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A multicenter study on two-stage transfer learning model for
duct-dependent CHDs screening in fetal echocardiography
Jiajie Tang 1,2,8, Yongen Liang1,8, Yuxuan Jiang1,2, Jinrong Liu1, Rui Zhang1, Danping Huang1, Chengcheng Pang3, Chen Huang4,
Dongni Luo1, Xue Zhou1, Ruizhuo Li1,5, Kanghui Zhang2, Bingbing Xie2, Lianting Hu 3, Fanfan Zhu2, Huimin Xia 1✉,
Long Lu 1,2,6,7✉ and Hongying Wang 1✉

Duct-dependent congenital heart diseases (CHDs) are a serious form of CHD with a low detection rate, especially in
underdeveloped countries and areas. Although existing studies have developed models for fetal heart structure identification, there
is a lack of comprehensive evaluation of the long axis of the aorta. In this study, a total of 6698 images and 48 videos are collected
to develop and test a two-stage deep transfer learning model named DDCHD-DenseNet for screening critical duct-dependent
CHDs. The model achieves a sensitivity of 0.973, 0.843, 0.769, and 0.759, and a specificity of 0.985, 0.967, 0.956, and 0.759,
respectively, on the four multicenter test sets. It is expected to be employed as a potential automatic screening tool for hierarchical
care and computer-aided diagnosis. Our two-stage strategy effectively improves the robustness of the model and can be extended
to screen for other fetal heart development defects.
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INTRODUCTION
CHD is one of the most common birth defects, with an estimated
incidence of 3–12/1000 live births1–3. Duct-dependent CHDs are
serious CHDs that rely on the postnatal patency of the ductus
arteriosus to maintain adequate circulation. It is potentially life-
threatening because infants may deteriorate when the ductus
arteriosus closes after birth but present well during the fetal
period4,5. Neonates with duct-dependent CHDs may suffer from
severe cardiogenic shock, renal insufficiency, circulatory collapse,
metabolic acidosis, and even death in the postnatal period
soon2,6–8. This risk is greatest for defects with duct-dependent
systemic circulation, notably aortic arch obstruction (including
coarctation of the aorta (CoA) and interrupted aortic arch (IAA)),
and is also significant in transposition of the great arteries (TGA)4.
Therefore, it is promising to develop a low-cost and convenient
screening method for duct-dependent CHDs.
Fetal ultrasound screening in mid-gestation allows clinicians to

detect a large proportion of CHDs9–12, which is recommended for
all pregnancies worldwide. A comprehensive assessment of the
long axis of the aorta can supply critical diagnostic information
and distinguish anomalous from normal structures since they are
significantly malformed in the aortic view4,5,13. Fetuses identified
with suspected aortic malformation during prenatal screening and
subsequently referred to a tertiary care center for further
examination and evaluation of peri-operative outcomes, prognosis
can benefit from improved management1,14.
However, there was significant geographic variation in rates of

prenatal detection. A study conducted in the United States
indicates that the prenatal diagnosis rates of CHD on a state level
range from 11.8 to 53.4%15, let alone, in underdeveloped
countries and areas. As for critical duct-dependent CHDs including

TGA, IAA and CoA, only 25–40% of fetuses with dextro-
transposition of the great arteries (d-TGA) are accurately
diagnosed in utero2; CoA is the most commonly missed fetal
CHD diagnosis, with less than one-third of the cases being
detected at prenatal screening16–18; and the prenatal detection
rates of IAA are still only 50%19. Some researchers attribute the
prenatal detection rates of regions to inadequate physicians'
experience and insufficient quality of diagnostic images2,3,20. In
this regard, artificial intelligence (AI) has become an essential
technology to overcome these problems.
In recent years, AI has become a promising approach to

