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Blood glucose variance measured by continuous glucose
monitors across the menstrual cycle
Georgianna Lin 1✉, Rumsha Siddiqui2, Zixiong Lin 1, Joanna M. Blodgett 3, Shwetak N. Patel4, Khai N. Truong1 and
Alex Mariakakis1

Past studies on how blood glucose levels vary across the menstrual cycle have largely shown inconsistent results based on limited
blood draws. In this study, 49 individuals wore a Dexcom G6 continuous glucose monitor and a Fitbit Sense smartwatch while
measuring their menstrual hormones and self-reporting characteristics of their menstrual cycles daily. The average duration of
participation was 79.3 ± 21.2 days, leading to a total of 149 cycles and 554 phases in our dataset. We use periodic restricted cubic
splines to evaluate the relationship between blood glucose and the menstrual cycle, after which we assess phase-based changes in
daily median glucose level and associated physiological parameters using mixed-effects models. Results indicate that daily median
glucose levels increase and decrease in a biphasic pattern, with maximum levels occurring during the luteal phase and minimum
levels occurring during the late-follicular phase. These trends are robust to adjustments for participant characteristics (e.g., age, BMI,
weight) and self-reported menstrual experiences (e.g., food cravings, bloating, fatigue). We identify negative associations between
each of daily estrogen level, step count, and low degrees of fatigue with higher median glucose levels. Conversely, we find positive
associations between higher food cravings and higher median glucose levels. This study suggests that blood glucose could be an
important parameter for understanding menstrual health, prompting further investigation into how the menstrual cycle influences
glucose fluctuation.
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INTRODUCTION
Blood glucose levels can fluctuate due to various factors, the most
well-known being body composition1, diet2,3, and exercise4.
Understanding these fluctuations is an essential part of maintain-
ing a healthy lifestyle as they can indicate or obscure indicators of
health issues including diabetes and vascular diseases5,6. Indivi-
duals who menstruate are at a notably higher risk of such health
issues due to hormonal imbalances, particularly those induced by
life events such as pregnancy7 and menopause8,9. Although the
mechanisms for these risks are unclear, periodic changes in
estrogen levels during the menstrual cycle are known to play a
role10–12. Therefore, a more robust exploration of glucose levels in
non-diabetic, menstruating individuals can further our under-
standing of glucose variation in relation to hormonal levels and
management in pathological conditions.
There is some evidence that glucose levels change across the

menstrual cycle in both diabetic and non-diabetic individuals4, but
findings across studies have been inconsistent. For instance,
reports on insulin sensitivity have varied from showing a decrease
during the luteal phase13,14 to no change across phases15.
MacGregor et al.4 identified rhythmic cycling of glucose and
insulin across the menstrual cycle after controlling for body mass
index (BMI) and physical activity. Conversely, Yeung et al.14 found
that glucose levels remain relatively constant throughout the
menstrual cycle with slight decreases through ovulation and the
earlier part of the luteal phase. With sample sizes ranging from
tens to thousands of human subjects4,13–15, participants in these
all of these studies measured their glucose levels via limited
clinical blood draws, sometimes as few as one measurement per
menstrual cycle phase. These studies have also often relied upon
approximated or self-reported menstruation dates, which past

work has found to be inaccurate for ascertaining cycle phase
given strong inter- and intra-individual differences in cycle
length16,17. Combined, these factors may contribute to the
inconsistency across prior studies. To our knowledge, both
continuous glucose monitors (CGM) and daily hormone-based
phase predictions have not been used to study the association of
glucose and the menstrual cycle in non-diabetic individuals.
In this study, we leverage CGM and daily hormone testing to

examine the relationship between glucose levels and the
menstrual cycle with more accurate and consistent data collection
mechanisms than prior work. Furthermore, we investigate the role
that potential confounders have in the cyclic nature of glucose
variation across the menstrual cycle. We examine this relationship
in healthy menstruating participants with no diabetic history in
order to further our understanding of glucose variation without
the confound of pathological conditions.

