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Development and validation of a reinforcement learning model
for ventilation control during emergence from general
anesthesia
Hyeonhoon Lee 1,2,8, Hyun-Kyu Yoon3,8, Jaewon Kim4, Ji Soo Park5, Chang-Hoon Koo6, Dongwook Won7 and Hyung-Chul Lee 3✉

Ventilation should be assisted without asynchrony or cardiorespiratory instability during anesthesia emergence until sufficient
spontaneous ventilation is recovered. In this multicenter cohort study, we develop and validate a reinforcement learning-based
Artificial Intelligence model for Ventilation control during Emergence (AIVE) from general anesthesia. Ventilatory and hemodynamic
parameters from 14,306 surgical cases at an academic hospital between 2016 and 2019 are used for training and internal testing of
the model. The model’s performance is also evaluated on the external validation cohort, which includes 406 cases from another
academic hospital in 2022. The estimated reward of the model’s policy is higher than that of the clinicians’ policy in the internal
(0.185, the 95% lower bound for best AIVE policy vs. −0.406, the 95% upper bound for clinicians’ policy) and external validation
(0.506, the 95% lower bound for best AIVE policy vs. 0.154, the 95% upper bound for clinicians’ policy). Cardiorespiratory instability
is minimized as the clinicians’ ventilation matches the model’s ventilation. Regarding feature importance, airway pressure is the
most critical factor for ventilation control. In conclusion, the AIVE model achieves higher estimated rewards with fewer
complications than clinicians’ ventilation control policy during anesthesia emergence.
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INTRODUCTION
The emergence from general anesthesia is dynamic, and various
physiologic responses can occur during this phase1. Restoration of
spontaneous breathing is one of the first physiological signs that
appear during the emergence from general anesthesia2. When the
patient’s spontaneous breathing begins to recover, anesthesiolo-
gists switch off the mechanical ventilator and assist the patient
with manual ventilation at optimal timing to avoid complications,
such as cardiorespiratory instability or patient-ventilator
asynchrony.
Since most of the ventilation control during emergence is

performed by human clinicians, human factors can affect the risk
of emergence from anesthesia3. Especially, anesthesiologists can
be unassisted at the end of the surgery and distracted by the high
task load and fatigue. Generally, the situation during emergence
from anesthesia is less controlled than at induction.
Artificial intelligence algorithms can assist human clinicians in

various medical fields4,5. Among the artificial intelligence algo-
rithms, the reinforcement learning algorithms can find the optimal
policy by maximizing the cumulative expected reward6. This is
similar to the decision-making process of a clinician whose goal is
improving the clinical outcome through appropriate intervention7.
In previous studies, reinforcement learning algorithms have been
used for various medical problems8, such as drug administration
during general anesthesia9, hypotension treatment10, and ventila-
tion settings in the intensive care unit11.

In this study, we aim to develop and validate the reinforcement
learning-based Artificial Intelligence model for Ventilation during
Emergence (AIVE) from general anesthesia to control ventilation
during emergence from general anesthesia while preventing
hemodynamic and ventilatory complications. We hypothesize that
compared to the clinicians’ policy, AIVE’s policy would achieve
higher estimated rewards defined by the clinical outcomes.

RESULTS
Dataset construction
Among the 31,071 cases from the derivation cohort, 14,306 cases
(6,763,535 one-second time points) were included for model
development and internal validation (Fig. 1). From the derivation
cohort, 2146 cases (15%) were randomly selected for internal
validation. The remaining cases (85%) were used for model
training and hyperparameter tuning. External validation was
performed using 406 cases (162,656 one-second time points)
from the independent dataset from the external validation cohort.
The demographic data and perioperative features of the analyzed
cases are presented in Table 1.

Performance evaluation
Three hundred models were built from the training set to compare
the estimated rewards of AIVE’s policy with those of the clinicians’
policy. The whole learning scheme was consistent for each model.
The model’s estimated rewards were significantly higher than the
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clinician’s rewards in the internal validation (0.185, the 95% lower
bound for best AIVE policy vs. −0.406, the 95% upper bound for
clinicians’ policy) and the testing set (0.506, the 95% lower bound
for best AIVE policy vs. 0.154, the 95% upper bound for clinicians’
policy). As shown in Fig. 2, the 95% lower bound of the estimated
rewards of the AIVE’s policy consistently exceeded the 95% upper
bound of the estimated performance return of the clinicians’
policy in the internal validation and external validation sets,
suggesting that a sufficient number of models were developed.
The distribution of discrepancy between the AIVE’s and

clinicians’ policies is presented in Fig. 3. In most cases, the time
discrepancy between the two policies for suggesting ventilation
was within 2 min in the internal validation set and a minute in the
external validation set, indicating that the AIVE’s policy could be
developed from the suboptimal clinicians’ policy.

