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Skin Tone Analysis for Representation in Educational
Materials (STAR-ED) using machine learning
Girmaw Abebe Tadesse1,9✉, Celia Cintas1,9, Kush R. Varshney2, Peter Staar3, Chinyere Agunwa2, Skyler Speakman1, Justin Jia4,
Elizabeth E. Bailey4, Ademide Adelekun5, Jules B. Lipoff6, Ginikanwa Onyekaba5, Jenna C. Lester7, Veronica Rotemberg 8,
James Zou 4,10 and Roxana Daneshjou 4,10

Images depicting dark skin tones are significantly underrepresented in the educational materials used to teach primary care
physicians and dermatologists to recognize skin diseases. This could contribute to disparities in skin disease diagnosis across
different racial groups. Previously, domain experts have manually assessed textbooks to estimate the diversity in skin images.
Manual assessment does not scale to many educational materials and introduces human errors. To automate this process, we
present the Skin Tone Analysis for Representation in EDucational materials (STAR-ED) framework, which assesses skin tone
representation in medical education materials using machine learning. Given a document (e.g., a textbook in .pdf), STAR-ED applies
content parsing to extract text, images, and table entities in a structured format. Next, it identifies images containing skin, segments
the skin-containing portions of those images, and estimates the skin tone using machine learning. STAR-ED was developed using
the Fitzpatrick17k dataset. We then externally tested STAR-ED on four commonly used medical textbooks. Results show strong
performance in detecting skin images (0.96 ± 0.02 AUROC and 0.90 ± 0.06 F1 score) and classifying skin tones (0.87 ± 0.01 AUROC
and 0.91 ± 0.00 F1 score). STAR-ED quantifies the imbalanced representation of skin tones in four medical textbooks: brown and
black skin tones (Fitzpatrick V-VI) images constitute only 10.5% of all skin images. We envision this technology as a tool for medical
educators, publishers, and practitioners to assess skin tone diversity in their educational materials.
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INTRODUCTION
Medical textbooks, lecture notes, and published articles used in
the curricula of leading medical schools lack adequate
representation of skin tones in the images used to demonstrate
the manifestations of skin disease1–3. For example, a recent
manual evaluation of commonly used medical textbooks found
significant underrepresentation of Fitzpatrick skin tones (FST) V
and VI, which represent brown and black skin tones1,2. The
COVID-19 pandemic has further highlighted this inequity:
manual annotation of published photos of COVID-19 cutaneous
manifestations revealed underrepresentation of images depict-
ing dark skin4.
Because skin disease appears differently across skin tones,

educational materials depicting diverse skin tones are required
for a well-trained healthcare workforce1–5. Louie and Wilkes
suggest that racial inequalities in healthcare (accessibility,
delivery and quality) are influenced by the lack of diverse
representation in curricular materials1. For example, skin cancer
diagnoses (e.g., melanoma, squamous cell carcinoma) are
significantly delayed in patients of color, leading to increased
morbidity and mortality6.
Previous analysis of dermatology-related academic materials

(journals and textbooks) has shown under-representation of FST
V and VI; however, images were annotated and analyzed
manually, i.e., a domain expert located each image in a
textbook/journal and labeled the skin tone. Unfortunately, this
manual approach is not tractable for a large corpus due to its
labor-intensive nature, operator visual fatigue, and intra-inter-

observer error of skin tone labeling1,2,4. Automatic skin tone
representation assessment using machine learning (ML) pro-
mises to significantly aid in identifying bias in medical
educational materials and has not been done previously on
educational materials.
Machine learning based approaches to skin tone analysis in

dermatology have previously been applied only to curated
datasets (e.g., ISIC 20187 and SD-1988), but not to real world
academic materials. One previous approach used individual
typology angle (ITA) computed from pixel intensity values9–11;
the ITA values were then mapped to FST12. However previously,
a machine learning model trained to classify FST directly from
skin images performed better at categorizing FST than ITA-
based estimation with conversion to FST13. ITA-based methods
depend on raw pixel values, making them more sensitive to
lighting conditions. These previous models identified that
curated skin image datasets used for developing machine
learning models in dermatology significantly underrepresented
dark skin tones.
In this work, we present the Skin Tone Analysis for