RESULTS
Participant characteristics
The characteristics of our participant cohort are summarized in
Table 1 both in aggregate and separated according to menstrual
cycle phase. The distribution of phase labels is illustrated in Fig. 1.
According to χ2 and repeated measures ANOVA tests, we found
that all of the physiological signals and self-reported experiences
besides appetite level had statistically significant variation across
menstrual cycle phases; detailed results of these tests can be
found in Supplementary Table 1. Exercise levels and sleep issues
were lowest during menstruation compared to the other phases.
Conversely, food cravings, bloating, and fatigue were more
prevalent during menstruation than during the other phases.
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Table 1. Participant characteristics across menstrual phases.

All phases Menstrual Late-follicular Ovulation Luteal

Physiological signals (mean ± standard deviation)

Blood Glucose (mmol/L)*** 6.0 ± 0.7 6.0 ± 0.8 5.8 ± 0.7 5.9 ± 0.7 6.1 ± 0.8

Luteinizing Hormone (mIU/mL)*** 5.4 ± 6.8 4.1 ± 3.2 4.7 ± 3.7 10.4 ± 12.6 3.7 ± 2.6

Estrogen (ng/mL)*** 140.0 ± 112.7 104.8 ± 82.9 114.9 ± 94.2 188.6 ± 145.9 150.3 ± 105.5

Step count** 297.0 ± 213.0 290.1 ± 221.9 315.2 ± 217.3 293.1 ± 213.9 287.4 ± 203.4

Demographics (mean ± standard deviation)

Age (yrs) 20.8 ± 2.7

Height (cm) 163.3 ± 5.6

Weight (kg) 59.2 ± 11.0

BMI (kg/m²) 22.6 ± 4.4

Self-reported experiences (total count of daily entries, % within menstrual phase subset)

Daily appetite

Very low 164 (5%) 26 (5%) 52 (5%) 40 (6%) 46 (4%)

Low 798 (23%) 135 (24%) 231 (24%) 145 (22%) 287 (25%)

Moderate 1751 (51%) 295 (52%) 494 (51%) 342 (51%) 620 (52%)

High 597 (18%) 100 (18%) 177 (18%) 118 (18%) 202 (17%)

Very high 93 (3%) 13 (2%) 20 (2%) 23 (3%) 37 (3%)

Daily exercise level*

Very low 698 (21%) 128 (22%) 194 (20%) 137 (21%) 239 (20%)

Low 1234 (36%) 215 (38%) 333 (34%) 241 (36%) 445 (37%)

Moderate 1079 (32%) 173 (30%) 329 (34%) 209 (31%) 368 (31%)

High 333 (10%) 39 (7%) 98 (10%) 74 (11%) 122 (10%)

Very high 57 (2%) 14 (2%) 20 (2%) 5 (1%) 18 (2%)

Daily Food Cravings**

Did not experience 910 (27%) 111 (20%) 248 (25%) 203 (30%) 348 (29%)

Very low 620 (18%) 115 (20%) 175 (18%) 127 (19%) 203 (17%)

Low 660 (19%) 112 (20%) 196 (20%) 127 (19%) 225 (19%)

Moderate 653 (19%) 115 (20%) 190 (19%) 119 (18%) 229 (19%)

High 410 (12%) 78 (14%) 129 (13%) 73 (11%) 130 (11%)

Very high 157 (5%) 38 (7%) 39 (4%) 23 (3%) 57 (5%)

Daily bloating***

Did not experience 1089 (32%) 116 (20%) 318 (33%) 232 (35%) 423 (35%)

Very low 693 (20%) 101 (18%) 215 (22%) 137 (20%) 240 (20%)

Low 564 (17%) 87 (15%) 188 (19%) 118 (18%) 171 (14%)

Moderate 609 (18%) 140(25%) 160 (16%) 104 (15%) 205 (17%)

High 357 (10%) 95 (17%) 84 (9%) 57 (8%) 121 (10%)

Very high 98 (3%) 30 (5%) 12 (1%) 24 (4%) 32 (3%)

Daily fatigue*

Did not experience 410 (12%) 56 (10%) 109 (11%) 97 (14%) 148 (11%)

Very low 482 (14%) 84 (15%) 145 (15%) 90 (13%) 163 (14%)

Low 571 (17%) 91 (16%) 163 (17%) 112 (17%) 205 (17%)

Moderate 981 (29%) 154 (27%) 275 (28%) 174 (26%) 378 (32%)