Outcome differences
Mismatched ventilation by a clinician’s policy during the
emergence process with the AIVE’s policy was associated with
increasing cardiorespiratory instability in a time-dependent
manner (Fig. 4 and Table 2). There was a significant positive
correlation between mismatched ventilation and increased
cardiorespiratory instability in the internal and external test sets
(All P < 0.001). As the secondary outcomes, the correlation
between the cardiorespiratory parameters, including peripheral
oxygen saturation (SpO2), heart rate (HR), systolic blood pressure
(SBP), peak inspiratory pressure (PIP), and end-tidal carbon dioxide
concentration (ETCO2) in the internal and external test sets, are
presented in Figs. 5 and 6, Table 2, and Supplementary Figs. 1 and
2. Significant positive correlations were observed between all

Fig. 1 Flow chart of dataset construction. FiO2 a fraction of inspired oxygen.

Table 1. Demographic, anesthetic, and surgical characteristics of the
study population.

Derivation cohort
(n= 14,306)

External validation
cohort (n= 406)

Age (year) 57.8 ± 14.8 54.5 ± 16.0

Sex

Female 7225 (50.5%) 223 (54.9%)

Male 7081 (49.5%) 183 (45.1%)

Height (cm) 162.6 ± 9.1 NA

Weight (kg) 64.0 ± 12.2 NA

The total duration of
anesthesia (min)

164.5 ± 12.8 134.5 ± 81.5

Duration of anesthesia
emergence (s)

469 ± 210 407 ± 199

Surgery type, (%)

General surgery 8917 (62.3%) 346 (85.2%)

Urologic surgery 1909 (13.3%) 1 (0.2%)

Orthopedic surgery 1201 (8.4%) 12 (3.0%)

Gynecological surgery 790 (5.5%) 40 (9.9%)

Neurosurgery 644 (4.5%) 6 (1.5%)

Plastic surgery 614 (4.3%) 0 (0.0%)

Thoracic surgery 97 (0.7%) 0 (0.0%)

Others 134 (0.9%) 1 (0.2%)

Data are presented as mean ± standard deviation or number (%). NA not
available.
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cardiorespiratory parameters and the time of policy discrepancy in
the internal test set, which was the same as the primary outcome.
In the external test set, most cardiorespiratory parameters, except
for HR, showed significant positive correlations with the time of
policy discrepancy. Regarding secondary outcomes, significant
positive correlations were observed between the policy discre-
pancy and the clinical outcomes (length of hospital stay and
length of post-anesthesia care unit [PACU] stay) as well as
cardiorespiratory parameters within 48 h after surgery (HR and
respiratory rate [RR]). However, the length of hospital stay in the
external test set was not statistically significant. Notably, SpO2

showed a significant negative correlation in the internal test set,

suggesting that policy discrepancy could potentially lead to lower
SpO2 levels after surgery. Among the patients who underwent
chest X-rays (52.3% of the total) within 48 h after surgery, no
significant correlations were found between the policy discre-
pancy and the incidence of atelectasis and pulmonary edema
based on the X-ray results (Table 2). In addition, there were no
significant correlations among the patients who had the arterial
blood gas analysis after surgery (20.0% of the total). The results of
subgroup analyses regarding the primary and secondary out-
comes based on age, sex, and type of surgery are presented in
Table 3 and Supplementary Tables 2 and 3. In all age and sex
subgroups, substantial positive correlations were observed
between the policy discrepancy and the cardiorespiratory
instability in the internal test set. Regarding the surgical type,
considerable positive correlations were detected between the
policy discrepancy and cardiorespiratory instability among
patients undergoing general, urological, orthopedic, gynecologi-
cal, and neurosurgery.

Visualization of representative cases for comparison of
policies
Figure 7 shows two representative cases to identify the change in
cardiorespiratory parameters with the discrepancy between AIVE’s
and the clinician’s policies. Cardiorespiratory parameters are
maintained during the emergence from general anesthesia when
each policy’s ventilation control is consistent with the AIVE’s
policy. However, cardiorespiratory parameters worsened when the
clinicians’ actual control was discrepant with the AIVE’s policy.
AIVE suggested controlling mechanical or manual ventilation
based on the patient’s status to prevent excessive changes in the
cardiorespiratory parameters.

