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Applying machine learning to consumer wearable data for the
early detection of complications after pediatric appendectomy
Hassan M. K. Ghomrawi1,2,3,4,5,15, Megan K. O’Brien 6,15, Michela Carter 1,7, Rebecca Macaluso6, Rushmin Khazanchi6,8,
Michael Fanton6, Christopher DeBoer1,7, Samuel C. Linton1,7, Suhail Zeineddin1,7, J. Benjamin Pitt 1,7, Megan Bouchard1,7,
Angie Figueroa7, Soyang Kwon2,9, Jane L. Holl10, Arun Jayaraman6,11,12,13,16 and Fizan Abdullah 1,4,14,16✉

When children are discharged from the hospital after surgery, their caregivers often rely on subjective assessments (e.g., appetite,
fatigue) to monitor postoperative recovery as objective assessment tools are scarce at home. Such imprecise and one-dimensional
evaluations can result in unwarranted emergency department visits or delayed care. To address this gap in postoperative
monitoring, we evaluated the ability of a consumer-grade wearable device, Fitbit, which records multimodal data about daily
physical activity, heart rate, and sleep, in detecting abnormal recovery early in children recovering after appendectomy. One
hundred and sixty-two children, ages 3–17 years old, who underwent an appendectomy (86 complicated and 76 simple cases of
appendicitis) wore a Fitbit device on their wrist for 21 days postoperatively. Abnormal recovery events (i.e., abnormal symptoms or
confirmed postoperative complications) that arose during this period were gathered from medical records and patient reports.
Fitbit-derived measures, as well as demographic and clinical characteristics, were used to train machine learning models to
retrospectively detect abnormal recovery in the two days leading up to the event for patients with complicated and simple
appendicitis. A balanced random forest classifier accurately detected 83% of these abnormal recovery days in complicated
appendicitis and 70% of abnormal recovery days in simple appendicitis prior to the true report of a symptom/complication. These
results support the development of machine learning algorithms to predict onset of abnormal symptoms and complications in
children undergoing surgery, and the use of consumer wearables as monitoring tools for early detection of postoperative events.
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INTRODUCTION
More than 3.9 million children undergo surgery each year in the
United States1. With shortened lengths of stay for inpatient
procedures and an increasing number of surgeries being
performed as same-day surgeries, more children are discharged
home shortly after surgery2,3. Parents and other caregivers, whom
we refer to collectively as “caregivers”, inherently assume a
postoperative monitoring role for their children, but with few tools
that provide objective data about the child’s recovery. With
children being less communicative and less accurate historians of
their illness than adults, caregivers must often rely on subjective
assessments, such as perceived well-being, appetite, or fatigue, as
indicators of abnormal recovery and decide whether or not to
seek care4–6. This model of post-discharge care has resulted in
both unwarranted healthcare use7–9 and delays in seeking care
leading to serious complications10–15. For example, studies have
shown that 30–50% of emergency department visits that occur
after pediatric appendectomy, the most common inpatient
pediatric procedure, are potentially avoidable7,8.

Remote-monitoring tools, which collect information from
patients in the comfort of their own homes and provide near
real-time, objective data to clinicians, have been shown to
alleviate caregivers’ burden and improve patient outcomes16.
However, current remote-monitoring systems are expensive and
rarely applied to surgical patients16. With recent advances in
technology, data previously limited to expensive remote-
monitoring tools are now available from widely accessible and
affordable consumer-grade wearable devices, such as the Fitbit.
These devices generate continuous, valid, and objective measures
of heart rate (HR), physical activity (PA), and sleep17. “Less than
expected” PA and sleep disturbances are often important
indicators of altered recovery18–20. However, at present, PA and
sleep have only been subjectively assessed, even by clinicians21. In
addition, consumer-grade wearable devices transmit data in near
real-time22–26, thus making them potentially affordable and
scalable alternative remote-monitoring tools27.
To date, the use of data from a consumer-grade wearable

device to characterize postoperative recovery in children remains
largely unexplored. The large volume of data generated by these
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devices’ multiple sensors have been difficult to process and
associate with clinically meaningful events17. Advances in machine
learning (ML) methods are accelerating data analysis and
interpretability28. Consumer-grade wearables and ML have already
shown promise to improve clinical detection in many other
domains, with models developed to predict cardiovascular
diseases29 (including the detection of arrhythmias30–33, heart
failure with reduced ejection fraction34, and disability following
stroke35), exertional heat illness36, psychiatric disorders37,38, and
infection39–49. Arguably, one of the greatest contributors to
propagating consumer-grade wearable-based digital biomarkers
as part of multimodal risk prediction models was the COVID-19
pandemic. Multiple ML models have been designed with features
derived from consumer wearable devices, often supplied by the
patient, arising from the need to remotely monitor quarantined
individuals in a resource-efficient manner40,41,44–49. Even with the
growing prevalence of consumer-grade wearables and ML in
clinical detection, most of these models have been developed
using data recorded from adults with little work being done in
children50–58.
In this study, we evaluated consumer-grade wearable devices,

the Fitbit Inspire HR and Inspire 2, as postoperative remote-
monitoring tools for children after appendectomy. We applied ML
methods to Fitbit data to understand the underlying patterns in
PA, HR, and sleep associated with abnormal symptoms and
complications. We hypothesized that patients’ PA, HR, and sleep
patterns, measured using a consumer-grade wearable and
evaluated using ML, can detect postoperative recovery days with
abnormal symptoms and/or complications early, i.e., before they
occur/are reported.