High 706 (21%) 134 (24%) 216 (22%) 136 (20%) 220 (19%)

Very high 260 (8%) 50 (9%) 69 (7%) 63 (9%) 78 (7%)

Daily sleep issues*

Did not experience 606 (18%) 81 (14%) 160 (16%) 132 (20%) 233 (20%)

Very low 664 (19%) 112 (20%) 219 (22%) 105 (16%) 228 (19%)

Low 803 (24%) 146 (26%) 231 (24%) 155 (23%) 271 (23%)

Moderate 737 (22%) 118 (21%) 210 (21%) 148 (22%) 261 (22%)

High 382 (11%) 76 (13%) 102 (10%) 74 (11%) 130 (11%)

Very high 218 (6%) 36 (6%) 55 (6%) 58 (9%) 69 (6%)

Participant demographics, physiological signals, and self-reported symptoms reported in aggregate and separated according to menstrual phase. Significant
results (*p < 0.05, **p < 0.01, ***p < 0.001) of χ2 and repeated measures ANOVA tests of symptom variance across cycle phases are also indicated.
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Modeling glucose levels across the menstrual cycle
Figure 2 shows the trends of daily median glucose, estrogen, and
luteinizing hormone levels across the entire menstrual cycle.
Figure 3 shows the trend of daily median glucose level after a
restricted cubic spline analysis, and Supplementary Fig. 1 shows
the distribution of these values split according to discrete
menstrual cycle phases. Glucose levels were lowest during the

late-follicular phase (5.8 ± 0.7 mmol/L), gradually increased during
ovulation, peaked during the luteal phase (6.1 ± 0.8 mmol/L), and
dropped sharply during menstruation. Where Day 1 was
considered the first day of menstruation, the lowest median
glucose level typically occurred at Day 13.6 ± 3.4 (late-follicular
phase), and the highest median glucose level occurred at Day
24.5 ± 8.0 (luteal phase).

Fig. 1 Temporal distribution of days within each menstrual cycle phase. The temporal distribution of days that were labeled with each
menstrual cycle phase according to hormone data. The progression of the horizontal axis begins with the menstrual phase. The average
duration of each phase across all participants was as follows: menstrual= 5.6 ± 1.6 days, late-follicular= 11.0 ± 6.1 days,
ovulation= 5.9 ± 0.5 days, and luteal= 11.8 ± 3.0 days.

Fig. 2 Plot of daily median glucose, estrogen, and luteinizing hormone levels throughout the menstrual cycle. A plot of daily median
glucose, estrogen, and luteinizing hormone levels throughout the menstrual cycle starting from menstruation with LOESS smoothing. The
shaded regions indicate 95% confidence intervals.
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Univariate associations between glucose levels, menstrual
cycle phase, and confounds
As shown in Table 2, linear mixed-effects models indicated a
significant increase in glucose levels during the ovulation
(β= 0.06, p < 0.05, 95% CI [0.001, 0.12]), luteal (β= 0.15,
p < 0.001, 95% CI [0.09, 0.20]), and menstrual (β= 0.09, p < 0.01,
95% CI [0.02, 0.16]) phases relative to the late-follicular phase.
There was also a statistically significant relationship between
estrogen and glucose, with higher estrogen levels leading to lower
daily median glucose levels (β=−0.0003, p < 0.05, 95% CI [–0.001,
–0.000001]).
Higher daily step counts were associated with statistically

significant decreases in daily median glucose levels (β=−0.0003,
p < 0.001, 95% CI [–0.0004, –0.0002]). Food cravings were often
associated with increases in daily median glucose levels ("low":
β= 0.15, p < 0.001, 95% CI [0.07, 0.24]); "moderate": β= 0.19,
p < 0.001, 95% CI [0.10, 0.28]; "high" (β= 0.15, p < 0.01, 95% CI
[0.06, 0.24]). Meanwhile, there was some evidence to suggest that
fatigue was significantly associated with decreasing daily median
glucose levels ("very low": β=−0.14, p < 0.01, 95% CI [–0.26,
–0.04]). Finally, there was an association between higher levels of
self-reported sleep issues and elevated daily median glucose
levels ("high": β= 0.11, p < 0.05, 95% CI [0.004, 0.22]; "very high":
β= 0.09, p= 0.13, 95% CI [–0.03, 0.22]). Participants’ recorded
demographics and self-reported appetite, exercise, and bloating
levels did not demonstrate any significant trends with daily
median glucose levels.