Representation in EDucational materials (STAR-ED) framework
to automatically assess bias in skin tone representation in
medical education materials using machine learning. STAR- ED
could be employed on off-the-shelf academic materials, such as
textbooks, journals and slides in different file formats (e.g., .pdf,
.pptx, .docx). Domain experts (e.g., medical school professors,
clinicians) can directly use the outputs to analyze their materials
and identify potential biases in representation. The overview of
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the STAR-ED pipeline is shown in Fig. 1, and it is designed to
take academic materials as input and provides a quantification
of FST I-IV versus FST V-VI images, automating a task that was
previously done manually2,14. The main components of the
pipeline are automatic ingestion of traditional academic
materials (textbooks in .pdf format), parsing of different entities
(figures), extraction of images, selection of skin images, masking
of non-skin pixels, and estimation of skin tones.

RESULTS
Overall pipeline
In this section, we describe the results from STAR-ED, an end-to-
end skin-tone representation analysis framework validated on
multiple educational data sources in dermatology. Below results
are provided for the components of the framework: skin image
selection, skin pixel segmentation and skin tone estimation. We
describe and validate each step.

Fig. 1 STAR-ED framework overview. A STAR-ED framework takes academic materials (e.g., in .pdf format) as input followed by extraction of
skin images in the given academic material. Specifically, image pixels that are identified as skin are then utilized to estimate the skin tone
category. B Corpus Conversion Service (CCS) (7) is an existing document ingestion tool employed to parse different document entities, such as
all images and tables in the data. We extracted all images using the JavaScript Object Notation (JSON) (8); output from the ingestion step
contains the coordinates and page number of identified images. C Since our focus is on images related to skin diseases, non-skin images (e.g.,
graphical illustrations and pathology images) are discarded using an XGBoost (9) classifier. D For each image depicting skin, we masked out
non-skin related pixel regions in the foreground and background (e.g., pixels of clothes, laboratory equipment). We employ color-based skin
pixel segmentation that extracts pixels that meet a predefined threshold. E Finally, the segmented skin regions are fed into a pre-trained deep
learning framework, i.e., ResNet17 fine-tuned as described in Materials and Methods, to estimate the skin tone category as either light (FST
I–IV) or dark (FST V–VI). Images adapted from Wikimedia commons.
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Skin image selection
To visualize the difference in skin images from non-skin ones, we
apply a principal component analysis on the features space that
includes Histogram of Oriented Gradient (HoG) and basic statistics
(mean and standard deviations) of image channels in CIE LAB

color space. The distributions of skin and non-skin images
(projected with the two main principal components) are shown
in Fig. 2A for both DermEducation and Medical Textbooks datasets
(described in Materials and Methods). The skin and non-skin
images show substantial overlap, as visualized in the PCA plot.
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This suggests that single image statistics cannot reliably
distinguish between skin and non-skin and motivated us to use
machine learning approaches for STAR-ED.
Two classifiers—support vector machine (SVM)15 and XGBoost

(XGB)16—were trained and tested for the skin image selection
task. For computing performance metrics, the images containing
skin were treated as the positive class and images not containing
any skin images were treated as the negative class.
Figure 2B shows the performance of SVM and XGB in the

DermEducation dataset using a five-fold stratified cross-validation
setting. With the DermEducation dataset, both classifiers achieve
competitive performance with XGB resulting in slightly better
performance with 0.96 ± 0.008 average F1 score and 0.95 ± 0.013
average area under receiver operating characteristic (AUROC).
Figure 2C shows the results when these trained models are
validated with the external Medical Textbooks dataset comprised
of images extracted by CCS from four medical textbooks.
Consistently encouraging performance (>0.9 AUROC) is achieved
between the classifiers across the four textbooks confirming the
robustness of the framework. Specifically, XGB classifier results in
an average AUROC of 0.96 ± 0.02 and F1 score of 0.90 ± 0.06 F1
across the textbooks. To summarize, skin image detection could
be done satisfactorily using traditional machine learning classifiers
(without sophisticated deep networks). XGB was used for the final
STAR-ED pipeline due to its slightly better performance, particu-
larly in its AUROC, which, unlike accuracy, is independent of single
prediction thresholds.