RESULTS
Patient characteristics
This study took place at Ann and Robert H. Lurie Children’s
Hospital of Chicago. Between March 2019—May 2019 and
February 2020–June 2022, 162 children, ages 3–17 years old,
undergoing appendectomy for either complicated or simple
appendicitis were recruited after surgery and enrolled after
written informed consent was obtained. All cases in the study
were performed laparoscopically. Non-ambulatory children and
children with preexisting mobility limitations or postoperative
activity limitations, children with comorbidities that could alter the
postoperative course, and children with COVID-19 were excluded.
Patients were enrolled in the study and monitored with a Fitbit
wearable following surgery. Patients were a mean age of 10.4
years (standard deviation [SD] 3.6 years) and 47.9% were female.

Patients were 25.3% non-Hispanic White, 57.4% Hispanic/Latinx,
8.6% African American, and 4.3% of other races. The average
length of stay was 2.6 days (SD 2.5 days). One patient was
excluded from the analysis due to only having one hour of Fitbit
data. Of the remaining 161 patients, 85 (53%) were treated for
complicated appendicitis and 76 (47%) for simple appendicitis.
Characteristics of patients included in the analysis are described in
Table 1. During the monitoring period, there were 41 post-
operative events (abnormal symptoms or confirmed complica-
tions) among patients with complicated appendicitis, and there
were 10 postoperative events among patients with simple
appendicitis. A total of 74 postoperative days (4.7%) were labeled
as “abnormal” recovery days for the complicated appendicitis
group and 20 postoperative days (1.3%) were labeled as
“abnormal” recovery days for the simple appendicitis group,
defined as the 1–2 days prior to the reported postoperative event.
These data were used to develop and train a ML model to detect
abnormal recovery using a combination of Fitbit metrics, patient
demographics, and clinical characteristics (Fig. 1). Separate models
were developed for patients with complicated and simple
appendicitis.

ML model predicts abnormal recovery days with high
sensitivity
A balanced random forest (BRF) algorithm was selected for having
higher sensitivity (better recall) than other candidate models to
detect “abnormal” recovery days in both the complicated and
simple appendicitis groups (Supplementary Table 1). Confusion
matrices, Receiver Operating Characteristic (ROC) curves, and
percentage of detected events of the BRF models are summarized
in Fig. 2. Precision-Recall (PR) curves59 are shown in Supplemen-
tary Figure 1. For patients with complicated appendicitis (Fig. 2a),
74% and 76% of “normal” and “abnormal” days were correctly
identified, respectively. The classifier demonstrated very good
predictive power with an AUROC of 0.80 (90% confidence interval
(CI) [0.76–0.83]). Of the 41 postoperative events for this group,
83% were detected within the two days prior to their reported
occurrence, with 76% detected 2 days prior to their reported
occurrence (excluding events occurring within the first 2 days
after surgery) and 73% detected 1 day prior to their reported
occurrence (excluding events occurring one day after surgery).
There were 387 false positives in the complicated appendicitis
group, and the area under the PR curve (AUPRC) was 0.36 (90% CI
[0.11–0.82]; Supplementary Fig. 1a). This outperforms a classifier
with random performance, which would have an approximate
AUPRC of 0.05 for the complicated appendicitis dataset based on

Table 1. Demographics for a cohort of children <18 years old who underwent appendectomy stratified by type of appendicitis (complicated or
simple) from 2019–2022 at a tertiary children’s hospital.

Total (n= 161) Patients with complicated appendicitis (n= 85) Patients with simple appendicitis (n= 76)

Length of stay in days, mean (SD) 2.6 (2.5) 4.0 (2.6) 0.9 (0.7)

Age in years, mean (SD) 10.4 (3.6) 10.4 (3.7) 10.4 (3.5)

Sex

Female, n (%) 78 (48.4) 44 (51.8) 34 (44.7)

Male, n (%) 83 (51.6) 41 (48.2) 42 (55.2)

Race/ethnicity

Non-hispanic, white, n (%) 41 (25.5) 19 (22.4) 22 (28.9)

Hispanic/Latinx, n (%) 93 (57.8) 53 (62.4) 39 (51.3)

African American, n (%) 14 (8.7) 7 (8.2) 7 (9.2)

Other, n (%) 7 (4.3) 4 (4.7) 3 (3.9)

SD standard deviation.
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the proportion of positive samples for this group (74 abnormal
days out of 1581 total days available for model training).
For patients with simple appendicitis (Fig. 2b), 71% and 60% of

“normal” and “abnormal” days were correctly identified,

respectively. The classifier demonstrated good predictive power
with an AUROC of 0.70 (90% CI [0.60–0.80]). Of the 10
postoperative events for this group, 70% were detected within
the two days prior to their reported occurrence, with 67%
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Fig. 2 Model performance for early detection of abnormal recovery. Confusion matrix, receiver operating characteristic, and percent of
postoperative events (either confirmed complications or abnormal symptoms) detected for appendectomy patients with a complicated
appendicitis and b simple appendicitis.