assisting physicians21, which makes task-related decisions using
expert knowledge gained from big data unlike doctors, who are
influenced by personal experience20. The convolution neural
network (CNN), one of the most promising methods in the field of
AI, is used in obstetrical ultrasound because of its excellent
performance in the analysis of medical images22. Quality control of
ultrasound images is an essential step in assessing echocardio-
graphy. This task was automatically accomplished by Dong et al.
utilizing the CNN approach in fetal ultrasound cardiac four-
chamber view (4CV)23. The successful segmentation and classifica-
tion of standard fetal cardiac views indicates that AI has a high
potential for detecting structural malformations of the fetal
heart23–28. Apart from image quality assessments and segmenta-
tion, recent studies have used CNN to identify fetal structures to
timely find fetal abnormalities so that necessary action can be
taken. Sundaresan et al. have proposed fully convolutional neural
networks (FCNs) for detecting the fetal heart and identifying its
views in the frames of antenatal ultrasound screening videos25.
Gong et al. leveraged a new model, DGACNN, to decrease the
influence of insufficient training datasets and training a robust
model to accurately recognize the fetal CHDs during ultrasound
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images29. Rima Arnaout et al. trained an ensemble of neural
networks for the identification of five recommended cardiac views
(4CV, three-vessel view (3VV), left-ventricular outflow tract (LVOT),
three-vessel trachea (3VT) and the abdomen (ABDO)) and the
classification of normal and abnormal anatomy30. A more
ambitious project using multi-CNN segments for the four standard
heart views (4CV, 3VV/3VT, LVOT/RVOT) recognizes 24 objects,
including four shapes of the fetal heart standard views, 17 objects
of the heart chambers in each view, and three cases of congenital
heart defects simultaneously28. Recent studies have developed
models for anomaly identification using 4CV, 3VV, LVOT, RVOT,
3VT, and ABDO, but there is a lack of comprehensive evaluation of
the long axis of the aorta, which is not conducive to rapid
screening of critical duct-dependent CHDs such as IAA, TGA, or
CoA; and the amount of data included was very limited, with only
a few cases30.
Our study focused on utilizing the aortic arch view to screen for

part of critical duct-dependent CHDs, including IAA, CoA and TGA.
To achieve this, we developed a two-stage deep transfer learning
method called DDCHD-DenseNet. We trained the algorithm on
image datasets of different quality to address the challenges
posed by non-standardization of ultrasound imaging. By lever-
aging transfer learning techniques, we improved the model’s
ability to handle datasets with varying quality, enhancing its
reliability and performance. Additionally, our study employed the
Grad-CAM technique to identify structural abnormalities predicted
by the model31. These predicted abnormalities showed a high
correlation with the clinical manifestations of different diseases,
contributing to the development of new artificial intelligence
systems for distinguishing between various types of congenital
heart diseases.
Our multicenter study utilizes a two-stage deep transfer

learning model for screening critical duct-dependent CHDs from
fetal echocardiography. The findings highlight the potential of this
approach to improve the early detection and diagnosis of critical
duct-dependent CHDs in fetuses, ultimately leading to better
outcomes for infants with these conditions.

RESULTS
Characteristics of the datasets
A total of 6698 images and 48 videos from the Guangzhou
Women and Children’s Medical Center (GZMC), Shenzhen Long-
gang Maternal and Child Health Hospital (SZLG), and Guangdong
Provincial People’s Hospital (GDPH) were used to develop and
evaluate the deep learning system. In the training set, after image
preprocessing and filtering by exclusion criteria, images were
classified into criteria-specific datasets and general datasets.
General datasets include 1929 images of duct-dependent CHD
and 871 images without CHD. Criteria-specific datasets include

1823 images of duct-dependent CHD and 2089 images without
CHD. In the testing set, three retrospective test sets from GZMC,
SZLG and GDPH, and one prospective test set from GZMC were
used to validate the screening performance of the model. The
multicenter test set includes the above four test sets. Further
information on datasets obtained from GZMC, SZLG, and GDPH,
and ultrasound machines is summarized in Table 1.
In the process of model development, the Transfer Learning

Group was compared with the General Group. The pre-training
with general datasets and then transfer learning using criteria-
specific datasets is named Transfer Learning Group. The group
trained only with the criteria-specific dataset is the General
Group.

DDCHD-DenseNet outperforms other deep learning models in
retrospective test set
In the Transfer Learning Group, DenseNet-169 yielded the
following values in the retrospective test datasets: 0.996, 0.973,
0.985, and 0.977 corresponding to AUROC, sensitivity, specificity,
and F1, respectively. The ROC curves of these algorithms in the
retrospective test datasets are shown in Fig. 1a, with the AUROC,
sensitivity, specificity, and F1 presented in Table 2, indicating that
the optimal algorithm is the DenseNet-169. We named this
transfer learning framework as DDCHD-DenseNet.
The distribution of predicted scores related to the duct-

dependent CHD determined by the DDCHD-DenseNet in retro-
spective test sets is shown in Fig. 2a. With a threshold >0.41, the
percentage of correctly predicted images in duct-dependent CHD
was 98.9% (87/88) in TGA, 92.9% (39/42) in CoA, and 100% (20/20)
in IAA. In addition, with a threshold of 0.41, the percentage of
correctly predicted images in the normal fetal heart was 98.5%
(197/200).