Feature importance
The SHapley Additive exPlanations (SHAP) method was used to
present the degree of importance of each feature for the AIVE’s
and clinicians’ policies, respectively. The most important feature
for controlling ventilation in both policies was the decreased
airway pressure (AWP) (Fig. 8). However, unlike clinicians who
usually focused only on the level of AWP, AIVE comprehensively
considered other parameters, such as cumulative apnea time and
spontaneous breathing.

Fig. 3 The distribution of discrepancy between the AIVE’s and clinicians’ policies. a The distribution of discrepancy between the two
policies in the internal test set. b The discrepancy distribution between the two policies in the external test set. AIVE Artificial Intelligence
model for Ventilation control during Emergence.

Fig. 2 Performances of the AIVE’s and clinicians’ policies. The
estimated policy values are derived from the normalized rewards
(from −1 to 1), indicating that 0 is the mean policy value of the
derivation cohort. LB lower bound, AIVE Artificial Intelligence model
for Ventilation control during Emergence, UB upper bound.
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DISCUSSION
The present study developed and externally validated a reinforce-
ment learning model that controls ventilation during the
emergence from general anesthesia. AIVE’s policy showed higher
estimated rewards than the clinicians’ policy, indicating that the
actions suggested by AIVE could be superior to those suggested
by clinicians for maintaining cardiorespiratory stability, adequate
oxygenation, and decarboxylation during the emergence from
general anesthesia. As the discrepancy increased between the
AIVE’s and clinicians’ ventilation, worse outcomes were observed.
The advantages of the architecture and learning method of

AIVE might explain the higher estimated reward of AIVE’s policy to
those of clinicians. First, neural network architecture, which was
used to build AIVE, can continuously process the complex
relationship between the patient’s status and optimal action,
including the dose of anesthetic drugs, hemodynamic or
respiratory status, or other features at every second12. The actual
clinician’s practice might be suboptimal to interpreting tremen-
dous data from various monitoring devices in real-time. Second,
the reinforcement learning algorithm helps AIVE to find an
optimal policy from our historical data to maximize a cumulative
reward13. AIVE decides the action for the current patient status
considering the future cardiorespiratory changes until complete
recovery from general anesthesia. The reinforcement learning
model trained by real-world clinical data makes the model find the
best policy efficiently.
In the external validation, the estimated reward of AIVE was

even higher than those in the internal testing dataset. This may be
explained by the differences between the internal and external
datasets, as the external dataset included more cases with shorter
duration of anesthesia and younger aged patients than the
internal dataset. These differences among the datasets may have
influenced the discrepancy between the AIVE’s and clinician’s
policies. The small number of cases in the external validation
dataset may also have affected the relationship between the
discrepancy and some variables (SpO2), which were not definite.
To the best of our knowledge, this is the first study to develop

and validate the reinforcement learning model to suggest the
optimal timing of controlling ventilation during anesthesia

emergence in surgical patients. Previous studies have developed
offline reinforcement learning models to solve complicated
medical problems11,14–17. One study developed a reinforcement
learning model to recommend various interventions, such as
administering intravenous fluid and medications, to treat patients
with sepsis in the intensive care unit (ICU)14. Prasad et al.15

reported using a reinforcement learning model for weaning from
mechanical ventilation using fitted-Q iteration and the Medical
Information Mart for Intensive Care (MIMIC)-III database. Another
study developed an inverse reinforcement learning model for
discontinuing mechanical ventilation and sedative dosing in
critically ill patients16. A reward function that can be inferred by
inverse reinforcement learning was designed in this study. A
recent study developed a reinforcement learning model to
suggest an optimized regimen using data from the MIMIC-III
database, including tidal volume, a fraction of inspired oxygen
(FIO2), and positive end-expiratory pressure (PEEP). It externally
validated the model using another open ICU dataset11. Another
reinforcement learning model for guiding adequate electrolyte
replacement was developed using electronic health records17.
The strength of this study is that the reinforcement learning

model was developed based on real-world data from actual
clinical practice, consisting of high-resolution intraoperative
biosignals. Therefore, the reinforcement learning model would
better reflect the clinical situation than a model based on a well-
refined open dataset. In addition, intraoperative biosignals were
obtained from various monitoring devices generally used in the
operating room, providing the possibility of application in
different clinical environments. The reinforcement learning agent
learned the optimal policy using only information about the
cardiorespiratory status of the patient during emergence from
general anesthesia rather than clinical information. The data used
for model development did not require assessment or judgment
by clinicians and could be obtained from most hospitals. The
reinforcement learning model may develop into a fully automated
data-driven clinical decision support system and may facilitate an
individualized strategy for controlling ventilation during the
emergence from general anesthesia in surgical patients.
Despite these strengths, some important considerations must