Multivariate association between glucose levels, menstrual
cycle phase, and confounders
For the multivariate linear mixed-effects model presented in Table
2, we included all of the variables that had significant relationships
with daily median glucose levels: estrogen, step count, food
cravings, fatigue, and sleep issues. The model confirmed that the
association between menstrual cycle phase and median glucose
level is robust to confound adjustment. Similar to the correspond-
ing univariate model, daily median glucose levels were elevated
during the ovulation (β= 0.08, p < 0.05, 95% CI [0.01, 0.15]) and
luteal (β= 0.16, p < 0.001, 95% CI [0.10, 0.22]) phases relative to

Fig. 3 Periodic restricted cycle spline fit of daily median glucose
levels changes throughout the menstrual cycle. A plot of daily
median glucose levels changes throughout the menstrual cycle
starting from menstruation with a periodic restricted cyclic spline fit.

Table 2. Univariate and multivariate linear mixed-effects models
results.

Covariate Univariate Model Multivariate Model

β-coefficient
[95% CI]

β-coefficient
[95% CI]

Physiological signals

Menstrual
phase

Late-follicular Reference Reference

Ovulation 0.06 [0.001, 0.12]* 0.08 [0.01, 0.15]*

Luteal 0.15 [0.09, 0.20]*** 0.16 [0.10, 0.22]***

Menstrual 0.09 [0.02, 0.16]** 0.03 [-0.04, 0.11]

Others Luteinizing
Hormone (LH)

–0.001 [-0.01, 0.003] –

Estrogen (E3G) –0.0003 [–0.001,
–0.00001]*

–0.0003 [–0.001,
–0.0001]**

Step Count –0.0003 [–0.0004,
–0.0002]***

–0.0003 [–0.0004,
–0.0002]***

Demographics

Age (yrs) 0.01 [–0.04, 0.05] –

Height (cm) –0.01 [–0.04, 0.02] –

Weight (kg) 0.002 [–0.01, 0.02] –

BMI (kg/m²) 0.01 [–0.03, 0.05] –

Self-reported experiences

Daily appetite Very low Reference Reference

Low –0.02 [–0.13, 0.10] –

Moderate 0.04 [–0.08, 0.15] –

High –0.01 [–0.13, 0.12] –

Very high –0.02 [–0.20, 0.15] –

Daily exercise Very low Reference Reference

Low –0.02 [–0.08, 0.05] –

Moderate –0.02 [–0.09, 0.05] –

High –0.08 [–0.17, 0.02] –

Very high –0.05 [–0.24, 0.13] –

Daily food
cravings

Did not
experience

Reference Reference

Very low 0.05 [–0.05, 0.14] 0.05 [–0.05, 0.15]

Low 0.15 [0.07, 0.24]*** 0.19 [0.10, 0.28]***

Moderate 0.19 [0.10, 0.28]*** 0.21 [0.12, 0.30]***

High 0.15 [0.06, 0.24]** 0.17 [0.07, 0.27]***

Very high 0.08 [–0.05, 0.20] 0.04 [–0.09, 0.17]

Daily bloating Did not
experience

Reference Reference

Very low –0.06 [–0.15, 0.03] –

Low 0.02 [–0.06, 0.11] –

Moderate 0.04 [–0.05, 0.13] –

High 0.07 [–0.03, 0.17] –

Very high –0.07 [–0.22, 0.08] –

Daily fatigue Did not
experience

Reference Reference

Very low –0.14 [–0.26, −0.04]** –0.16 [–0.28, –0.03]*

Low 0.03 [–0.07, 0.14] 0.02 [–0.09, 0.13]

Moderate 0.01 [–0.09, 0.10] –0.03 [–0.13, 0.08]

High 0.03 [–0.07, 0.13] –0.03 [–0.14, 0.08]

Very high 0.08 [–0.03, 0.20] 0.03 [–0.10, 0.16]

Daily sleep
issues

Did not
experience

Reference Reference

Very low 0.001 [–0.10, 0.10] 0.05 [–0.06, 0.16]