Performance of the DDCHD-DenseNet in multicenter test sets
In multicenter test sets, two external test sets (SZLG and GDPH)
and one internal test sets were used to evaluate the performance
of DDCHD-DenseNet. The ROC curves of DDCHD-DenseNet in the
three datasets are displayed in Fig. 1c, and the AUROC, sensitivity,
specificity, and F1 are presented in Table 3, while the accuracy for
screening duct-dependent CHD is displayed in Table 4.
In the internal prospective datasets, DDCHD-DenseNet achieved

an AUC of 0.935, a sensitivity of 0.843, and a specificity of 0.967 in
duct-dependent CHD screening. The percentage of correctly
predicted images in duct-dependent CHD was 91.4% (32/35) in
TGA, 74.2% (23/31) in CoA, and 100% (4/4) in IAA. In addition, the
percentage of correctly predicted images in the normal fetal heart
was 96.7% (88/91).
In the SZLG and GDPH datasets, DDCHD-DenseNet achieved

AUCs of 0.885 and 0.826, sensitivity of 0.769 and 0.759,

Table 1. Characteristics of the internal datasets and external datasets.

Item Internal datasets External datasets

Source Retrospective (GZMC) Prospective (GZMC) SZLG GDPH

Datasets General datasets Criteria-specific
datasets

Multicenter test sets

Use Pre-train Train Test Test Test Test

Normal (numbers) 1929 2089 200 91 46 54

Abnormal (numbers) TGA 871 878 88 35 11 16

CoA 509 42 31 13 27

IAA 436 20 4 15 11

Ultrasound machine GE Voluson E6/E8/E10, Philips iE33 GE Voluson E8/E10,
Logqi E9-3, Aloka

GE Voluson E10, GE
ViVi9, SSD-A(10)
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and specificity of 0.956 and 0.759 in duct-dependent CHD
screening, respectively. In SZLG datasets, the screening
accuracies of TGA, CoA, and IAA were 63.6% (7/11), 100%
(13/13), and 66.7% (10/15), respectively. And in GDPH
datasets, the screening accuracies in duct-dependent CHD
were 68.8% (11/16) in TGA, 74.1% (20/27) in CoA, and 90.9%
(10/11) in IAA.

Transfer learning (PT-CHD weights) improves model
performance on multicenter test sets
In retrospective test datasets, Transfer Learning Group has a slight
improvement over the model performance of General Group. In
DenseNet-169, the number of missed diagnoses in positive cases
decreased from 7 to 4, and the number of misdiagnoses in
negative cases decreased from 4 to 3. It is worth mentioning that

Fig. 1 The performance of different deep learning algorithms in discerning duct-dependent CHD in four test datasets. a The performance
of the Transfer learning group in screening duct-dependent CHD in retrospective datasets. b The performance of General Group in screening
duct-dependent CHD in retrospective datasets. c The performance of DDCHD-DenseNet (Transfer Learning Group) in screening duct-
dependent CHD in internal prospective datasets and two external datasets. d The performance of DenseNet-169 (General Group) in screening
duct-dependent CHD in internal prospective datasets and two external datasets. Transfer Learning Group: developed the screening model
using our two-stage transfer learning strategy. General Group: developed the screening model using the criteria-specific datasets. Th1, Th2,
Th3, and Th4 correspond to the best threshold points of the DenseNet-121, DenseNet-169, ResNet-101, and VGG-16 models, respectively.
SZLG Shenzhen Longgang Maternal and Child Health Hospital, GDPH Guangdong Provincial People’s Hospital. The distribution of predict
scores related to the duct-dependent CHD determined by the Transfer Learning Group and the General Group in retrospective datasets.
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t-

he ROC of VGG-16 improved from 0.879 to 0.951 after transfer
learning, which indicates that the deep network can learn more
useful features when driven by data. The detailed information,
including ROC, AUROC, accuracy, sensitivity, specificity, prediction
scores, and F1 value of screening duct-dependent CHD are shown
in Figs. 1 and 2 and Table 2.
The details on the performance of the General Group

(DenseNet-169) and Transfer Learning Group (DDCHD-DenseNet)
in the multicenter test sets are shown in Table 3 and Fig. 1c, d.
Compared to the DDCHD-DenseNet, the AUC from General Group
(DenseNet-169) is as low as 0.848 in the prospective test datasets,
0.884 in the SZLG datasets, and 0.666 in the GDPH datasets,
respectively. It represents a significant reduction in the perfor-
mance of screening for duct-dependent CHD in the General Group
which indicates that the PT-CHD (weight) improves model
performance on multicenter test sets.
We also conducted a reverse experiment, first training criteria-

specific datasets, and then training general datasets to reveal that
such transfer learning methods can cause negative transfer. The
experimental results are shown in Supplementary Fig. 2 and
Supplementary Table 1.