be taken when deploying our offline reinforcement learning

Fig. 4 The changes in cardiorespiratory instability depend on the degree of time discrepancy between the AIVE’s and clinicians’ policies.
The plots were produced with 3000 resamplings, and the shaded area represents the 95% confidence interval. a The cardiorespiratory
instability changes depending on the time discrepancy between the two policies in the internal test set. b The cardiorespiratory instability
changes depending on the time discrepancy between the two policies in the external test set. AIVE Artificial Intelligence model for Ventilation
control during Emergence.
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model to real-time settings18. First, although the AIVE was
designed to propose actions based on biosignals every second,
there can be delays in monitoring parameters, communications,
and delivering actions. Therefore, comprehensive real-time
simulations should be conducted before clinical implementation
to ensure the AIVE’s stability. Second, although the AIVE was
validated in an external dataset, it was developed using a dataset
from a single center that could potentially lead to distributional
shifts when deployed in different settings. These shifts could result
in the model suggesting suboptimal decisions. Considering this
potential instability and biases is crucial before running our model
in real-world clinical settings.
This study has some limitations. First, bias associated with the

retrospective nature of the study would have affected the results.
Second, we excluded cardiac and pediatric patients, as well as
patients who underwent thoracic surgery requiring one-lung
ventilation; therefore, the model’s performance cannot be
generalized to these populations. Third, although we externally
validated the model’s performance using a different dataset from
an independent hospital, the sample size of the external validation
dataset may be relatively small compared with that of the
derivation dataset. Therefore, our results must be interpreted
cautiously. However, despite the relatively small external valida-
tion dataset, the reinforcement learning model policy performed
better than the clinicians’ policy in the external validation dataset
and in our hospital data. Fourth, our study focused on immediate
clinical outcomes in the operating room and PACU. Future

research should explore the model’s benefits for long-term and
relevant outcomes like delayed emergence and emergence
delirium. Fifth, we did not specifically record the precise expertise
level of attending anesthesiologists and trainee grades for
extubation due to the retrospective nature of the study. However,
all extubation processes were performed either by attending
anesthesiologists or trainees under the direct supervision of
attending anesthesiologists. Due to the retrospective nature of the
study, clinical care for the emergence and after emergence cannot
be strictly controlled, which might have caused some biases. Sixth,
patient comorbidity data was not collected in this study, and there
were some missing values, such as arterial blood gas analysis and
chest X-ray results, which limited the evaluation of its impact on
our results. Future studies should address this aspect to provide
clarity. Seventh, the start of anesthesia emergence was defined as
when the actual FIO2 exceeded 70% for automatic detection.
However, this led to the exclusion of about 4.7% of patients,
introducing potential biases. Eighth, only patients who received
volume-controlled ventilation were included in our study. Exclud-
ing pressure-controlled or pressure-support ventilation may limit
the model’s generalizability. Last, we confined the emergence
duration to between 2 and 20min, excluding 3.9% of patients,
which could introduce bias. Future studies may consider employ-
ing recent reinforcement learning models capable of stable
training with either shorter or longer trajectories.
In conclusion, we developed and validated a reinforcement

learning model for the optimal timing of controlling ventilation

Table 2. The correlation between the policy discrepancy and the primary and secondary outcomes in the internal and external test set.

