultrasound on every patient,
routine screening can be done via our technology and screening
ultrasound is only performed on those flagged for potential
stenosis to help facilitate efficient resource allocation. Note that
routine ultrasound screening is separate from the routine physical
exam screening that is to be performed at each dialysis session.
We foresee our technology facilitating the screening process that
takes place at the dialysis sessions, and not to be used as a

complete replacement for ultrasound. There is potential for this
technology to even be patient facing. The next step in
implementation would be to deploy the model onto a server
and create an API that will allow users to upload a sound and
receive back a prediction. The next step in terms of validation of
effectiveness and regulation would be to run a prospective clinical
trial using our deployed model.

METHODS
Turbulence induced sound
The sound produced by blood flowing through an AVF can be an
important indicator of the AVF’s patency status. Blood flow
through a patent AVF is laminar and will create a quiet
“whooshing” sound. A stenosed AVF can be conceptualized as a
converging-diverging nozzle. Flow through a converging-
diverging nozzle is characterized by jet Reynolds number show
in Eq. 1:

Re ¼ uD
v

(1)

where u is the velocity, D is the jet diameter, v is the kinematic
viscosity of the fluid. Experiments have shown that if Re exceeds
about 2000, the jet flow will be turbulent34. A stenosed AVF will
have a reduced lumen diameter relative to a patent AVF. By
conservation of mass and momentum, as the lumen diameter
decreases, fluid velocity will increase. From the jet Reynolds
equation, we can see that this inherent inverse relationship
between velocity and diameter means that velocity and diameter
have opposing effects in determining the overall Reynolds
number. However, as an AVF develops stenosis, the velocity of
blood flow will increase by a larger factor relative to how much
the diameter will decrease. This can be understood from a
simplified volumetric flow rate equation Q= u1 πr21

� � ¼ u2 πr22
� �

,
where Q is the constant volumetric flow rate, u1 is the fluid
velocity at radius r1 and u2 is the fluid velocity at radius r2,
assuming an incompressible, Newtonian fluid, which is an
acceptable assumption for blood35. In this simplified model, a
reduction in the lumen radius by 2 will result in an increase in
velocity by a factor of 4. In other words, as an AVF develops
stenosis, the increased fluid velocity u caused by the reduced
diameter D will overall result in a net increase of the jet Reynolds
number. Once the jet Reynolds number crosses a certain threshold
(i.e. 2000), the flow regime will transition from laminar to
turbulent. Turbulent flow produces a different sound compared
to laminar flow. This concept of turbulent fluid induced noise is
characterized by Lighthill’s wave equation. Turbulent fluid flow
collaterally generates pressure and density variations in the fluid,
which in turn generates the pressure and density variations that
we perceive as noise36. Increasing turbulence will result in an
increased amount of higher frequency components in the
generated sound37. Clinically, the sound heard when auscultating
a stenosed AVF is often described as a “high-pitched systolic bruit
or thrill” (Fig. 1c).

Data collection
A total of 433 patients with AVFs were enrolled in this study. All
recordings were performed in the same clinical setting, which is
an outpatient vascular ultrasound lab. The enrolled patients are
visiting clinic for routine ultrasound screening. Patients with AVFs
post-ESRD and pre-ESRD (pre-emptively placed AVF in light of
deteriorating kidney function) were included in this study. Patients
with arteriovenous fistulas, created with either the radial or
brachial artery and either the cephalic or basilic vein, were
recruited for this study. On the arterial side, 80% of patients had
fistulas created from the brachial artery; 20% of patients had
fistulas created from the radial artery. On the venous side, 65% of
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patients had fistulas created from the cephalic vein, 35% of
patients had fistulas created from the basilic vein. In summary,
four fistula variations are analyzed in this study: brachiocephalic
fistulas (52%), brachiobasilic fistulas (28%), radiocephalic fistulas
(13%), radiobasilic fistulas (7%).
For each patient, blood flow sounds were collected at 6

different locations along the patient’s AVF (Fig. 1b). Of the
6 sounds, one was collected from the artery, one was collected at
the anastomosis site (i.e., where the artery has been surgically
joined to the vein), and four sounds were collected along the vein.
The locations were designated, from most distal to most proximal,
as “arterial” for the artery, “anastomosis” for the anastomosis site,
“distal” for the distal vein, “middle” for the middle vein, “proximal”
for the proximal vein, and “arch” for the arch of the vein (i.e., the
point along the fistula closest to the shoulder). Note we use
terminology “proximal” and “distal” based on the anatomic
definitions of the arm. A total of 2565 AVF blood flow sounds
were included in this study. Sounds were collected using a 3 M
Littmann Core digital stethoscope at a sampling rate of 4000 Hz.
Each sound was recorded for 15 s. Sounds were collected over a
two year period from 2021 to 2023.
The sounds from the blood flow were labeled as “patent”