Low –0.04 [–0.13, 0.06] –0.06 [–0.16, 0.05]

Moderate 0.04 [–0.06, 0.13] 0.02 [–0.09, 0.13]

High 0.11 [0.004, 0.22]* 0.05 [–0.07, 0.17]

Very high 0.09 [–0.03, 0.22] 0.02 [–0.12, 0.16]

The results of the univariate and multivariate linear mixed-effects models
that were generated to estimate changes in median blood glucose across
menstrual phases. Significant model results are indicated as such *p < 0.05,
**p < 0.01, ***p < 0.001.
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the late-follicular phase. However, the same could no longer be
said for glucose levels during menstruation since the relationship
lost statistical significance. Increased estrogen also led to
decreases in daily median glucose levels (β=−0.0003, p < 0.01,
95% CI [–0.001, –0.0001]).
Associations between confounders and median glucose levels

largely did not change. Higher daily step counts were associated
with statistically significant decreases in daily median glucose
levels (β=−0.0003, p < 0.001, 95% CI [–0.0004, –0.0002]). Food
cravings were associated with increased daily median glucose
levels, particularly when being reported as "low" (β= 0.19,
p < 0.001, 95% CI [0.10, 0.28]), "moderate" (β= 0.21, p < 0.001,
95% CI [0.12, 0.30]), and "high" (β= 0.17, p < 0.001, 95% CI [0.07,
0.27]). As before, fatigue was only found to be significantly
associated with daily median glucose levels at "very low" levels
(β=−0.16, p < 0.05, 95% CI [–0.28, –0.03]). Reported sleep issues
were not significantly associated with daily median glucose levels
after adjustment for confounders.
We examined interactions between each of the aforementioned

confounders and menstrual cycle phase. There were no significant
interactions between estrogen, step count, or sleep issues with
phase (all p > 0.05). As there were significant interactions for food
cravings and fatigue with menstrual cycle phase, we stratified the
data by phase and generated univariate models for each
confounder. The results of this analysis are shown in Table 3.
There were positive associations between higher food cravings
and daily median glucose levels during the ovulation and luteal
phases. There was some association between the two during the
menstrual phase, albeit only on days with "very high" food
cravings. Any experience of fatigue was associated with higher
glucose levels during the menstrual phase, with no associations
during the late-follicular or ovulation phases. The opposite pattern
emerged during the luteal phase, during which those with "very
low" fatigue had lower glucose levels than those who did not
experience any fatigue. Associations for both food cravings and
fatigue remained the same in phase-stratified multivariate models
with all significant confounders included.

DISCUSSION
In this study, we identified significant associations between blood
glucose and the individuals’ menstrual cycles. We observed a
biphasic pattern across the menstrual cycle where daily median

glucose levels peaked during the luteal phase and declined during
the late-follicular phase. The increase in glucose levels from the
late-follicular phase to the luteal phase was also robust to a
number of confounders, including step count, estrogen, food
cravings, fatigue, and sleep issues.
Our findings align with studies on the physiological relation-

ships between metabolism and hormones associated with the
menstrual cycle. Estrogen promotes lipolytic action, thereby
increasing triglyceride levels and inhibiting food intake18. Estrogen
also suppresses food cravings by stimulating anorexigenic and
satiety neurons in the central nervous system19. Our analyses
reflect this relationship, as we observed strong positive associa-
tions between higher levels of food cravings and daily median
blood glucose levels during the ovulation and luteal phases. Since
estrogen levels are on average lowest during menstruation and
highest during ovulation, the aforementioned physiological
mechanisms could explain the differences we observed in blood
glucose levels and food cravings across menstrual cycle phases.
Still, our findings share commonalities and differences with past

literature on insulin resistance in the menstrual cycle. The most
similar findings were from MacGregor et al.4, who uncovered
rhythmic blood glucose changes across the menstrual cycle, and
from Dey et al.1, who found that glucose peaks during the luteal
phase. Our methodology differed from these works by character-
izing daily glucose levels via continuous blood glucose monitor-
ing. Unlike blood draws conducted in labs, CGMs are more cost-
effective20,21 and enable data collection within and across days22.
We were therefore able to examine the robustness of these
associations to inter- and intra-person variability across the
menstrual cycle. Throughout our analyses, we found that the
rhythmic pattern of glucose variation persisted regardless of
menstrual cycle duration.
Our results serve as a basis for conversations on the

interpretation of glucose levels with respect to menstrual health23.
Individuals who anticipate adjusting their behaviors (e.g., diet24

and sleep25) based on their glucose variation may need to
consider how menstruation influences their interpretation of this
data. For example, those who have higher glucose levels while
experiencing stronger food cravings might contemplate different
symptom management strategies depending on how far along
they are in their menstrual cycle. Accounting for glucose variation
across the menstrual cycle is also imperative for individuals with
conditions like type 1 diabetes, as increased glucose levels during