Skin pixel segmentation
Segmentation of skin pixels aimed to mask out non-skin pixels
(e.g., background, foreground) as shown in Fig. 3.
We used the SkinSegmentation dataset (described in the

Materials and Methods section) to compare the segmentation
results from the proposed method with manual segmentations by
a domain expert. Note that the expert segmentations exclude
both non-skin pixels and regions containing skin lesions, while the
automatic and intensity-based segmentation does not exclude
skin lesions at the current stage. Figure 3C shows two examples
where maximum and minimum agreement is achieved. Further
comparison metrics, such as the Jaccard index is given in Fig. 3A.
Overall, the comparison of the segmentation results provides an
average false positive rate of 0.24, false negative rate of 0.05, true
positive rate of 0.36, true negative rate of 0.34, Jaccard index of
0.51, and accuracy of 0.70. Note that skin-related pixels are treated
as the positive class and non-skin related pixels in a skin image
(e.g., cloth) are labeled as the negative class in the computation of
true positive and negative rates.

Skin tone estimation
Table 1 shows estimation results (mean and standard deviation) in
the Fitzpatrick17K dataset11, based on a stratified five-fold cross-
validation across multiple machine learning approaches. In the
table, we show results on methods when using the raw masked
pixels compared to using input engineered features based on
HOG+ ITA (see Methods section for more details). We categorized

the skin tones as FST I–IV and FST V-VI. FST V–VI is labeled as the
positive class, and FST I-IV is labeled as the negative class in the
computation of precision, accuracy, and F1 score metrics. We use
weighted metrics to account for class imbalance by computing
the average of binary metrics in which each class’s score is
weighted by its presence in the true data sample.
Additionally, we compute the recall metric for all methods. In

the pre-trained ResNet-18 (recall= 0.88) we used masked pixels as
input. For traditional ML models, we use the Feature Vectors
(HOG+ ITA), as they show similar performance as pixels while
reducing the runtime of the training and testing (See Table 1). We
can observe that from traditional methods (Random Forest= 0.61,
Extremely Randomized Trees= 0.61, Ada Boost= 0.64, and
Gradient Boosting= 0.65), the Balanced Random Forest (recall=
0.77) achieves the best recall for both skin tones, while the other
methods perform poorly for FST V-VI classification.
We found that the weighted ResNet-1817 deep learning

framework, pretrained with ImageNet18, which contains
11,689,512 parameters, and finetuned with Fitzpatrick17K11, has
the best performance and incorporated this method of skin tone
estimation for the STARE-ED framework.
After training and validation in the Fitzpatrick17k dataset, we

evaluated the skin tone estimation approach using multiple
external sources. See Fig. 4 for AUROC and F1 scores for each of
the four textbooks in the Medical Textbooks dataset using a pre-
trained ResNet-18 finetuned as described in Materials and
Methods. Figure 4 also shows the proportion of FST I–IV versus
FST V–VI images for each textbook as estimated by STAR-ED and
compared to the ground truth. We observe in each dermatology
textbook used for STAR-ED validation, there is an under-
representation of FST V–VI, in all cases lower or equal to 10.5%.
Previously, these textbook images were hand-labeled to assess for
bias in skin tone representation in a process that took over 100
person–hours compared to the STAR-ED framework, which
generates a bias assessment within minutes2.
We perform additional external testing with DermEducation, a

standalone image dataset used by dermatologists to study for
board exams (see Materials and Methods section). When a
weighted ResNet17 deep learning framework pretrained with
ImageNet18 and finetuned as described in Materials and Methods
is used, we obtain an AUROC of 0.87 and an F1 score of 0.91 for
skin tone estimation compared to other established methods,
such as balanced trees19 with AUROC of 0.82 and F1 score of 0.80.
Evaluation of ITA-based Fitzpatrick index mapping (see Supple-
mentary Table 1); results in the lowest skin tone estimation
performance with F1 score 0.36.
We find that STAR-ED demonstrates in an automatic manner a

clear bias in representation across dermatology educational
materials, and textbooks for skin tone FST V-VI (≤10.5%).