(normal) or “stenotic” (abnormal). The labels are validated from
concurrent duplex ultrasound (blood flow sound recorded by
stethoscope and ultrasound imaging were done at the same time).
The final label of “patent” vs “stenotic” at each location was
determined after interpretation of the corresponding ultrasound
imaging and velocity reports by a board-certified vascular
surgeon. The diagnosis of stenosis is established when the
measured blood flow velocity by duplex ultrasound is at least
double that of a preceding segment. Our dataset included 2113
patent sounds (83%) and 452 stenotic sounds (17%). Note that for
some patients only 5 sounds were collected. Instead of discarding
an “incomplete” set, we kept them in the study to maximize the
number of samples.
The data was divided into train, validate, and test sets. First, 20%

of the data was randomly reserved to serve as the held-out test set
for final model evaluation. Then 10-fold cross-validation was used
within the training dataset (the remaining 80%). Cross-validation is
used throughout the experiments (explained in more detailed
below) for model training, model hyperparameter tuning and
optimization, and comparison among models. The splits are done
on the patient-level to prevent data leakage. Of the patients that
do have a stenotic lesion, the vast majority will only have
1 stenotic lesion. There are a few cases where a patient has a
stenotic lesion present at 2 separate sites; however, since the train,
validation, and testing splits were done on the patient level, they
would both appear in the same set.

Deep learning models
Three different deep learning models were explored in this study:
a convolutional neural network (CNN) trained with no preset
weights, a ResNet-50 pre-trained on ImageNet, and a vision
transformer (ViT) with no preset weights. The CNN consisted of 6
convolutional layers. The number of filters used was 8, 16, 32, 64,
128, 256 for the 1st, 2nd, 3rd, 4th, 5th, 6th layer, respectively. Each
layer uses a rectified linear (ReLu) activation function. Following
each convolutional layer was a max pooling and batch normal-
ization layer. After the six convolutional layers, the feature vector is
flattened via global average pooling. The feature vector is then fed
into three fully connected layers consisting of 32, 16, and 1
node(s). The first two fully connected layers uses a ReLu activation
function, while the last node uses a sigmoid activation function to
perform the final binary classification of “Patent” versus “Stenotic”.
This model was trained using an adaptive moment estimation
(Adam) optimizer at a learning rate of 1 × 10−3. To address the
issue of class imbalance, a weighted binary cross-entropy loss

function which gives more importance to the minority class (i.e.,
the stenotic sounds) is used to calculate the loss. The class weights
ratio used mirror the inverse of the class distribution in the
training set. The same weighted binary cross-entropy loss function
is used with the other models as well. An illustration of the 6-layer
CNN is shown (Fig. 4a).
The second model explored was a ResNet-50. In brief, a ResNet-

50 is a CNN that is 50 layers deep with residual or skip connections
that allows activations from earlier layers to be propagated down
to deeper layers38. For this model, we also leverage transfer
learning by using a ResNet-50 pre-trained on ImageNet21k, a large
dataset consisting of over 14 million natural images that belong to
over 20,000 classes39. One fully connected layer consisting of one
node with a sigmoid activation function was added on top of the
ResNet-50 to perform the final binary classification of “Patent”
versus “Stenotic”. This model was trained using an Adam
optimizer over the weighted binary cross-entropy loss function.
First, the ResNet-50 weights were kept frozen only the final fully
connected layer was trained at a learning rate of 1 × 10−3. Then
the entire model (ResNet-50 plus the fully connected layer) was
finetuned, trained at a learning rate of 1 × 10−5. An illustration of
the ResNet-50 is shown (Fig. 4a).
The final model explored was a ViT. For our ViT, first the model