Fig. 1 Study overview. Pediatric patients were given a Fitbit for 21 days following appendectomy for complicated or simple appendicitis to
record physical activity (PA), heart rate (HR), and sleep data. Postoperative events (i.e., abnormal symptoms or confirmed complications) were
identified from medical records and patient reports and used to label the 2 days prior to the event as “abnormal” and all other days as
“normal” to indicate ground truth recovery. The days of reported events were excluded from the ground truth. Balanced random forest
classifiers were trained to predict normal/abnormal recovery, with separate models for patients with complicated and simple appendicitis.
Model performance was evaluated using confusion matrices, Area Under the Receiver Operating Characteristic curve (AUROC), as well as the
percentage of events that were detected two days prior to the event (d−2), 1 day prior to the event (d−1), or on either day (dANY; total number
of events detected 1–2 days prior to the event).
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detected two days prior to their reported occurrence (excluding
events occurring within the first two days after surgery) and 60%
detected one day prior to their reported occurrence (excluding
events occurring one day after surgery). There were 438 false
positives in the simple appendicitis group, and the AUPRC was
0.03 (90% CI [0.02–0.05]; Supplementary Fig. 1b). This only slightly
outperforms a classifier with random performance, which would
have an approximate AUPRC of 0.01 for the simple appendicitis
dataset based on the proportion of positive samples for this group
(20 abnormal days out of 1536 total days available for model
training).
Of the 51 total postoperative events, 10 (19.6%) were missed by

these models. For complicated appendicitis, there were 7 missed
events, including 5 Grade I and 2 Grade III (intraabdominal abscess
requiring drain placement) according to the Clavien-Dindo scale.
For simple appendicitis, there were 3 missed events, including 2
Grade I and 1 Grade III (intraabdominal abscess requiring surgical
washout and drain placement). All other events, ranging from
Grades I–III, were successfully detected by the model (Supple-
mentary Table 2). The distribution of detected and missed events

as a function of postoperative day is shown in Supplementary
Figure 2.
Representative case studies, showing Fitbit data for individual

patients during the postoperative monitoring period compared to
their actual recovery and model predictions, are shown in Fig. 3. In
the complicated appendicitis group, the model identified patients
who experienced normal recovery (Fig. 3a) with approximately the
same accuracy as those who had an abnormal recovery (Fig. 3b).
Model predictions of “abnormal recovery” on days when the
ground truth was “normal recovery” generally occurred in the days
immediately after an abnormal event, as shown in patients CA-1,
CA-2, and CA-4, and in periods of low activity level, as shown in
patients CN-1, CN-3, and CA-4. For simple appendicitis (Fig. 3c),
the model tended to favor temporal clinical features and generally
predicted “abnormal recovery” during the first few days after
surgery regardless of whether there was a true deviation from
normal recovery.
The average Gini feature importance showed that, in the

complicated appendicitis model (Fig. 4a), the two most important
features were the number of days after a previous symptom/
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complication, followed by total distance and lightly active distance
estimated from the Fitbit. The simple appendicitis model (Fig. 4b)
relied more heavily on the number of days post-surgery, followed
by total distance and total steps estimated from the Fitbit.

Sensitivity analysis 1: removing fitbit data features
Removing Fitbit features from the classifier decreased perfor-
mance for complicated appendicitis (correctly detecting 60% of
“normal” and 69% of “abnormal” days for this group) but did not
substantially affect performance for simple appendicitis. Without
Fitbit data, 78% and 70% of postoperative events were detected
up to two days prior to their reported occurrence for complicated
and simple appendicitis, respectively (Fig. 5a).

Sensitivity analysis 2: removing days with low wear time
Patients varied in their Fitbit wear time. Average daily wear time
was 12.8 ± 6.0 h and 12.3 ± 6.3 h for the complicated and simple
appendicitis groups, respectively. When restricting the analysis to
days when the Fitbit device was worn at least 10 hours/day during
typical waking hours (6:00 am–12:00 am), 24% and 26% of the
monitored days were excluded for the complicated and simple
appendicitis models, respectively. Removing days with low wear
time did not substantially affect model performance for compli-
cated appendicitis, but it did improve performance for simple
appendicitis (correctly detecting 74% of “normal” and 73% of
“abnormal” days for this group). Without days with low wear time,
79% and 100% of postoperative events were detected up to two
days prior to their reported occurrence for complicated and
simple appendicitis, respectively (Fig. 5b).