DISCUSSION
Disparities in dermatological diagnosis may be related to
inequities in dermatological education materials. Particularly there
are consistent reports by domain experts on the lack of FST V-VI
images in the materials used to train dermatologists and primary

Fig. 2 Results for skin image selection step of the STAR-ED framework. Once the images are extracted from the materials, the selection step
aims to identify skin images and discards non-skin images (e.g., pathology images). To this end, we extracted a set of features: Histogram of
Oriented Gradient (HoG) (23) and mean and standard deviations of image channels in CIELAB (24) color space. A This shows the Principal
Component Analysis (PCA) visualizations of skin (green) and non-skin (red) images in the two datasets (DermEducation and Medical
Textbooks) used for the validation of the selection step. Legend: Red dot – Non-skin; Green ddot - Skin. B This demonstrates encouraging
performance in identifying skin images in DermEducation using Support Vector Machines (SVM) (18) and Extreme Gradient Boosting
(XGBoost) (9) classifiers in a five-fold stratified cross-validation setting. Legend: Red bar – SVM; Green bar – XGB. C It shows the comparative
performance of these two classifiers when they are used in four dermatology textbooks as an external test. The overall results confirm the
benefit of machine learning approaches to identify skin images, and competitive performance is achieved between SVM and XGB classifiers
while the latter has a slight advantage and is used in STAR-ED.
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care physicians1,2. Thus far, efforts to understand representation
biases in these materials have been done manually, which is labor-
intensive and impractical for large-scale applications. The con-
tribution of this paper is the development and validation of an
end-to-end machine learning tool, STAR-ED, that automatically
ingests these materials and provides representation analysis can
facilitate detection and understanding of representation bias.
Such a tool could be impactful by providing first-hand awareness
of potential bias prior to publication or quickly post-publication.
STAR-ED is flexible to work on different formats of educational
materials, e.g., .pdf, scanned books as images, slides in .pptx and
word documents in .docx. Thus, STAR-ED could be used beyond
just textbooks, and could also assess research papers, image study
sets, and lecture slides.
To build STAR-ED, we tested various machine learning methods

in order to build an end-to-end workflow that performed skin
image selection, skin-pixel segmentation, and skin tone estima-
tion. A challenge of estimating skin tone distribution from
complex materials such as textbooks is parsing and identifying
skin images from other materials (e.g, text, tables). A number of
rule-based methodologies for ingesting documents have been
previously developed; however Staar et al developed a machine
learning based approach which allows greater flexibility across
document types20. However, unlike a curated dermatology

dataset, images extracted from textbooks or other educational
materials often contain non-skin images as well. To distinguish
between skin and non-skin images, we created a feature vector for
each image that included the histogram of oriented gradient
(HOG) descriptor and an intensity-based feature based on the CIE
LAB color space. Previously, HOG descriptors have been used for
distinguishing skin lesions21. Additionally, previous work on
separating skin and non-skin images have relied on clustering in
the color space; a comparison of normalized RGB, HSV, YCbCr, CIE
LAB, and CIE Luv color spaces for building probabilistic classifiers
to identify skin found the CIE LAB had the best performance22. We
combine these features and find that the XGB classifier had good
and scalable performance in separating skin from non-skin
images. Images of skin often have foreground and background
objects, requiring the identification of regions of the image that
display skin. For skin pixel segmentation, our current methodology
utilizes an intensity-based skin pixel segmentation technique.
Previous work on the International Skin Imaging Collaboration
(ISIC) data used mask R-CNN for skin lesion segmentation;
however, ISIC images are dermoscopic, which are more standar-
dized than the heterogeneous clinical images seen in textbooks23.
Moreover, our simplified approach allows a more lightweight
model for widespread application of this framework while still
allowing downstream skin tone prediction that is close to the