DDCHD-DenseNet detects abnormal in aortic arch view
illustrated by heatmap
To investigate the interpretability of the DDCHD-DenseNet in
screening duct-dependent CHD, heatmaps were created to
visualize the regions that contributed most to the model’s
decisions (Fig. 3). The importance score is scaled between −10
and 10, where a higher number indicates that the area is of higher
importance for classifying the image as consistent with genetic
diseases. During the image classification, we found that DDCHD-
DenseNet detects abnormalities in the aortic arch view. In CoA, a
narrowing occurs at the aortic isthmus (distal to the left subclavian
artery) in Fig. 3b. In Fig. 3d, there is not only narrowing in the
whole transverse aortic arch but also a represented malformed
shape. The red region of the heatmap covers the whole transverse
aortic arch in both of the above two pictures. In TGA, the aorta and
duct artery do not cross but rather are seen coursing parallel to
each other in the aorta sagittal view, and they are co-connected to
the descending aorta. The red region of the heat map focuses on
the parallel arteries and shape “Y” confluence, which consists of
the aortic isthmus, ductus arteriosus, and the descending aorta. In
IAA, there is a lack of continuity between the ascending aorta and
the descending thoracic aorta, and the red region of the heat map

Table 2. Performance of Transfer Learning Group and General Group in the retrospective datasets.

AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) F1

Transfer Learning Group

DenseNet-169 0.996 (0.995–0.997) 0.973 (0.929–0.991) 0.985 (0.953–0.996) 0.977

DenseNet-121 0.994 (0.992–0.995) 0.947 (0.894–0.975) 0.995 (0.968–0.999) 0.969

ResNet-101 0.972 (0.971–0.976) 0.913 (0.853–0.951) 0.970 (0.933–0.988) 0.935

VGG-16 0.951 (0.947–0.953) 0.873 (0.807–0.920) 0.890 (0.836–0.928) 0.865

General Group

DenseNet-169 0.985 (0.984–0.988) 0.953 (0.903–0.979) 0.980 (0.946–0.994) 0.963

DenseNet-121 0.992 (0.991–0.993) 0.947 (0.894–0.975) 0.990 (0.961–0.998) 0.966

ResNet-101 0.976 (0.973–0.979) 0.913 (0.853–0.951) 0.945 (0.901–0.971) 0.919

VGG-16 0.879 (0.872–0.885) 0.673 (0.591–0.746) 0.950 (0.907–0.974) 0.774

Data are metric value or metric value (95% CI).

Fig. 2 The distribution of predict scores related to the duct-dependent CHD determined by the Transfer Learning Group and the General
Group in retrospective datasets. a Transfer Learning Group, b General Group. DDCHD-DenseNet uses the DensenNet-169 model architecture,
and its performance is shown in (a) DenseNet-169. Risk scores (range 0–1) and confusion matrix predicted by the deep learning model for
discerning fetal genetic diseases. Scores closer to 1 denote a higher probability of genetic diseases. The upper and lower bounds of the box
refer to the 25th and 75th percentiles, and the line intersection in the box refers to the median. Whiskers refer to the full range of risk scores.
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overlapped the location of the interruption. From the output, we
can see that the model perfectly focuses on the key areas of the
image.

DDCHD-DenseNet’s performance approaches that of senior
sonographers
We compared DDCHD-DenseNet’s performance in distinguishing a
normal from an abnormal aortic arch view with that of
sonographers of different seniorities in prospective datasets
(Table 5 and Fig. 4). The accuracies of the junior-most and junior
sonographers were lower compared with those of the DDCHD-
DenseNet model in screening the images for duct-dependent
CHD, i.e., the sensitivity of 0.744 by the junior-most, 0.800 by the
junior, and 0.843 by DDCHD-DenseNet. The senior sonographers
had more than 10 years of experience and achieved the best
sensitivity of 0.871 and specificity of 0.859. Therefore, DDCHD-
DenseNet demonstrated superior performance approaching that
of senior sonographers in distinguishing normal from duct-
dependent CHD via the screening aortic arch view.
Among the duct-dependent CHDs judged as negative cases,

CoA has the highest rate of missed diagnosis. The missed
diagnosis rates for CoA were 22.6% (7/31) for the senior
sonographers, 25.8% (8/31) for DDCHD-DenseNet, 38.7% (12/31)
for the junior sonographers, and 48.4% (15/31) for the junior-most
sonographers.

DISCUSSION
We developed a deep learning framework named DDCHD-
DenseNet to detect malformation of the aorta on fetal ultrasound
images that show a performance approaching that of the senior
sonographers. In internal prospective test sets (GZMC) and the
two external test datasets (SZLG and GDPH) consisting of fetal
ultrasound images, the AUC for screening duct-dependent CHD is
0.935 in the prospective test sets, 0.885 in the SZLG test sets, and
0.826 in the GDPH test sets, respectively. In addition, the
heatmaps from our system highlight the malformation regions
of the heart on fetal ultrasound images.