Sensitivity analysis 3: removing different Fitbit device types
Most participants wore the Fitbit Inspire HR during the monitoring
period, including 69 patients with complicated appendicitis (who
had 31 postoperative events) and 43 patients with simple
appendicitis (who had only 3 postoperative events). Using data
from this device alone (removing the Inspire 2) did not
substantially change model performance for complicated appen-
dicitis but decreased performance for simple appendicitis
(correctly predicting 62% of “normal” and 20% of “abnormal”
days for this group). With only the Inspire HR, 77% and 33% of
postoperative events were detected up to two days prior to their

reported occurrence for complicated and simple appendicitis,
respectively (Supplementary Figure 3a).
Of remaining participants who wore the Fitbit Inspire 2, 16 had

complicated appendicitis (with 10 postoperative events), and 33
had simple appendicitis (with 7 postoperative events). Using data
from this device alone (removing the Inspire HR) slightly
decreased model performance for complicated appendicitis
(correctly predicting 60% of “normal” and 67% of “abnormal”
days) but increased for the simple appendicitis group (correctly
predicting 75% of “normal” days and 67% of “abnormal” days).
With only the Inspire 2, 70% and 71% of postoperative events
were detected up to two days prior to their reported occurrence
for complicated and simple appendicitis, respectively (Supple-
mentary Figure 3b).

Sensitivity analysis 4: combined model for complicated and
simple appendicitis
In an alternative model combining data from the complicated and
simple appendicitis groups, 74% and 70% of “normal” and
“abnormal” days were correctly identified, respectively. The
classifier demonstrated good predictive power with an AUROC
of 0.79. Of the 51 postoperative events for this group, 78% were
detected within the two days prior to their reported occurrence,
with 70% detected two days prior to their reported occurrence,
and 69% detected one day prior to their reported occurrence
(Supplementary Figure 4). Compared to the separate models for
complicated and simple appendicitis, one additional postopera-
tive event was missed in this combined model (11 missed events
total; including an additional Grade I event in a patient with
simple appendicitis).

DISCUSSION
Here we report the use of the Fitbit wearable device to monitor
children after appendectomy, the most common inpatient
pediatric surgical procedure in the U.S., and applied ML methods
to retrospectively detect abnormal recovery prior to a reported
postoperative event. Our models detect more than 70% of
postoperative events (abnormal symptoms and confirmed com-
plications) in the two days prior to their reported occurrence in
patients undergoing appendectomy for both complicated and
simple appendicitis. Fitbit-based models are more effective for
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patients with complicated appendicitis, detecting 83% of all
postoperative events in this cohort. These findings support the
use of commercial wearables as potential remote-monitoring tools
for children recovering from surgery, such as from a laparoscopic
appendectomy for complicated appendicitis.
This study sought to generate clinically relevant ML models for

the detection of abnormal recovery and complications after
appendectomy in children. Although there have been efforts in
adult patients after surgery, little has been done in children60,61.
The ability of a model to detect up to 83% of abnormal events up
to 2 days before they are reported by the caregiver has the
potential to dramatically improve patient outcomes. For example,
infection is one of the most frequent and expensive complications
after appendectomy. Infection leading to sepsis is a major cause of
readmissions and is associated with significantly higher healthcare
costs and worse patient outcomes62,63. However, early detection
of infection has been associated with better outcomes; therefore,
Fitbit data could lead to better patient outcomes and lower
healthcare costs64,65.
The implementation of a Fitbit-based remote-monitoring

system has the potential to dramatically improve post-discharge
healthcare in the U.S. The current care model provides patients
and caregivers with instructions for identifying concerning
symptoms and signs of infection after discharge. This inherently
assumes that patients and their caregivers have appropriate
clinical knowledge, are continuously monitoring, and are free of
biases as to when to contact their healthcare team. Under this care
model, contact with the healthcare system is always “patient-
initiated”. This may contribute to existing disparities in outcomes.
An objective, continuous monitoring system based on daily

measures of health and activity from a wearable device would
allow clinical teams to not only gain unprecedented insight into
patient recovery in near real-time, but would also enable them to
reach out to patients in a timely manner. This expands the current
post-discharge care model so it includes “health system-initiated”
contact with the patient. This may facilitate more timely detection
and treatment of abnormal symptoms and postsurgical complica-
tions and may reduce existing disparities.
It is important to note that while our Fitbit-based ML model is

promising, additional work is still needed. The models presented
in this paper have a non-trivial rate of false positives, especially
during the first few days after surgery. Lower values of AUPRC
reflect the relatively high number of false positives, but the model
also has high sensitivity to detect abnormal postoperative events.
It is also possible that what we consider to be false positives are
actually true instances of abnormal recovery that were not
reported by the caregiver during the phone screenings. This is
supported by multiple cases where the model predicts more days
as “abnormal” coinciding with the patient reporting more severe
symptoms during the monitoring period. In a real-world clinical
application, detecting true positives has a much higher benefit to
care than minimizing false alarms. This is especially true given an
alert could be a short phone call or text message to the patient’s
caregiver to check on their child. However, reducing these false
alarms is important in the future because a high percentage of
these alarms may quickly create alert fatigue and numb the
response of the clinical team over time. Given that most missed
events were abnormal symptoms and not NSQIP-verified compli-
cations, we believe that the current false positive rate represents
an acceptable starting point and will likely decrease with more

Fig. 5 Sensitivity analyses of Fitbit features and device wear time. Model performance for patients undergoing appendectomy for
complicated and simple appendicitis when the classifier was trained by a removing features computed from Fitbit data and using only clinical
characteristics and demographic features, or b removing days with low Fitbit wear time (<10 h).