Internal test set External test set

N Coefficient P-value N Coefficient P-value

Primary outcome

Cardiorespiratory instability 2146 0.252 <0.001 406 0.216 <0.001

Secondary outcomes

Intraoperative cardiorespiratory parameters

SpO2 <95% 2146 0.091 <0.001 406 0.143 <0.001

HR >20% 2146 0.155 <0.001 406 0.051 0.139

SBP >20% 2146 0.193 <0.001 406 0.194 <0.001

PIP >20% 2146 0.079 <0.001 406 0.114 <0.001

ETCO2 <2mmHg 2146 0.275 <0.001 406 0.295 <0.001

Postoperative clinical outcomes

Length of hospital stay 2146 0.099 <0.001 396 0.013 0.719

Length of PACU stay 2146 0.059 <0.001 NA

30-day in-hospital death 2146 0.037 0.035 NA

Postoperative outcomes within 48 h after surgery

Chest X-ray

Atelectasis 1122 −0.001 0.978 155 −0.073 0.271

Pulmonary edema 1122 0.039 0.114 155 −0.087 0.178

Cardiorespiratory profiles

SpO2 1789 −0.049 0.002 NA

HR 1853 0.065 <0.001 NA

SBP 1847 0.042 0.007 NA

RR 1849 0.049 0.002 NA

Arterial blood gas analysis

PaO2 429 0.007 0.826 15 −0.150 0.021

PaCO2 430 −0.034 0.288 16 0.448 0.450

Kendall’s rank correlation analysis was performed for continuous outcomes, and the point-biserial correlation analysis for categorical outcomes.
SpO2 peripheral oxygen saturation, HR heart rate, SBP systolic blood pressure, PIP peak inspiratory pressure, ETCO2 end-tidal carbon dioxide concentration, PACU
post-anesthesia care unit, RR respiratory rate; PaO2 partial pressure of oxygen, PaCO2 partial pressure of carbon dioxide, NA not available.
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Fig. 5 The changes in cardiorespiratory parameters depend on the degree of time discrepancy between the AIVE’s and clinicians’
policies in the internal test set. The plots were produced with 3,000 resamplings, and the shaded area represents the 95% confidence
interval. a SpO2 <95%, b HR >20%, c SBP >20%, d PIP >20%. e ETCO2 <2mmHg. SpO2 peripheral oxygen saturation, HR heart rate, SBP systolic
blood pressure, PIP peak inspiratory pressure, ETCO2 end-tidal carbon dioxide concentration, AIVE Artificial Intelligence model for Ventilation
control during Emergence.
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Fig. 6 The changes in cardiorespiratory parameters depend on the degree of time discrepancy between the AIVE’s and clinicians’
policies in the external test dataset. The plots were produced with 3000 resamplings, and the shaded area represents the 95% confidence
interval. a SpO2 <95%, b HR >20%, c SBP >20%, d PIP >20%, e ETCO2 <2mmHg. SpO2 peripheral oxygen saturation, HR heart rate, SBP systolic
blood pressure, PIP peak inspiratory pressure, ETCO2 end-tidal carbon dioxide concentration, AIVE Artificial Intelligence model for Ventilation
control during Emergence.
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using intraoperative biosignals during emergence from general
anesthesia in surgical patients. A significant discrepancy between
the policies of reinforcement learning and clinicians’ policies was
associated with greater cardiorespiratory instability, indicating
that the reinforcement learning model may have the potential to
act as a clinical decision-making support tool. Future prospective
validation studies are warranted to confirm our results in the
prospective study.

METHODS
Study design
All data for model development was retrieved from the
prospective registry containing the vital signs of surgical patients
at the Seoul National University Hospital (SNUH). This prospective
registry was approved by the Institutional Review Board (IRB) of
SNUH (Approval number: 1408-101-605) and registered at
ClinicalTrials.gov (NCT02914444). The IRB also approved the
retrospective analysis of the data from this prospective registry
(Approval number: 2205-061-1322). The IRB approved the data
extraction and analysis for external validation at Seoul National
University Bundang Hospital (SNUBH, Approval number: 2207-768-
405). The IRBs waived the requirement of written informed
consent due to the retrospective nature of this study and the
anonymity of the data.

Data collection
From the registry data, all general anesthesia cases from the
derivation cohort (SNUH) between August 2016 and November
2019 were included for model development and internal
validation. Cases from the external validation cohort (SNUBH)
were included for external validation between January 2022 and
June 2022. Additionally, it is worth noting that the majority of

cases involving general anesthesia were administered by attend-
ing anesthesiologists with several years of experience, and
trainees were supervised throughout the process. Cases with the
following features were excluded: (1) patient age <18 years, (2)
cases in which pressure-controlled ventilation was used, (3)
procedures that were not performed under general anesthesia,
(4) cases in which the laryngeal mask airway was used rather than
an endotracheal tube, (5) cases in which one-lung ventilation was
performed using a double-lumen tube, (6) cases that had no tracks
regarding critical input variables in the intraoperative biosignals
data, (7) cases in which tracheal extubation was not performed at
the end of surgery in the operating room, (8) cases in which FIO2

was not increased before the patient recovered spontaneous
breathing, (9) cases in which the duration of emergence was less
than 2min or greater than 20min, and (10) cases that had no
tracks to evaluate the primary outcome.
The intraoperative biosignal data used in the study were