input is tokenized into 16 × 16 patches. The patches are flattened
and fed into a linear transformation layer to create a lower
dimensional embedding and combined with positional encodings,
which are learnable embeddings. The embedded patches are then
inputted into a sequence of 10 transformer encoders. Each
transformer encoder is comprised from 2 subcomponents. For
each encoder, the first subcomponent is a 6-headed multi-
attention layer, which implements the multi-headed self-attention
mechanism. The second subcomponent for each encoder is a fully
connected feed-forward network using ReLu activation functions.
After the 10 transformer encoders, the feature vector is flattened
and passed to 3 fully connected layers consisting of 2048, 1024,
and 1 node(s). The first two fully connected layers uses a ReLu
activation function, while the last node uses a sigmoid activation
function to perform the final binary classification of patent versus
stenotic. This model was trained using an adaptive moment
estimation (Adam) optimizer at a learning rate of 1 × 10−3 over the
weighted binary cross-entropy loss function. An illustration of the
ViT in shown (Fig. 4a). All models are trained for 200 epochs, and
the weights that correspond to the lowest validation loss are take
to be the final model weights.

Pre-processing
Our three chosen models work with two-dimensional image data,
while our raw audio data is one-dimensional timeseries data. To
make our data compatible with our models, we first preprocess
our audio data into two-dimensional image representations. Two
different image representations of sound are explored in this
study: Mel-scaled, decibel (dB)-scaled spectrograms and
recurrence plots.
A spectrogram depicts the spectrum of frequencies of a signal

as it varies with time. The x-axis represents time, the y-axis
represents frequency, and amplitude of a particular frequency
component at a given point in time is represented by the intensity
of color. The spectrograms are generated from the AVF blood flow
sounds using short-time Fourier transforms as follows. First, the
audio signals are windowed using a Hann window of size 512 and
a hop length of 256. A 512-point fast Fourier transform is applied
to each window to generate a spectrogram. The Mel-scaled, dB-
scaled spectrograms are generated by logarithmic rescaling of the
amplitude and frequency axis. The amplitude axis is converted to
the dB scale. The frequency axis is transformed onto the Mel scale,
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characterized by Eq. 2,

Mel ¼ 2595 � log 1þ f
500

� �
(2)

where f is frequency in Hz. The resulting Mel-scaled, dB-scaled
spectrograms are 374 × 128 (time resolution x frequency resolu-
tion) in size. To study the effects of varying time resolution on the
spectrogram image, spectrograms with dimensions 128 × 128 and
32 × 128 are also created using bicubic interpolation. The time
domain encompasses 15 s.
A recurrence plot is an image that visualizes the set of all pairs

in time (tn, tm) in which ~x tnð Þ ¼~x tmð Þ; where ~x is the systems
trajectory vector through the phase space. The phase space is a
multidimensional space that represents every possible state of a
system, with each degree of freedom of a system represented as
an axis40. In this study, we generate recurrence plots of the
frequency spectrum. First, a Fourier transform is applied over the
entire audio signal to generate the frequency spectrum. Then the
frequency spectrum is discretized. For example, let T ¼
ft0; t1; t2; ¼ tn ¼ tN represent the discretized points over which
the frequency spectrum spans, separated by the interval δ. Then
the trajectory of the frequency spectrum through the phase space
is given by ~X ¼ f~xðt0Þ;~xðt1Þ;~xðt2Þ; ¼~xðtnÞ¼~xðtNÞ. The recur-
rence states of~x tnð Þ are states~x tmð Þ that fall within a given radius
Ɛ around ~x tnð Þ. The recurrence plot is constructed as an N x N
lattice of squares with side length δ and with each coordinate axis
reporting T. The value at coordinates tn; tmð Þ is given by the
recurrence value function Rðtn; tmÞ ¼ Θðε� jj~x tnð Þ �~x tmð ÞjjÞ,
where Θ is the Heaviside step function. The final recurrence plots
are size 128 × 128. All images representations (both recurrence
plots and spectrograms) are normalized prior to input into the
model into the range [−1,1].