Our study use deep learning techniques to screen for duct-
dependent CHD in fetal echocardiography. In clinical practice, the
aortic arch view is an important view in fetal heart examination,
and this view contains important diagnostic information for these
types of duct-dependent diseases. We developed DDCHD-
DenseNet using aortic arch views, capable of distinguishing a
normal aortic arch from the three major types of duct-dependent
CHD, including TGA, CoA, and IAA. The model learns the
morphological features of a normal aorta arch, and indicates its
potential to screen for other diseases in these views. The deep
learning-based approach enables us to screen for these types of
congenital heart diseases dependent on arterial catheters faster
and more accurately, reducing the rate of missed diagnoses. The
DDCHD-DenseNet we developed is expected to be a low-cost,
non-invasive, robust, and deployable prenatal screening strategy
for duct-dependent CHDs, and can be extended to screen for
other fetal heart development defects.
In the deep learning task based on ultrasound images, only data

that the physician considers qualified is generally incorporated,
but other data do not mean that they cannot provide valid clinical
information. They can still provide some knowledge of the disease.
Medical image data has the characteristics of small samples, and
there is a shortage of high-quality image data, which can
effectively utilize medical resources through transfer learning.
Transfer learning can effectively utilize medical resources by
leveraging existing knowledge to learn new knowledge. The core
goal of transfer learning is to find the similarity between existing
knowledge and the new knowledge. Images with low standardi-
zation and lower quality can provide preliminary disease knowl-
edge in advance. These knowledge points are certainly helpful in
disease screening and can enhance the model’s generalization,
making them consistent with the concept of transfer learning. In
this study, we first use lower-quality images (general datasets) for
training to obtain the weight parameters, and then apply transfer
learning techniques to train on the criteria-specific datasets.
Comparative experiments on external test sets show that this
method improves the robustness of the model.
The performance of DDCHD-DenseNet experienced only a slight

decline when screening for duct-dependent CHD in prospective

Table 3. Performance of DDCHD-DenseNet and DenseNet-169 (General Group) in the multicenter test sets.

AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) F1

DDCHD-DenseNet

Internal prospective test sets 0.935 (0.934–0.942) 0.843 (0.732–0.915) 0.967 (0.900–0.991) 0.894

SZLG 0.885 (0.878–0.889) 0.769 (0.603–0.883) 0.956 (0.840–0.992) 0.845

GDPH 0.826 (0.820–0.832) 0.759 (0.621–0.861) 0.759 (0.621–0.861) 0.759

DenseNet-169 (General Group)

Internal prospective test sets 0.848 (0.843–0.853) 0.757 (0.637–0.848) 0.769 (0.667–0.848) 0.736

SZLG 0.884 (0.883–0.894) 0.744 (0.576–0.864) 0.957 (0.840–0.992) 0.829

GDPH 0.666 (0.656–0.673) 0.389 (0.262–0.531) 0.981 (0.888–0.999) 0.553

Data are metric value or metric value (95% CI).

Table 4. Performance of DDCHD-DenseNet in screening TGA, CoA and IAA.

Accuracy Retrospective datasets Prospective datasets SZLG datasets GDPH datasets

Normal 98.5% (197/200) 96.7% (88/91) 95.7% (44/46) 75.9% (41/54)

TGA 98.9% (87/88) 91.4% (32/35) 63.6% (7/11) 68.8% (11/16)

CoA 92.9% (39/42) 74.2% (23/31) 100% (13/13) 74.1% (20/27)

IAA 100.0% (20/20) 100.0% (4/4) 66.7% (10/15) 90.9% (10/11)
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datasets from GZMC. The reason is that the majority of images in
our center (GZMC) are obtained from fetal echocardiography,
which has a relatively consistent cardiac magnification ratio. Some
cases in SZLG are derived from obstetric screening, and the image
magnification ratio of GDPH is insufficient, resulting in lower
image quality. In a wide range of clinical applications, our DDCHD-
DenseNet framework significantly improved the model’s robust-
ness, especially by increasing the AUC values from 0.666 to 0.826
in GDPH and from 0.848 to 0.935 in prospective datasets from
GZMC (internal prospective test sets).
Our two-stage transfer learning framework innovatively dis-

covered that weight parameters obtained from general datasets
for transfer learning can result in improved model performance in
the case of limited medical data. The uneven quality and
standardization of the data became our main challenge during
the development of our model and guided the direction of our
technical improvement. Previously, with the increasing availability
of digitally archived medical imaging datasets, many efforts have
been catalyzed to develop deep learning models to support
patient care32. However, lower image quality, particularly promi-
nent in prenatal diagnosis using ultrasound images, remains a
significant challenge for clinical applications33. Initially, we utilized
transfer learning to initialize the model weights, enabling the
deep learning model to learn a generalized representation of
duct-dependent CHD and handle non-standard images to some
extent. Next, the model learns specific anatomical structures from
datasets specific to the criteria through a second phase of training.
Without the implementation of this two-stage transfer learning
framework, the deep learning model cannot achieve the level of
accuracy achieved in screening duct-dependent CHD (Fig. 1).
We generated the heat map using Grad-CAM to observe where