H.M.K. Ghomrawi et al.

6

npj Digital Medicine (2023)   148 Published in partnership with Seoul National University Bundang Hospital



training data and continued model refinement. It is also important
to recognize that alerts generated by a wearable-based early
detection model may be perceived as additional work by
clinicians. Redesigning the clinical workflow is necessary to
incorporate these data in a meaningful way that does not impede
the current workflow of clinical teams.
Our findings suggest that Fitbit data may not have the same

value for all surgical procedures. The complicated appendicitis
model weighs Fitbit data more highly than the simple appendicitis
model. Indeed, models trained with or without Fitbit data perform
similarly for patients with simple appendicitis, demonstrating that
the classifier relies more heavily on other clinical indicators (i.e.,
postoperative day) than Fitbit data for these patients. We should
note, however, that AUPRC values indicate that the simple
appendicitis model does not perform much better than a random
classifier. While it is possible that the low number of postoperative
events available for model training may limit performance in this
group (i.e., more data may improve algorithm performance), it is
also possible that Fitbit data simply may not be as valuable to
predict abnormal events in this patient cohort. Also, while it is
encouraging that a model combining complicated and simple
appendicitis performs similarly well to detect postoperative events
across these two patient cohorts (Supplementary Figure 4),
recognizing the populations that would benefit the most from a
Fitbit-based monitoring system will be key to successful
implementation in a real-world clinical setting.
Our study has several limitations which should be considered.

Recruitment was limited to working days of the week, and there
was a period of pause in recruitment. However, given the
emergent nature of appendectomy, we anticipate that appendi-
citis patients who had their operation earlier in the study or those
who had their operation on a weekend would have demographic
and complication profiles similar to the study population. Due to
the acute presentation of appendicitis and the emergent nature of
laparoscopic appendectomy, we are unable to capture recovery
using Fitbit data relative to pre-surgical baseline values. Previously,
we investigated different strategies to overcome this limitation,
such as acquiring Fitbit data from a community-recruited, healthy
control population matched on sex, age, and weight to obtain a
representative baseline sample for children who undergo
emergent surgery; however, most activity metrics were different66.
Furthermore, as we have observed that children who undergo
laparoscopic appendectomy for complicated appendicitis can
sometimes take more than 21 days to return to a statistically-
derived baseline, a longer monitoring period would be needed to
obtain a relative baseline after operation67. In the present study,
we include a subset of Fitbit features based on changes in metrics
from previous days. This approach may offer an alternative to
account for a patient’s relative recovery over time if baseline data
is not available. This a single-center study, and, as such, the patient
population and discharge protocols, which may affect PA of
patients, were ubiquitous. The ML models developed in this study
population may not be generalizable to all patients undergoing
appendectomy in the U.S., and further validation is needed in
larger and more diverse patient populations across multiple
institutions. Although developing separate models for compli-
cated and simple appendicitis decreases the volume of data
available for training and testing each model, we believe this is the
most clinically appropriate approach given the expected differ-
ences in postoperative recovery for the two cohorts67. Future work
will increase the sample size for model training and examine
generalizability of the models using larger, held-out test sets.
Incorporating Fitbit data into remote health monitoring has
benefits and drawbacks. While the device is more readily available
and recognized in the U.S. consumer market and is comfortable
and safe for children (even young children) to wear, it does not
allow access to its raw data. Despite that, the Fitbit is practical and
fairly accurate compared with clinical-grade devices68–77.