Table 3. Univariate linear mixed-effects models stratified by menstrual cycle phase results.

Covariate Menstrual phase Late-follicular Ovulation phase Luteal phase

Self-reported experiences

Daily Food Cravings Did not experience Reference Reference Reference Reference

Very low 0.14 [–0.11, 0.39] –0.10 [–0.26, 0.07] 0.07 [–0.12, 0.26] –0.003 [–0.16, 0.15]

Low 0.12 [–0.11, 0.36] –0.05 [–0.20, 0.10] 0.21 [0.03, 0.39]* 0.14 [0.003, 0.28]*

Moderate 0.09 [–0.13, 0.32] 0.04 [–0.11, 0.20] 0.19 [0.01, 0.36]* 0.25 [0.11, 0.39]***

High 0.11 [–0.12, 0.34] -0.03 [–0.19, 0.14] 0.25 [0.06, 0.45]* 0.17 [0.01, 0.32]*

Very high 0.34 [0.07, 0.61]* –0.15 [–0.40, 0.09] 0.18 [–0.11, 0.47] 0.11 [-0.10, 0.31]

Daily Fatigue Did not experience Reference Reference Reference Reference

Very low 0.25 [–0.01, 0.50] –0.06 [–0.26, 0.13] –0.13 [–0.37, 0.12] –0.30 [–0.50, -0.10]**

Low 0.34 [0.10, 0.57]** 0.10 [–0.08, 0.28] –0.08 [–0.30, 0.14] –0.11 [–0.28, 0.07]

Moderate 0.30 [0.08, 0.52]** –0.02 [–0.19, 0.15] –0.08 [–0.29, 0.13] –0.04 [–0.21, 0.13]

High 0.26 [0.02, 0.49]* –0.03 [–0.21, 0.15] –0.08 [–0.30, 0.13] 0.03 [–0.15, 0.21]

Very high 0.31 [0.05, 0.58]* 0.14 [–0.07, 0.36] –0.02 [–0.26, 0.23] –0.06 [–0.28, 0.16]

The results of the univariate linear mixed-effects models stratified by menstrual cycle phase for confounders that resulted in statistically significant (*p < 0.05,
**p < 0.01, ***p < 0.001) interactions.
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the luteal phase may lead to hyperglycemia in diabetic individuals
and should be considered when planning insulin therapy26.
In addition, the biphasic pattern we found in daily median

glucose levels across the menstrual cycle reveals an opportunity to
examine it as a parameter for menstrual phase estimation. Other
physiological parameters that have been suggested for menstrual
phase prediction include pulse rate27, basal body temperature28,
and cervical mucus29. As noted by Shilaih et al. 27, continuous
physiological parameters might especially benefit individuals who
experience varied menstrual cycle durations because conventional
alternatives (e.g., self-reporting) may not adequately capture their
menstrual experiences. Thus, we posit that blood glucose may also
be a salient parameter to include in multimodal methods for
monitoring menstrual health, such as for fertility awareness27 or
menstrual cycle length prediction30.
Currently, identifying different physiological trends in menstrual

contexts is challenging because collating and interpreting signals
across devices is rarely supported31. To mediate this issue,
researchers should consider developing visualizations and appli-
cations that integrate data into a single location. This goal may be
difficult to achieve without sufficient interoperability being
provided by device manufacturers. Even if interoperability is
supported, people may not use all possible devices at the ideal
frequency. An alternative method for supporting trend identifica-
tion might be a singular device that collects a multitude of signals
relevant to menstrual health. Devices such as smartwatches
already cover a number of biomarkers (e.g., step count)32, but
blood glucose and hormone levels are often notable exceptions.
In the future, researchers might examine how glucose monitoring
and hormone tracking could be included in such a form factor
using innovative optical methods33,34.
There exist limitations in our study that future work should