Fig. 3 Segmentation of skin. A Segmentation of skin pixels examples with their corresponding Jaccard scores. B Examples of segmentation
of skin pixels, where foreground and background non-skin and lesion pixels are masked. C Examples of segmentation comparisons. The first
example demonstrates higher agreement between two annotations whereas the second example reflects less agreement between these
annotations. Images adapted from Wikimedia commons.
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ground truth (Fig. 4). Finally, we tested multiple different
methodologies for skin tone assessment and found that a
pretrained Resnet model finetuned on the Fitzpatrick17k dataset
had the best performance for predicting FST I-IV and FST V-VI
images. We validated the entire pipeline across four textbooks
showing skin disease; these textbooks were selected due to their
previous identification as core dermatology textbooks in prior
work2.
We were able to use STAR-ED to recapitulate the findings in the

literature, which shows significant underrepresentation of FST V-VI
skin in dermatology educational materials. STAR-ED allows this
bias assessment to occur at scale and without the need for hours
spent labeling manually. We envision STAR-ED allowing medical
educators, publishers, and practitioners to quickly assess their
educational materials.
Future work aims to pilot STAR-ED among different publishers

and content creators around the world. We envision this
technology as a tool for dermatology educators, publishers and
practitioners to quickly assess their educational materials, which
could be scaled to other domains (e.g., history) to automatically
identify lack of diverse representation.
While encouraging performance is achieved in detecting skin

images and estimating the skin tone categories, the proposed
pipeline does not consider non-image content of a given
academic material, e.g., texts, authors list and tables, which could
be later integrated to provide multi-modal representation analysis.
A limitation of our skin pixel segmentation methodology is that

it does not fully exclude diseased or lesional skin, which may have
pigmentation patterns that do not represent the appearance of
the individual’s healthy skin. Future iterations of STAR-ED will aim
to add a step that segments diseased or lesional skin for added
granularity. For skin tone estimation, we separated images to two
groups: FST I-IV and FST V-VI in order to capture the lack of brown
and black skin tones in educational materials. This model was built
to manually recapitulate numerous prior studies in the space of
educational material bias, which have focused on FST V and VI2.
While this means we do not capture further granularity in skin
tones, it does assess the most historically excluded skin tones. Skin
tone assessment from images alone is also limited by differences
in color balancing across different cameras and differences in
lighting, both of which can affect the appearance of skin23.
However recent literature has shown that the most accurate
labeling occurs with adjacent skin tones, such FST V and VI24.
Moreover, we used trained non-experts for labeling ground truth
skin tone, but were able to validate against a subset of domain
expert-labeled images. Recent work has shown that trained non-
experts can perform similarly to expert labelers, especially in light

of the variability seen even among experts24. While we used the
Fitzpatrick skin tone scale for labeling skin tone, this scale has its
own biases and subjectivity; dermatologists have discussed the
merits of using alternative scales for skin tone estimation25. Future
iterations of this work could incorporate any alternative skin tone
estimation scale that is developed.

METHODS
Pipeline development
In this section, we describe the datasets used for training and
testing our framework and the machine learning algorithms used.
This study was IRB exempt due to the use of publicly
available data.

Datasets
The description of how each dataset is used during methods
development is described in Supplementary Fig. 3. DermEduca-
tion is a convenience image set of dermatology images used for
educational purposes. DermEducation contains containing 2708
total images, among which 461 are non-skin images, 2247 skin
images (1932 FST I-IV and 315 FST V-VI). DermEducation was used
to train the skin versus non-skin classifier. Additionally, it was used
to validate the proposed skin tone estimation by comparing it
with ITA-based tone estimation. Labeling of skin versus non-skin
and skin tone was done by a medical student and reviewed by a
dermatologist for accuracy.
The SegmentedSkin dataset is a convenience image set of open

source dermatology images selected by a dermatologist from
Wikimedia. A dermatologist created segmentation masks of
healthy skin for these 22 images. This dataset was used to
validate skin pixel segmentation.
Fitzpatrick17K11 is a publicly available dataset with 16,577

clinical images sourced from two online open-source dermatology
atlases with FST labels generated by dermatologists previously.
After preprocessing we used 13,844 images depicting FST I-IV and
2168 images depicting FST V-VI. Fitzpatrick17K was used to train
and validate our skin tone estimator.
For additional external testing and to demonstrate how our

framework can be used on real world educational materials, we
also used four medical textbooks personally owned by the
authors. As a group, we refer to this as the Medical Textbooks
dataset, which is comprised of: Rook’s textbook of dermatol-
ogy26, Bolognia 4e27, Fitzpatrick Color Atlas 8e28, and Fitzpatrick
Dermatology in General Med 9e29. After using the corpus
conversion service to extract images, we filtered out tiny images

Table 1. Skin tone estimation performance across multiple machine learning (ML) models and preprocessing techniques.