the DDCHD-DenseNet focused when screening for duct-
dependent CHD. When the DDCHD-DenseNet correctly screened
for duct-dependent CHD, it appeared to focus on malformations
of the aorta. For example, it identified the parallel configuration of
the aorta and ductus arteriosus, forming a shape resembling the
letter "Y" in cases of TGA; the narrowing of the aortic isthmus in
CoA; and the lack of continuity between the ascending aorta and
the descending thoracic aorta in IAA. However, when the DDCHD-
DenseNet misclassified images, it sometimes seemed to focus on
areas outside the aorta or detect artifacts in the ultrasound
images. This illustrates why image quality can impact the
classification performance of the deep learning model.
In an experiment comparing the sonographer and the DDCHD-

DenseNet, the senior sonographer demonstrated a sensitivity of
0.871 and specificity of 0.859, whereas the DDCHD-DenseNet
achieved a sensitivity of 0.843 and specificity of 0.967. These
results indicated that the performance of DDCHD-DenseNet in
screening for normal fetal heart and duct-dependent CHD in the
aorta view is comparable to that of the senior sonographer, with a
lower false-positive rate, thus avoiding unnecessary examinations
and treatment. As an assistant screening tool, the DDCHD-
DenseNet model outperforms junior sonographers but

Fig. 3 Example of images of duct-dependent CHDs and normal
fetal hearts and corresponding heatmaps from DDCHD-DenseNet.
The heatmap illustrates the importance of local areas within the
image for being classified as duct-dependent CHDs, and the
importance values are shown in the bar chart. The color red
indicates higher importance, while the color blue indicates lower
importance. The yellow words point to the anatomical structures
and malformation locations. The red box represents the main
deformity location. a The normal fetal heart. b Narrowing aortic
isthmus in CoA. c The aorta and ductus arteriosus are parallel in the
long axis view of the aortic arch in TGA. d Malformed shape and
narrowing transverse aortic arch in another fetus of CoA.
e Interruption between ascending aorta and descending aorta
in IAA.

Table 5. The screening performance of the DDCHD-DenseNet and sonographers with different seniorities.

Sensitivity (95% CI) Specificity (95% CI) Accuracy F1

Normal TGA CoA IAA

DDCHD-DenseNet 0.843 (0.732–0.915) 0.967 (0.900–0.991) 96.7% (88/91) 91.4% (32/35) 74.2% (23/31) 100.0% (4/4) 0.912

Junior-most 0.744 (0.576–0.864) 0.957 (0.840–0.992) 91.2% (83/91) 94.3% (33/35) 51.6% (16/31) 100.0% (4/4) 0.869

Junior 0.800 (0.684–0.883) 0.901 (0.816-0.951) 90.1% (82/91) 94.3% (33/35) 61.3% (19/31) 100.0% (4/4) 0.877

Senior 0.871 (0.765–0.936) 0.859 (0.767–0.920) 86.8% (79/91) 94.3% (33/35) 77.4% (24/31) 100.0% (4/4) 0.878

Data are metric value or metric value (95% CI).
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approaches the performance of senior sonographers in distin-
guishing between normal cases and duct-dependent CHDs
through the aortic arch view, compensating for some missed
and misdiagnosed cases resulting from experience dependency
and image quality. It is worth mentioning that both sonographers
and DDCHD-DenseNet exhibited a high rate of missed diagnosis in
screening for CoA. Due to the subtle nature of partial lesions in the
aortic isthmus, sonographers lacking extensive work experience
and profound clinical knowledge may overlook these minor
malformations and classify the abnormal aortic arch as normal.
However, DDCHD-DenseNet demonstrates higher accuracy than
junior and junior-most sonographers in detecting normal cases
and CoA, and its performance approaches that of senior
sonographers. This effectively improves the detection rate of
CoA across various medical conditions.

Study limitation and future perspective
As a study to employ deep learning for screening duct-dependent
CHD in fetal ultrasound images, there is certainly ample room for
improvement. Firstly, we utilized a simple automated cropping
process to obtain the region of interest (ROI). While this approach
alleviates the burden of manual segmentation, it can result in
lower ROI quality in some images, thereby affecting the screening
performance of the model. Further research should be conducted
to explore more efficient and accurate methods of automatic
segmentation for screening fetuses with duct-dependent CHD.
Secondly, our study focused solely on screening for duct-
dependent CHD and did not involve disease diagnosis. In future
studies, we aim to incorporate more cardiac views to facilitate
disease diagnosis research. Thirdly, although we utilized multi-
center data for testing, we did not utilize multicenter data during
model development, this will be addressed in our future
endeavors.