However, there are challenges. During the prolonged recruitment
period of this study, the Fitbit Inspire HR was replaced in the
consumer market by the Fitbit Inspire 2 necessitating a change in
device. Our sensitivity analysis reveals the best-performing model
corresponded to the device that had a majority (≥70%) of
postoperative events for each group. While we cannot confirm
Fitbit’s proprietary algorithms were consistent between device
generations, these results suggest that data availability, rather
than device type, is the primary determinant of model perfor-
mance. Even so, our results may not generalize to other consumer
wearables which use different hardware and software to obtain
PA, HR, and sleep measures. Future work will focus on refining and
validating a ML approach across different types of wearables,
thereby developing models that are agnostic to inter-device
variability. Furthermore, near real-time Fitbit monitoring requires
access to a cell phone with a data plan for online synchronization
with a clinical database. Though all caregivers approached in the
study had a cell phone with a data plan, this requirement may be
a barrier to participation for some patients and caregivers. Future
work will investigate the accessibility and scalability of a Fitbit-
based approach in other healthcare centers. The models devel-
oped in this study do not distinguish between the severity of
postoperative events when examining onset of symptoms. Since
this study is a first step to developing a meaningful screening tool
for the post-discharge setting, this was an intentional decision to
maintain focus on binary (normal/abnormal) classification. In this
context, the benefits of a highly sensitive model that identifies all
potential complications outweigh the detriments of an error-
prone severity classification system as a matter of patient safety.
Clavien-Dindo Grade IV complications are exceedingly rare after
appendectomy (<1%), and we do not capture this type of
complication in the current dataset. However, one patient with
complicated appendicitis was found to be in septic shock at the
initial presentation; therefore, she required a stay in the intensive
care unit perioperatively. Although her illness was an extreme
presentation of complicated appendicitis rather than a post-
operative complication, her physiologic state was similar to a
patient experiencing a Grade IV complication. This patient is
flagged by the model for the first 7 postoperative days, and since
the model is designed with high sensitivity to capture minor
events, we expect it would function similarly should a Grade IV
complication occur. Lastly, recall bias and frequent reporting of
symptoms during the phone surveys may have an unintended
consequence of parents seeking more and/or earlier medical care,
thus decreasing the impact of true complications. As the dataset
continues to grow, more data will be available across different
symptoms and complications which could then be used to
distinguish between postoperative event severities.
This study demonstrates practical use of the Fitbit, a widely

available consumer-grade wearable, to detect abnormal recovery
symptoms and complications in pediatric appendectomy patients
up to two days before they occur. Further testing in larger cohorts
of patients is warranted to refine the ML models as an important
next step in the evaluation of this technology for postoperative
remote monitoring.

METHODS
Study setting and study population
After receiving approval from the Ann and Robert H. Lurie
Children’s Hospital of Chicago (LCH) institutional review board (IRB
#2018-1836), children, ages 3–17 years old, who had just
undergone appendectomy for complicated or simple appendicitis
at LCH and their caregivers were recruited for the study between
March 2019–May 2019 and February 2020–June 2022. The
interruption in recruitment was due to the unexpected loss of
the study coordinator. The lower age limit of three years old was
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selected because prior studies demonstrated poor compliance
with wearing the Fitbit device and patient dissatisfaction at
younger ages78. Patients and their caregivers were recruited
shortly after surgery, and written informed consent using IRB-
approved forms was obtained from a parent or legal guardian for
all children <18 years old. In addition, oral assent was obtained
from patients 7–11 years old and written assent from patients 12
years and older.

Data sources and collection
Eligible patients and their caregivers were identified by daily
review of the electronic health records (EHR), recruited, and
enrolled by the study coordinator. The Fitbit Inspire HR and Fitbit
Inspire 2 were chosen for their reliable use in children68,69,75,78,
and because of our own experience showing high compliance in
children67. All patients were approached immediately after being
sent to their hospital room during daytime working hours (7 am–5
pm) or the next morning for those who underwent surgery at
night. Recruitment occurred in the patient’s room after return
from the recovery unit and emergence from general anesthesia to
maximize patient participation. Patients with simple appendicitis
who had an evening operation and were discharged home that
evening were not recruited. Patients who had their surgery and
discharged during the weekend were also not recruited. After
agreeing to participate in the study, the study coordinator placed
the Fitbit on the patient’s wrist, demonstrated appropriate use,
and assisted with registration of the child’s Fitbit on their
caregiver’s smartphone with a Fitbit account. This account was
then linked to Fitabase, a cloud-based platform that receives Fitbit
data in near real-time from the caregiver’s smartphone. Patients
were instructed to wear the device continually on either wrist for
21 postoperative days, whether hospitalized or discharged home.
Compliance with wearing the Fitbit was monitored by the study
coordinator through Fitabase on a daily basis. If data were not
synchronized during the preceding 18 h, the patient/caregiver was
contacted. At the end of the follow-up period, Fitbit was given to
participants as remuneration for their participation in the study.
Clinical information about the surgery (surgery type, surgery

date, and hospital discharge) and demographics were gathered
from the patient’s EHR. Information about any symptoms and

complications that occurred after surgery were abstracted from
the EHR during the index hospitalization and any subsequent ED
visits, outpatient visits, calls to the hospital, readmissions, and
from patients and/or caregivers via phone surveys conducted on
POD 3, 7, 10, 14 and 21 for outpatients. A standardized symptoms
checklist was utilized to inquire about these events. The details of
this information are described in the next section.