Averaged frequency spectrums
An averaged frequency spectrum is computed across all patients
in the train and validate sets, stratified by label and location. Four
spectral parameters are extracted from each frequency spectrum:
total area under the curve (AUC), peak frequency, max frequency,
and full width at half max (FWHM). The frequency spectrum is
used to extract four spectral parameters from each AVF recording.
Total area under the curve (AUC) is approximated using the
composite trapezoidal rule for definite integrals, defined asR b
af xð Þdx ¼ 1

2

Pn
j¼1 xj � xj�1

� �½f xj
� �þ f ðxj�1Þ�, with partition

length of 0.1 i.e., xj � xj�1 ¼ 0:1Þ and frequency range (a–b) of
0–2000 Hz. Peak frequency (xpeak ) is defined as the frequency
value that corresponds to the peak of the highest amplitude.
Maximum frequency is estimated as the highest frequency with
amplitude greater than 0.1. Full width at half max (FWHM) is
calculated using the horizontal frequency span at half of the
maximum amplitude, where FWHM ¼ xn � xm, and
f xnð Þ ¼ f xmð Þ ¼ 1

2 f ðxpeakÞ.
A simple, non-deep learning approach is explored using the

AUC values from the averaged frequency spectrums. For each
location, the half-way point between the averaged patent
frequency spectrum AUC value and the averaged stenotic
frequency spectrum AUC value is used as a threshold for
evaluating the test set. For the test set, frequency spectrums
AUC values that fall above the threshold are classified as stenotic,
and those with AUC values below the threshold are classified as
patent.

EXPERIMENTS
In experiment I, we build independent, location-based binary
classifiers, one for each of the following locations: “anastomosis”,
“distal”, “middle”, proximal”, and “arch”. In other words, each
location-based model is trained only on sounds originating at the

given location. Note we do not build a model for the arterial
location given we only have 6 examples of stenosis. For each
location, we test the three different model architectures (a 6-layer
CNN, a ResNet-50 pre-trained on ImageNet weights, and a ViT)
with the two pre-processing methods (spectrograms and recur-
rence plot images). For the spectrogram images, we tested 3
different sizes of varying time resolution at the constant,
maximum frequency resolution of 128: 374 × 128, 128 × 128, and
32 × 128. Note that for the ViT, the 374 × 128 spectrogram image
is resized to be 368 × 128 to be compatible with the 16 × 16 patch
tokenization step.
In experiment II, we test how well a ViT trained on

368 × 128 spectrogram images performs in classifying the blood
flow audio signal as patent or stenotic using audio signals from all
six locations, but without supplying the model with any metadata
regarding which location the sound is sourced from.
In experiment III, we test how well a ViT trained on

368 × 128 spectrogram images performs in classifying the blood
flow audio signal as patent or stenotic using audio signals from all
six locations, this time with location metadata regarding where
the sound is being sourced from explicitly fed into the model. This
is accomplished by first encoding the categorical location
information into some numerical representation, and then
concatenating that numerical representation to the feature vector
coming from the last transformer encoder layer. We explore three
different methods of encoding the categorical location metadata:
an ordinal encoding scheme where each location is encoded as an
integer, using one-hot encoding, and using a learned embedding.
For the learned embedding layer, a 6 × 4 embedding matrix E is
learned as part of the training. Within the ordinal encoding
scheme, we study the effects of using scalar multiples of the
integer encodings. An illustration of this modified ViT architecture
is shown in Fig. 4a.
In experiment IV, we test if we can build a binary classifier to

distinguish if the blood flow audio signal is coming from either the
radial or brachial artery. For this task, we train the ViT on
spectrogram images using only patent radial and patent brachial
sounds taken at the “artery” location.
In experiment V, we test if we can build a binary classifier to

distinguish if the blood flow audio signal is coming from either the
basilic or cephalic vein. For this task, we train the ViT on
spectrogram images using only patent cephalic and patent basilic
sounds taken at the “arch” location.
In experiment VI, we test how well a ViT trained on

368x128 spectrogram images performs in classifying the blood
flow audio signals as patent or stenotic when also given
information about the anatomical original of either the artery or
vein used in the creation of the fistula, for each location. This is
accomplished in a parallel manner to experiment III, where first
the categorical information about the anatomical origin of the
artery or vein is encoded as different integers (1 for brachial artery,
0 for radial artery; 1 for cephalic vein, 0 for basilic vein), and then
concatenated to the feature vector coming from the last
transformer encoder layer. An illustration of this modified ViT
architecture is shown in Fig. 4a.
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