CONCLUSION
In this study, we developed a deep learning model named
DDCHD-DenseNet for screening duct-dependent CHDs across
various medical conditions. Its performance on multicenter test

sets is closely approaches that of a senior physician, making it a
promising automatic screening tool for hierarchical care and
computer-aided diagnosis.

METHODS
Data acquisition
This study is a multicenter research that included four datasets
from three medical institutions. A total of 6698 images and 48
videos were collected from 6941 pregnancies at GZMC, SZLG and
GDPH. Cases that lacked the aortic arch view were excluded.
Detailed information on the datasets from each institution is
presented in Table 1 and Fig. 5. Ultrasound examinations were
performed using machines such as GE Voluson E6/E8/E10, GE
ViVi9, Philips iE33, SSD-A(10), Logqi E9-3 and Aloka. The
proportion of abnormal and normal group in different machines
can be found in Supplementary Table 2.
Normal fetal hearts are defined as those that test negative for

cardiac congenital malformations1. Duct-dependent CHDs in the
aortic arch can manifest as any of the following lesions2,3,9,17: (1) In
TGA, the aorta and ductus arteriosus do not cross but rather are
seen coursing parallel to each other in the aorta sagittal view, and
they are co-connected to the descending aorta; (2) CoA is defined
as a localized narrowing of the aortic lumen; and (3) IAA is defined
as a lack of continuity between the ascending and descending
aorta. All prenatal ultrasonic diagnoses were confirmed through
postnatal follow-up examinations, operations, or consensus
comments provided by three senior sonographers with over 10
years of experience in prenatal care. The inclusion criteria were as
follows: (1) Properly magnified images without noticeable
acoustical shadow; (2) The heart being centered in the image,
with clear cardiac features and no apparent obstruction or
absence. Pregnancies that did not meet either of these image
patterns were included in the general datasets, while qualified
images were included in the criteria-specific datasets. Each image
underwent two tiers of review by experienced sonographers for
quality control. The operating procedure for sonographers can be
found in Supplementary Note 1.

Fig. 4 The ROC curves of the DDCHD-DenseNet and confusion matrix for screening for duct-dependent CHDs in prospective datasets and
two external datasets with three levels of sonographer performance (junior-most, junior, and senior) to compare. In the confusion matrix,
the horizontal coordinate is the predicted label, and the vertical coordinate is the true label. The distribution of predict scores related to the
duct-dependent CHD determined by the Transfer Learning Group and the General Group in retrospective datasets.
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This study was approved by the GZMC institutional review
board. Informed consents from external datasets (SZLG, GDPH)
were exempted because of the retrospective nature of the
study.

Data preprocessing
First, we converted the images from DICOM format to JPG format
and extracted the images from the video data (one image every
10 frames in the training set, one image every 50 frames in the
test set). Second, we removed redundant backgrounds and
borders, such as patient information, instrument settings, scales,
and other background information, using an automated clipping
procedure to obtain square graphical data. Third, we converted all
images to grayscale. Next, we resized the images to a size of
256 × 256 pixels and normalized the pixel values to a range of 0 to
1. Fourth, we applied data augmentation techniques to increase

the diversity of the datasets and alleviate the overfitting problem
during the deep learning process. New samples were generated
through simple transformations of the original images. We
augmented the training dataset with distortion, zooming in,
tilting, zooming out, and cropping. Further details can be found in
Supplementary Fig. 1.
All preprocessing steps make use of open-source Python

libraries: OpenCV, Scikit-Image, Augmentor and NumPy.

The development process of DDCHD-DenseNet
Four classic deep learning algorithms, namely DenseNet-121,
DenseNet-169, ResNet-101, and VGG-16, were employed in this
study to develop DDCHD-DenseNet for screening duct-dependent
CHD. The network architectures are described as follows, and the
development process is illustrated in Fig. 6:

Fig. 5 Flow chart for the development and evaluation of the deep learning system. SZLG Shenzhen Longgang Maternal and Child Health
Hospital, GDPH Guangdong Provincial People’s Hospital, GZMC Guangzhou Women and Children’s Medical Center. The retrospective and
prospective datasets were collected from GZMC, and external datasets were collected from SZLG and GDPH. Retrospective datasets from
GZMC are used to develop models, and four datasets from three medical institutions were used for internal testing, prospective testing, and
external testing.