Categorization of surgery and clinical events
An appendicitis was categorized as simple if no presence of
perforation, phlegmon, or abscess and complicated if perforation,
phlegmon, or abscess was present at surgery. Simple and
complicated appendicitis patients have significantly different
postoperative recovery trajectories due to the greater disease
severity in the case of complicated appendicitis, which more
frequently requires additional inpatient treatments (e.g. antibio-
tics, intravenous fluids), prolonged return to normal bowel
function, increased pain, and occasionally additional invasive
procedures (percutaneous drainage of abscess), compared to
simple appendicitis79,80.
Postoperative events were reviewed and categorized using the

validated Clavien-Dindo classification system and the American
College of Surgeons’ National Surgical Quality Improvement
Program (ACS NSQIP) list of complications81,82. Events were
categorized as “abnormal” if they were outside the expectations
of normal recovery. To understand the breadth of severity of
abnormal events, a Clavien-Dindo grade was assigned to each
abnormal event (Table 2). By definition, all Grade ≥I events are
outside of expectations for normal recovery. A “complication” was
defined based on the NSQIP definition, which in this study
included deep and superficial site infection, small bowel obstruc-
tion, unplanned return to the operating room, and Clostridium
difficile infection requiring readmission. All other reported
symptoms were considered as within the scope of “normal
recovery” (i.e., events requiring no additional therapies or
interventions beyond standard perioperative and discharge
protocols). All symptoms, complications, and their corresponding
categorizations were reviewed and confirmed by a senior pediatric
surgeon (FA) and 4 surgery residents (CD, SCL, JBP, and MC).

Table 2. Clavien-Dindo classification grading with corresponding postoperative events available for model development and testing.

Clavien-Dindo grade description: Examples Frequency (n) in patients
with complicated
appendicitis

Frequency (n) in
patients with simple
appendicitis

Grade I: Any deviation from normal
postoperative course without the need for
surgical, endoscopic, and radiological
interventions. Allowed therapeutic regimens
include antiemetics, antipyretics, analgesics,
diuretics, electrolytes, and physiotherapy.

Fever requiring antipyretic, incisional redness/
drainage not requiring antibiotics, vomiting
requiring antiemetic, oliguria requiring foley
catheter, diarrhea requiring IV hydration

22 9

Grade II: Requiring pharmacological treatment
with drugs other than such allowed for grade I
complications

Ileus requiring nasogastric tube and total
parental nutrition (TPN), surgical site infection
requiring antibiotics*, intraabdominal abscess
treated with IV antibiotics alone*, Clostridium
dificile infection*

14 0

Grade III: Requiring surgical, endoscopic, or
radiological intervention

Interventional radiology percutaneous
drainage of intraabdominal abscess*, takeback
to operating room for early adhesive small
bowel obstruction*

5 1

Grade IV: Life-threatening complication
requiring ICU management including single or
multi-organ dysfunction.

No occurrences 0 0

Grade V: Death of the patient No occurrences 0 0

*Also designated as an NSQIP complication.
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Ground truth labels
For every patient, each day of postoperative monitoring was
labeled as either “abnormal” or “normal” recovery. A day was
considered “abnormal” if it was within the 2 days leading up to a
newly reported postoperative event (abnormal symptom or
confirmed complication). This two-day detection period was
chosen as a practical timeline for meaningful clinical intervention
before the event would have been reported. The day of the
postoperative event was excluded from model training and
testing to prioritize early detection during the potential onset of
the symptoms. For postoperative events that occurred on POD 3
or later, the two days prior to the postoperative event were
labeled as “abnormal.” For events that occurred on POD 2, only
the day prior to the event was labeled as abnormal, as there was
data available two days prior to the event. For events that
occurred on POD 1, there were no days prior to the event;

therefore, no days leading up to the event were labeled as
abnormal. All remaining days were labeled as “normal” recovery.

Features extracted from the Fitbit data
Table 3 summarizes the 75 features extracted from the Fitbit data
and uploaded into Fitabase. The minute-by-minute HR data were
used to compute the maximum, minimum, average, and standard
deviation of HR each day. Daily PA (e.g., steps, distance traveled,
calories burned) and sleep data (e.g., time asleep, time in bed),
computed using Fitbit’s proprietary algorithms, were also
extracted83–85. Additional features were computed to capture
temporal variations of the data, including changes from the
previous day and changes from a 3-day rolling average, as
outlined in Table 3. We also incorporated demographic and
clinical characteristics, such as discharge status and the number of
days since surgery or a previous symptom/complication.

Table 3. Features extracted and used in the machine learning model.

Category Feature Description (per day)

Activity Total stepsΔ,δ,%,Μ,μ Steps taken

Total distanceΔ,δ,%,Μ,μ Kilometers traveled

Logged activities distance Kilometers from logged activities

Very active distance Kilometers traveled during very active activities

Moderately active distance Kilometers traveled during moderate activity

Light active distance Kilometers traveled during light activity

Sedentary active distance Kilometers traveled during sedentary activity

Very active minutes Total minutes spent in very active activity

Fairly active minutes Total minutes spent in fairly active activity

Lightly active minutes Total minutes spent in light activity

Sedentary minutes Total minutes spent in sedentary activity

CaloriesΔ,δ,%,Μ,μ Total estimated energy expenditure

Calories BMR Total energy expenditure from basal metabolic rate

Marginal calories Total marginal estimated energy expenditure

Heart rate Resting heart rateΔ,δ,%,Μ,μ Average resting heart rate value

Heart rate mean Average heart rate value

Heart rate standard dev. Standard deviation of heart rate

Heart rate minimum Minimum heart rate

Heart rate maximum Maximum heart rate

Sleep Total minutes asleepΔ,δ,%,Μ,μ Total minutes asleep

Total minutes in bedΔ,δ,%,Μ,μ Total minutes in bed awake or asleep

Total minutes restlessΔ,δ,%,Μ,μ Total time in bed awake

Total sleep records Number of sleep periods (>1 h)