Raw Masked Pixels Feature Vectors (HOG+ ITA)

Model Accuracy F1 score Precision AUROC Accuracy F1 score Precision AUROC

Random Forest34 0.87 ± 0.00 0.83 ± 0.00 0.84 ± 0.00 0.77 ± 0.01 0.88 ± 0.00 0.85 ± 0.00 0.86 ± 0.00 0.84 ± 0.00

Balanced Random Forest 0.76 ± 0.00 0.79 ± 0.00 0.86 ± 0.00 0.80 ± 0.00 0.77 ± 0.01 0.80 ± 0.00 0.87 ± 0.00 0.85 ± 0.00

Extremely Randomized Trees35 0.87 ± 0.00 0.83 ± 0.00 0.85 ± 0.00 0.80 ± 0.01 0.88 ± 0.00 0.85 ± 0.00 0.86 ± 0.01 0.85 ± 0.01

Ada Boost36 0.85 ± 0.00 0.84 ± 0.00 0.82 ± 0.00 0.77 ± 0.00 0.87 ± 0.00 0.86 ± 0.00 0.85 ± 0.00 0.83 ± 0.01

Gradient Boosting 0.86 ± 0.00 0.86 ± 0.00 0.84 ± 0.00 0.77 ± 0.02 0.88 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.85 ± 0.01

Pretrained Resnet (STAR-ED) 0.90 ± 0.00 0.91 ± 0.00 0.91 ± 0.00 0.87 ± 0.01 NA NA NA NA

The metrics are based on cross-validation for five stratified folds over the Fitzpatrick17K dataset. Different validations include using Raw Masked Pixels without
handcrafting features to the ML models. In another validation, features were manually extracted and fed into the ML models. These features include
Histogram of Oriented Gradient (HOG), which is a commonly employed and simple image representation, and an Individual Topology Angle (ITA) that is used
to map skin images into Fitzpatrick skin tone categories. Expectedly, traditional models such as Ada boost and Random Forest performed better using
handcrafted features, whereas a pretrained ResNet finetuned with Fitzpatrick1711 exploited the raw masked pixels due to its capability to learn discriminant
features automatically and achieved the highest performance by outperforming all the baseline models.
Bold entries represent the best performing method.
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(<100 pixels in any dimension). See Table 2 for a summary of the
datasets used in this paper: Medical Textbooks (containing four
textbooks), DermEducation and publicly available Fitzpatrick17K.
Note that proportion of skin images to non-skin images vary
across the textbooks and the datasets. For example, Atlas28 has
822 skin images and only 57 are non-skin images; on the other
hand, Fitzpatrick General29 has only 1881 skin images compared
to 1096 non-skin images. For Medical Textbooks dataset, images
were manually labeled as skin versus non-skin by the authors .
Skin images were labeled as FST I-IV and FST V-VI by non-
dermatologists who were trained on previous examples. The
label distributions were compared to those previously reported
by domain experts on a subset of images and found to be similar,
see Fig. 5. The level of agreement between a subset of images
labeled both by domain experts and our trained labelers was
0.887 for Fitzpatrick, 0.860 for Atlas, and 0.855 for Bolognia (Fig.
5). The labels for DermEducation were done by a medical
student, whereas Fitzpatrick17k labels were included with the
dataset11.

Machine learning pipeline
The overview of the proposed method is shown in Fig. 1. We
describe the main components of the proposed pipeline below.

Document ingestion
We used the Corpus Conversion Service (CCS) to ingest academic
materials in a scanned and programmatic PDF document format20.
The CCS is a cloud based service, which can ingest large corpora at
scale. It uses AI models30 to convert PDF documents into
structured text-files in JavaScript Object Notation31. In addition
to extracting the main-text from the documents, the CCS also
allows the user to easily identify the tables and images with their
captions and their position in the documents. This image-
extraction capability facilitates the extraction of images that can
be used as (raw) data for the work described in this paper.