collected by a free biosignal collection program (Vital Recorder,
ver.1.9.9, accessible at https://vitaldb.net, Seoul, Republic of
Korea)19. SpO2, HR, and SBP were measured using a patient
monitor (SolarTM 8000 M, GE Healthcare, Wauwatosa, WI, USA). The
indices related to the processed electroencephalogram, such as
the bispectral index, electromyogram, and spectral edge fre-
quency, were collected using the brain monitor (BIS VistaTM,
Medtronic, Dublin, Ireland). In addition, data regarding mechanical
ventilation, such as AWP, ETCO2 level, respiratory compliance,
anesthetic agents, PIP, RR, PEEP, and tidal volume, were collected
from the anesthesia ventilators (Primus, Dräger, Lübeck, Germany).
Among the variables of mechanical ventilation, waveform data,
including AWP and ETCO2 from the anesthesia ventilators, were
sampled at a rate of 62.5 Hz. In comparison, other variables were
sampled at a rate of 0.14 Hz. cardiorespiratory-related variables
from the patient monitor were sampled at 2 Hz. For handling
these time-varying variables, we up-sampled using linear inter-
polation followed by forward and backward filling methods or
down-sampled to bring all variables to 10 Hz. We adopted the
maximum value with a one-second time window for our model
development.

Anesthesia management
The patients received balanced anesthesia using sevoflurane
inhalation and a target-controlled remifentanil infusion or total
intravenous anesthesia. For those who received balanced
anesthesia, propofol was used for anesthesia induction with a
bolus dose of 1.0–2.0 mg/kg, and anesthesia was maintained with
sevoflurane and the effect-site target-controlled infusion of
remifentanil. The sevoflurane concentration was usually main-
tained as 0.6–0.8 minimum alveolar concentration, while the
target-controlled infusion of remifentanil was usually maintained
as 1–4 ng/ml based on hemodynamic changes. In cases of total
intravenous anesthesia, target-controlled infusions of propofol
and remifentanil were used. Propofol concentrations were usually
adjusted to maintain the bispectral index of 40–60, and
remifentanil was maintained at 1–4 ng/ml based on hemodynamic
changes. An infusion pump (Orchestra®, Base Primea with module
DPS, Fresenius Kabi AG, Bad Homburg, Germany) was used for
target-controlled infusion of remifentanil or propofol. At the end
of the surgery, any anesthetics were discontinued, and anesthesia
emergence and extubation were performed at the discretion of
attending anesthesiologists after administering a reversal agent of
the neuromuscular blocking agent. According to the institution’s
policy, the emergence process was carried out by attending
anesthesiologists or trainees under the direct supervision of
attending anesthesiologists.

Table 3. Subgroup analysis for the cardiorespiratory instability in the
internal and external test set.

Internal test set External test set

N Coefficient P-value N Coefficient P-value

Age

>50 1481 0.257 <0.001 247 0.267 <0.001

≤50 665 0.226 <0.001 159 0.112 0.038

Sex

Female 1091 0.260 <0.001 223 0.297 <0.001

Male 1055 0.252 <0.001 183 0.131 0.009

Surgery type

General
surgery

1378 0.261 <0.001 346 0.213 <0.001

Urology
surgery

239 0.215 <0.001 1 NA

Orthopedic
surgery

161 0.340 <0.001 12 0.076 0.731

Gynecological
surgery

114 0.198 0.002 40 0.212 0.054

Neurosurgery 93 0.231 0.001 6 0.414 0.251

Plastic
surgery

92 0.175 0.014 0 NA

Thoracic
surgery

19 0.129 0.441 0 NA

Others 20 0.460 0.005 1 NA

Kendall’s rank correlation analysis was performed. NA not available.

H. Lee et al.

8

npj Digital Medicine (2023)   145 Published in partnership with Seoul National University Bundang Hospital

https://vitaldb.net


Outcome measurements
The primary outcome of the study was the time duration (in
seconds) of cardiorespiratory instability during anesthesia emer-
gence, which was defined by a composite outcome based on a
combination of the following parameters: SpO2, HR, and SBP. The
duration of cardiorespiratory instability was quantified by measur-
ing the combined time duration during which any of the following
parameters exceeded predefined thresholds: SpO2 below 95%, or
HR or SBP showing changes greater than 20% changes from their
baseline values. The secondary outcomes included the time
duration of each following variable: SpO2 (<95%), HR (>20%
changes from the baseline), SBP (>20% changes from the baseline),
PIP (>20% changes from the baseline), and apnea time (ETCO2