Demographics Age Patient age at time of surgery

Weight Patient weight at time of surgery

Height Patient height at time of surgery

Sex Patient sex (male/female)

Race/ethnicity Patient race/ethnicity

Clinical characteristics Days post-surgery Days since surgery

Days post-symptom Days since last reported symptom

Days post-complication Days since last complication

Past symptom Boolean—has patient had a symptom

Past complication Boolean—has patient had a complication

Number of past symptoms Number of past symptoms

Number of past complications Number of past complications

Discharged Boolean—has patient been discharged

Δ – difference from the previous day; δ – difference from 3-day rolling average; % – percent change from rolling average; Μ – difference from maximum value
of all previous days; μ – difference from minimum value of all previous days.
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ML models to classify normal or abnormal recovery days
Figure 1 summarizes the study pipeline for supervised ML using
the Fitbit data features and recovery ground truth labels. Multiple
supervised ML techniques were explored to determine the best-
performing algorithm for this imbalanced learning problem, since
complications were rare events compared to the number of total
days monitored across patients. Adaptive boosting, eXtreme
Gradient Boosting (XGBoost), random under-sampling (RUSBoost),
balanced bagging, easy ensemble, and balanced random forest
(BRF) classifiers were all tested. The BRF classifier outperformed
other algorithms, with greater sensitivity (i.e., recall) to detect
“abnormal” recovery days, and was selected for final model
training and testing (Supplementary Table 1).
Given known differences in disease etiology and recovery

trajectories67, we trained ML models separately for patients
undergoing appendectomy for complicated and simple appendi-
citis. For each model, a BRF ensemble estimator was used to
classify each labeled day as “normal” or “abnormal.” The BRF
classifier fits an ensemble of decision trees on random subsamples
of the dataset using bootstrap sampling, while also under-
sampling the majority class (with replacement) on each boot-
strapping iteration to balance the classes86. The random forest
algorithm facilitates high-accuracy classification with a low
number of hyperparameters, the ability to handle high-
dimensional data, and robustness to outliers, while balanced
under-sampling can improve performance for imbalanced data-
sets87 in this case, with fewer abnormal recovery days relative to
normal recovery days. We used leave-one-subject-out cross-
validation, wherein the model was iteratively trained using daily
Fitbit features and ground truth labels from all patients but one
and tested on the left-out patient.

Evaluation of the model performance
AUROC and AUPRC were used to evaluate the performance of the
model when predicting days labeled as “normal” or “abnormal”
recovery. Additionally, we calculated the percent of postoperative
events (reported occurrence of abnormal symptoms or confirmed
complications) that were detected two days prior to the event
(d−2), 1 day prior to the event (d−1), and on either of the 2 days
prior to the event (dANY). These metrics were averaged across all
cross-validation folds. The average Gini impurity, a measure of an
individual feature’s ability to correctly classify a day as “normal” or
“abnormal,” was computed across all cross-validation folds. This
enabled the features to be ranked by their relative importance to
the model88.
Data reduction and imputation methods were applied during

model estimation. To reduce the risk of overfitting, highly
correlated features (Pearson’s correlation coefficient >0.95) were
removed. For the initial models, days in which any Fitbit data were
recorded were included in the analysis. This resulted in missing
feature values on days with incomplete data (e.g., activity data
recorded but no sleep data), as well as missing feature values that
could not be computed due to an insufficient amount of wear
time up to that point (e.g., computing changes in steps from a
3-day rolling average on days 1–3 post-surgery). These missing
values were imputed using the patient’s mean value for that
feature across the entire monitoring period.
Four sensitivity analyses were conducted to examine the impact

of (1) Fitbit data availability, (2) device wear time, (3) device type,
and (4) combined appendicitis groups on the model performance.
First, the BRF classifiers were trained utilizing only the “clinical
characteristics” and “demographics” features listed in Table 3 to
evaluate the added value of including Fitbit data in the detection
of abnormal recovery days. Second, the BRF classifiers were
trained using only days in which the Fitbit device was worn at
least 10 h per day during potential waking hours (6:00 am–12:00
am) to evaluate model performance when user compliance would

be considered high to rule out the potential bias associated with
data from a shorter wear time. The 10 h per day within the 6:00
am–12:00 am timeframe is the conventional threshold of wear-
time required to estimate valid daily PA within a day. The device
was considered as “not worn” if HR data (beats/minute) were zero
or not recorded67,89. The classifier was not trained or tested on any
excluded day in this analysis. However, all days with sufficient
wear-time leading up to and following an excluded day were
included with their original labels. Third, the BRF classifiers were
trained utilizing data only from patients who used the Fitbit
Inspire 2 (n= 49) or the Fitbit Inspire HR (n= 112). Finally, the
classifiers were trained using combined data from patients in the
complicated and simple appendicitis groups (n= 161).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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