examine. Our study was limited by the narrow distribution we had
in multiple demographic variables. Previous work has demon-
strated that BMI, weight, and height are significant parameters for
blood glucose variance across menstrual phases4; however, our
results likely showed insignificant associations with respect to
these variables due to their limited variation in our dataset.
Our explanatory variables could have also been made more

reliable and quantitative. We used the Mira device to capture
highly granular menstrual cycle data, and Mira claims to be at least
as accurate as lab alternatives (e.g., 99% accuracy at predicting
ovulation35–37); still, future research may consider validating our
findings using clinical tests for determining menstrual cycle phase.
In addition, we asked participants to self-report multiple facets of
their daily experience for the sake of maximizing convenience and
protocol adherence. Although there are more comprehensive
ways of self-reporting some of these experiences, we limited our
protocol to simpler reporting strategies to maintain high
adherence. For example, we could have asked participants to
maintain a journal to record the types and quantities of food that
they ate. However, prior literature has noted that food journaling
can be burdensome, difficult to sustain, and inaccurate, even with
apps that provide a database of common foods to facilitate this
practice38. Simply asking our participants to rate their appetite and
food cravings helped us maximize the longitudinality and
completeness of our other measures.
We also recognize that some of the self-reported experiences

we collected could be replaced with more objective alternatives.
For instance, sleep trackers like smartwatches and mattress
sensors could be used to estimate sleep duration and detect
arousals as a proxy for sleep quality. Examining health dimensions
through other collection means more closely may reveal interest-
ing associations worth further consideration.

METHODS
Subjects
Fifty volunteer Canadians were recruited via social media groups
and workspaces operated by women’s health advocacy organiza-
tions in the Greater Toronto Area. Recruitment was limited to non-
diabetic, menstruating participants between 18 and 30 years old
who did not intend on traveling outside of the Greater Toronto
Area for significant durations of the study. Individuals were
excluded if they were using hormonal therapy or hormonal
contraception three months prior to or during the study.
Participants were allowed to withdraw at any point of the study
of their own volition and were de-enrolled if they became
pregnant or failed to adhere to the study protocol.

Study design and data collection
This study protocol was approved by the Research Ethics Board at
the University of Toronto under Protocol #41568, and all
participants provided informed consent electronically through
e-signatures. Participants collected multimodal data at home over
the course of three months, with the total study period being
approximately seven months from the start date of the first
participant to the end date of the last participant. Demographic
data was collected at the start of the study with participants
reporting their age (yrs), height (cm), and weight (kg) in an
electronic survey.
All devices used in this study were commercially available and

FDA-approved. Each participant wore a Dexcom G6 CGM39 to
measure blood glucose and a Fitbit Sense smartwatch40 to
measure step count. Participants were instructed to wear the CGM
and smartwatch at all times during the study except during
maintenance and charging. They also used Mira Plus Starter Kit41

urine tests to measure the levels of hormones relevant to the
menstrual cycle, namely luteinizing hormone (LH) and estrone-3-
glucuronide (E3G). Each kit included a hormone analyzer device,
disposable urine test wands, and small cups to collect samples.
Participants were instructed to complete the tests each morning
after waking up, refraining from drinking liquids two hours prior to
testing. After collecting a urine sample, participants dipped a
wand into the cup for 15–20 s before inserting it into the analyzer
device, which takes about 16 min to produce a measurement.
Participants then recorded and sent these measurements to the
researchers through a daily electronic survey.
Participants also kept an electronic diary to record the

significance of multiple experiences relevant to their menstrual
cycle. Fatigue, sleep issues, food cravings, and bloating were self-
reported on the following scale: "Did not experience", "Very low",
"Low", "Moderate", "High", and "Very high". Appetite and exercise
levels were self-reported on the following scale: "Very low", "Low",
"Moderate", "High", and "Very high". We note that although the
Fitbit recorded participants’ step count, asking participants to self-
report their exercise level provided complementary information
about their physical activity. While step count was quantitative
and objective, self-reported exercise level covered all possible
forms of physical activity beyond what would be captured by a
step counter (e.g., swimming, weightlifting). Similar to the
hormonal urine tests, the electronic diaries were completed each
morning. Participants were only allowed to submit complete diary
entries in order to avoid additional data missingness.