Fig. 6 The development and evaluation process of the DDCHD-DenseNet. In step 1, the model weights PT-CHD are obtained by pre-training
using general datasets. In step 2, transfer weights PT-CHD to learn the knowledge of congenital heart disease from criteria-specific datasets to
develop DDCHD-DenseNet. In testing, four datasets from three medical institutions were used to evaluate the performance of the DDCHD-
DenseNet in clinical applications.
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(1) VGG: VGG is one of the most popular CNN models. By
increasing the network’s depth, the model’s accuracy can be
enhanced. It has been extensively utilized for extracting and
analyzing features from medical images34.

(2) DenseNet: by connecting preceding and subsequent layers,
DenseNet can alleviate the problem of gradient disappear-
ance, improve the efficiency of feature propagation and
utilization, and reduce the number of parameters in the
network. DenseNet has been employed for identifying
keratitis and eyelid malignancies35.

(3) ResNet: the residual neural network (ResNet) was proposed
by He et al.36. The main advantage of ResNet is that it
effectively addresses the issue of training deep neural
networks. Recent studies have utilized ResNet to classify
chest images of COVID-19 patients37.

At the start of the experiment, we conducted quality control on
the ultrasound images based on the inclusion and exclusion
criteria. We trained four screening models named the General
Group using the criteria-specific datasets. To obtain the Transfer
Learning Group, we initially trained four classical deep learning
models using general datasets to obtain the pre-training weights
(PT-CHD). Subsequently, we transferred the PT-CHD weights to the
new deep learning model, which utilized the criteria-specific
datasets for transfer learning. In the results, we compared the
screening performances of General Group and Transfer Learning
Group.
In all experiments, the Adam Optimizer was used to develop the

model. The initial learning rate was set to 1e−4, the weight decay
rate was 1e−7, the batch size was set to 64, the epoch was set to
100. During the training process, the validation parameter is set to
0.2, i.e., 20% of the training data is used as the tuning dataset, and
the optimal model was saved through multiple training iterations.

Statistical analysis
Six quantitative variables were utilized in the statistical analysis to
evaluate the screening performance: accuracy, sensitivity, speci-
ficity, and F1 score. We also compared the screening performance
of different models using the ROC curve and the AUC.
Furthermore, ROC analysis was conducted using the outputs of
the models on the retrospective datasets to determine the
appropriate operating thresholds. Additionally, we employed the
distribution of risk scores derived from deep learning in test sets
for duct-dependent CHDs.

Visualization of malformations in fetal heart
By incorporating a visualization layer to the deep learning model,
Grad-CAM was employed to illustrate the system’s decision-
making process. This technique generates a localization map that
highlights important visual regions. The intensity of red indicates
the relevance of the prediction. With the help of Grad-CAM, a heat
map was generated to elucidate the reasoning behind DDCHD-
DenseNet’s differentiation between normal fetal hearts and duct-
dependent CHD.

Competition of human and AI
Six sonographers with different levels of experience (two junior-
most, two junior, and two senior) independently reviewed the
same set of image datasets to distinguish between normal and
abnormal aortic arch views in a separate test. The senior
sonographers had more than 10 years of experience in conducting
fetal anatomy scans and had performed more than 10,000 fetal
ultrasound examinations. The junior sonographers had 5–10 years
of experience and had conducted more than 5000 fetal scans. The
junior-most sonographers, with 1–2 years of experience in fetal
scans, had performed over 1000 fetal scans. It is important to note

that in China, both the screening and diagnosis of fetal congenital
heart disease are performed by ultrasonographers.
The prospective datasets used in this study were independent

and unrelated to the training datasets. We selected these datasets
for the purpose of conducting comparison experiments. The
prospective dataset consisted of 91 negative cases and 70
positive cases, including 35 cases of TGA, 31 cases of CoA, and 4
cases of IAA. The datasets were divided into two groups and
reviewed by sonographers at the same level. The results from
each group were combined to obtain the final results for different
levels. Each sonographer made judgments of normal and
abnormal aortic arch views within a time limit of 3 min. To
mitigate fatigue, sonographers were allowed to take a break
every 30 min.

Ethics approval and consent to participate
This study was approved by the Institutional Review Board of the
Guangzhou Women and Children’s Medical Center (350b00, 2022).
In the prospective data (GZMC), patients signed informed consent.
But informed consents from external datasets (SZLG, GDPH) were
exempted because of the retrospective data.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and/or analyzed during the current study are available upon
reasonable request from the corresponding author. The data can be accessed only for
research purposes. Researchers interested in using our data must provide a summary
of the research they intend to conduct. The reviews will be completed within 2
weeks, and then a decision will be sent to the applicant. The data are not publicly
available due to hospital regulatory restrictions.
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