<2mmHg). We additionally included the following postoperative
outcomes as secondary outcomes: cardiorespiratory parameters
(SBP, HR, RR, and SpO2), clinical outcomes (the length of hospital
stay, length of PACU stay, and postoperative 30-day in-hospital
mortality), arterial blood gas analysis (partial pressures of oxygen
[PaO2] and carbon dioxide [PaCO2]), and chest X-ray results within
48 h after surgery. The specific threshold values for each parameter
are presented in Supplementary Table 1.
The SHAP method, which is based on game theory and provides

importance scores for each feature, has been used in the medical
research field to present the interpretability of model20. Our study
also used this method to present how each feature in the state
space was attributed to each policy, with 500 weak learners
applied in the internal test dataset.

Markov decision process
The problem regarding optimal ventilation control during
anesthesia emergence can be formulated as a Markov decision

process (MDP), with state space S � Rn, where collected features
S and action space A 2 R include mechanical or manual
ventilation on (aventon :¼ 1) or off (aventoff :¼ 0). The reward R :
S´A!R depends on the current 2-tuple of state and action.
Therefore, given a state s 2 S, the policy is defined as a probability
distribution over the action space A, π � jsð Þ 2 ΔA, where ρ 2 ΔS is
the distribution of the initial state, s0. The probability of a T -step
trajectory-making transition matrix is defined as follows:

PðτjπθÞ≜ρðs0Þ
YT�1

t¼0

Pðstþ1jst; atÞπθ atð jstÞ (1)

With the discounting factor, γ 2 ½0; 1Þ for future rewards, our
ventilation decision problem can be formulated into MDP to
create the following value function:

Vπ sð Þ ¼ E Rtjs0 ¼ s½ �¼E
XT�1

t¼0

γtrtjs0 ¼ s

" #
(2)

Moreover, the action-value function (known as the Q-function),
Qπ : S´A ! R, can be defined as follows:

Qπ s; að Þ ¼ E Rtjðs0; a0Þ ¼ ðs; aÞ½ � ¼ E
XT�1

t¼0

γtrtjðs0; a0Þ ¼ ðs; aÞ
" #

(3)

Reinforcement learning model
Offline reinforcement learning has emerged as an alternative to
the typical online setting for reinforcement learning algorithms, as
it can use a fully fixed dataset of trajectories without any further
interactions with the environment21. This offline setting is suitable

Fig. 7 Three representative cases. a A case was maintaining a stable cardiorespiratory status during emergence from general anesthesia.
b and c Two cases represent cardiorespiratory instability during emergence from general anesthesia. AIVE suggested turning the mechanical
ventilator off earlier (b) and applying manual ventilation before developing cardiorespiratory deterioration (b and c). SpO2 peripheral oxygen
saturation, HR heart rate, SBP systolic blood pressure, SB spontaneous breathing, AIVE Artificial Intelligence model for Ventilation control
during Emergence.
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for the medical field as it enables using existing datasets made by
clinicians’ decision-making for real-world patients. Moreover,
offline reinforcement learning does not pose any risk to the
patients. However, recent studies have shown that conventional
reinforcement learning algorithms yield poor performance in
offline settings due to extrapolation errors where the values are
estimated from state-action pairs and are not included in the
existing dataset22,23. Therefore, we adopted conservative-Q
learning, which learns conservative-Q-function such that the
expected value of a policy under this Q-function lower-bounds
its true value to reduce overestimation in out-of-distribution
actions24. This algorithm has yielded better performance than
conventional reinforcement learning algorithms. It has been
applied in a few medical tasks, including optimizing mechanical
ventilation control or sepsis treatment strategy for intensive care
unit patients25,26. Each definition used in our reinforcement
learning model has been described in the following sections.
T-step trajectory was defined by the emergence duration as the

time from the beginning of waking patients from general
anesthesia to the end of the ETCO2 monitoring. The start of
emergence was defined as increasing FIO2 to 70% or higher. The
minimum and maximum bounds of the length of T-step trajectory
were determined, considering both the training stability of the
reinforcement learning model and the usual length of the
anesthesia recovery. We categorized the patients’ ventilation
status (ventilation-dependent or ventilation-independent) and
extubation status (intubated or extubated status) into two states.
The ventilation-dependent status indicates that the lungs were
mechanically ventilated by the anesthesia ventilator or manually
ventilated by clinicians. In contrast, the ventilation-independent
status indicates that the patient had spontaneous breathing, not
requiring ventilation support by the anesthesia ventilator or
clinicians. Lastly, intubated or extubated status represented
whether the endotracheal tube was present in the trachea.
The state space consists of the following 10 features at time t:

effect-site concentrations of propofol and remifentanil; end-
expiratory pressure of sevoflurane; PIP; tidal volume, the moving
averaged AWP and ETCO2 within 6 s; HR; SpO2; SBP; the presence
of spontaneous breathing; the cumulation of apnea time, defined
as ETCO2 <2mmHg, after turning the mechanical ventilator off;
and current ventilation and extubation status (ventilation-

dependent/independent and intubated/extubated status). The
presence of spontaneous breathing was detected through abrupt
changes in airway pressure. These changes indicate sudden
increases (at least 5 cmH2O higher than the previous maximum
AWP within 15–30 s) or sudden decreases in AWP (at least 3
cmH2O lower than the PEEP setting) due to the patient-ventilator
asynchrony by spontaneous breathing. The earliest time point that
meets the criteria was defined as the moment when spontaneous
breathing returns. Furthermore, apnea time was cumulated while
ETCO2 was lower than 2 mmHg. The action variable was selected
at each time t from two discrete action candidates, including
ventilation (avent on) or non-ventilation (avent off).

Reward function
The AIVE maintained cardiorespiratory stability, adequate oxyge-
nation, and decarboxylation during emergence from general
anesthesia. Therefore, we divided the reward system into two
parts as rt was defined by the penalties from cardiorespiratory
parameters (rCR) in the next time step. Specifically, rCR consists of
oxygen saturation below 97% ðvSPO2Þ, cumulated apnea time over
6 s ðvapneaÞ, HR ðvHRÞ, SBP ðvSBPÞ, and PIP ðvPIPÞ showing a 20%
increase from the baseline condition defined by the averaged
values for 10 s when FIO2 begins to rise. Lastly, the reward system
was balanced using four constants (αk ; k 2 f1; 2; 3; 4gÞ through
anesthesiology experts’ knowledge, and the lower bound of rt was
set at −20, which was the first quantile of elements in reward
space, as shown below:

rt ¼ maxð�20;�rCRt Þ (4)

rCRt s; að Þ :¼ vapnea þ α1 � vSPO2 þ α2 � vHR þ α3 � vSBP þ α4 � vPIPfor all s; að Þ 2 S ´A

(5)

Performance evaluation
To compare the performance of the AIVE’s policy with that of the
clinicians’ policy, we adopted the fitted-Q-evaluation (FQE)
method with bootstrapping to provide the confidence interval
for each policy among 300 different models27,28. The derivation

Fig. 8 Feature importance from the SHAP method. a Feature importance of the AIVE’s policy. b Feature the importance of the clinicians’
policy. AWP airway pressure, PIP peak inspiratory pressure, TV tidal volume, SB spontaneous breathing, ETCO2 end-tidal carbon dioxide
concentration, HR heart rate, SBP systolic blood pressure, RFTN remifentanil, SEVO sevoflurane, INTU intubation, PPF propofol, SpO2 peripheral
oxygen saturation, AIVE Artificial Intelligence model for Ventilation control during Emergence.
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cohort dataset was randomly divided into two datasets (training
set [85%] and testing set [15%]) for each model. Three hundred
models were built via various random splits (82.3%) of the training
dataset and evaluated by the remaining validation set (17.7%);
each model’s whole learning scheme was consistent. All training
was conducted on an NVIDIA RTX A6000 GPU.
Using the FQE method, we compared the 95% lower bound of

the AIVE’s performance return with the 95% upper bound of
clinicians’ rewards to evaluate our new policy conservatively, as
suggested by previous RL studies11,14,29. Finally, the model which
maximized the 95% lower bound of the AIVE’s policy was selected
for further outcome measurement.

Statistical analysis
Python 3.8.0 (Python Software Foundation, Wilmington, DE, USA)
was used for signal preprocessing, model development and
validation, statistical testing, and visualization. Statistical analyses
of primary and secondary outcomes were conducted using
Kendall’s rank correlation for continuous outcomes and the
point-biserial correlation for categorical outcomes. All statistics
for continuous variables were reported with point estimates and
95% confidence intervals, and those for categorical variables were
reported with counts (frequencies) or proportions. The original
significance level was set at 0.05. The Bonferroni correction was
utilized to account for multiple comparisons, considering one
primary and 24 secondary outcomes. Therefore, a P-value <0.002
was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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