Data processing
Mira estimates users’ "fertile window" and menstruation days
using a proprietary algorithm that identifies rises and falls in
hormone data. We use this information to label four phases of the
menstrual cycle: late-follicular (the last day of menstrual flow to
the first day of the fertile window), ovulation (the fertile window),
luteal (the last day of the fertile window to the first day of
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menstrual flow), and menstruation (days with menstrual flow).
Given known inter-person variability in cycle length42, we also
examined daily progression through the cycle as a percentage of
the cycle length; for example, the fourth day of a 28-day cycle
would be represented as 4/28= 14%.
One participant dropped out of the study due to health issues.

The remaining 49 participants collected data for an average of
79.3 ± 21.2 days for a total of 177 cycles and 640 cycle phases. To
enhance the reliability of menstrual phase representations, we
excluded any cycles with more than 4 consecutive days of missing
hormone data (N= 3; 1.7%); this threshold corresponds to the
shortest phase observed in our dataset. After excluding additional
cycles where participants were missing data from at least 50% of
the cycle days, 149 cycles and 554 phases remained. Each
participant in this dataset logged an average of 3.1 ± 1.0 cycles,
and these cycles lasted for an average of 28.0 ± 8.7 days.
Total step count and median glucose levels were calculated for

each day (12:00 AM–11:59 PM) in order to consolidate continuous
physiological data into daily values. To ensure that these summary
statistics were representative of daily physiology, we verified
whether participants wore the respective devices for at least 18 h
within a given day. This was a trivial process for the Dexcom CGM
data since the device reports glucose levels every 5 min. For the
Fitbit, we established Fitbit usage by examining the amount of
heart rate data that was recorded by the device since, unlike the
other sensors, the heart rate sensor always reported new values
every 5 s as long as the user was wearing the device. Within a
given cycle, the average proportion of days that included
sufficient Fitbit, Dexcom CGM, and diary data were 98.3 ± 0.6%,
86.8 ± 0.1%, and 90.3 ± 1.5%, respectively.

Statistics
We report descriptive statistics for participant demographics,
physiological signals, and self-reported experiences in aggregate
and separated according to menstrual cycle phase. To examine if
physiological signals and experiences varied across cycle phases,
we conducted χ2 and repeated measures ANOVA tests. We first
visualize daily median glucose, estrogen, and luteinizing hormone
levels with LOESS smoothing across the menstrual cycle. We then
ran a univariate model with a periodic restricted cubic spline to
examine how daily blood glucose levels varied according to
menstrual cycle phase progression. After that, we assessed the
influence of menstruation, physiological data, demographics, and
self-reported experiences on daily median glucose levels using
linear mixed-effects models. We generated univariate models of
all potential confounders, after which we generated a multivariate
model with all confounders that had a statistically significant
association with glucose levels in univariate models. To under-
stand which confounders were influenced by menstrual cycle
phase, we examined interactions between menstrual cycle phases
and each confounder. To achieve this, we generated separate
models for each significant confounder from the univariate model
analysis with an interaction term between the respective
confounder and menstrual cycle phase. Whenever significant
interaction terms were identified, we stratified those analyses by
splitting the dataset according to menstrual cycle phase and then
generating separate univariate models for each dataset split.
The outcome variable of the aforementioned models was

always daily median glucose level, while the other signals were
used as explanatory variables. Categorical variables were included
as factor variables using the 5 or 6 levels described above; the
lowest level ("did not experience" or "very low") of each question
was used as the reference category. Although selecting a single
reference category for menstrual cycle phase can be difficult due
to the cyclic nature of menstruation43, we chose to set the late-
follicular phase as the reference as it was the phase with the
lowest daily median glucose levels. All of the models used random

slopes and intercepts to account for blood glucose variance
between and within participants. We report the β-coefficients,
95% confidence intervals (CI), and significance of each relationship
examined in these models. Statistical significance was set at
p < 0.05. All analyses were conducted in R-3.5.1 using the lme444,
peRiodiCS45, tidyverse46, and sjPlot47 packages.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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