Skin image detection
In order to achieve simplicity in the step of detecting skin images,
we use histogram of oriented gradient (HOG) descriptor, which is
commonly used in object detection and is invariant to local
geometric or photometric transformations32. The HOG feature
vector for an image I, (hi) is computed from magnitude weighted
histogram of directions bins obtained from the gradient of the
pixel intensity values in the horizontal (Gx) and vertical (Gy)
directions. Gx(r, c) = I(r, c+ 1)− I(r, c− 1) and Gy(r, c) = I(r+ 1,
c)− I(r− 1, c) represent the gradients of the pixel identified by the
rth row and cth column. The angle related to these gradients is
obtained as θi(r, c) = arctan(Gy/Gx) and its magnitude is defined as
Mi(r, c) = pG2

y+ Gx
2. The angle values are binned to C= 32

clusters following a sensitivity analysis across a range of bins, and
each θi value is mapped to the closest cluster weighted by the
corresponding magnitude Mi. Furthermore, we added direct pixel
intensity values after the RGB color space is transformed to CIE
LAB color space (i.e., L, a and b channels) which is known to be
robust across different imaging devices. The feature vector
derived from these channels in the image I is pi = [µL,µa,µb,σL,-
σa,σb], where µ represents the mean value and σ represents the
standard deviation value. The overall feature vector is the
concatenation of the HOG features (hi) and the intensity-based
features (pi), resulting in a 38-dimensional final feature vector for
skin image detection.
The classification stage is validated using both SVM15 and

XGBoost16 algorithm, and the train-test strategy uses five-fold
stratified cross validation with the DermEducation dataset. For
SVM, we used the RBF kernel as it better encodes the relationship
between features in a nonlinear fashion. To this end, we set nu:

Fig. 4 Tone estimation in external validation textbooks. The performance is evaluated using AUROC and F1 score. We can also observe skin
tone proportions in each textbook, tones estimated by our proposed method and the ground truth (GT). First bar graph legend: Purple bar –
F1 score; Blue bar – AUROC. Second bar graph legend: Purple bar: FST I-IV skin tones; Magenta bar: FST V-VI skin tones.

Table 2. Details of the datasets used in this work.

Book Chapters Images Skin images FST V-VI FST I-IV

Rook26 3 553 343 21 319

Bolognia27 160 4150 3225 311 2853

Atlas28 36 879 822 73 747

Fitzpatrick29 217 2977 1881 221 1620

DermEducation NA 2708 2247 315 1932

Fitzpatrick17K11 NA 16,577 16,012 2168 13,844

Across the two datasets (and four textbooks), the ratio of FST V-VI images
to FST I-IV images is significantly small reflecting the severe imbalance in
representations of skin tones.
NA not applicable.
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the parameter that controls the training error (i.e., the number of
support vectors) to 0.01 and the gamma parameter determines
the influence of radius on the RBF kernel and it was set to 0.05,
targeted to avoid overfitting during training. For the XGBoost
classifier, we employ a cross validation (cv) based calibration using
cv folds= 3, where the hyperparameters are set from the best
performing fold. We employ Area Under Operating Receiving
Characteristics (AUROC) and F1 score as our performance metrics.

Skin pixel segmentation
There are multiple approaches for skin segmentation. We can
classify the strategies as threshold-based, model-based, and
region-based methods. Saxen and Al-Hamadi33 showed that
region-based are the best performing methods under color
segmentation (no texture information is used/evaluated). As our
overall goal is to classify binary skin tones, we opted to use skin
segmentation approaches rather than lesion segmentation. When
more granularity is needed, we will need to consider lesion pixels
and not only the skin vs. non-skin pixels approach. We use a
combination of a region-growing algorithm and color-based
segmentation in the HSV and YCbCr color spaces for the initial
experiments. First, we convert our RGB images to HSV and YCbCr
color spaces. The used ranges were based on previous published
papers33. Second, after we clip the images, we apply watershed
and other morphological operations.

Skin tone estimation
To perform skin-tone classification, we use the Fitzpatrick17k
dataset for training and evaluation using cross-validation. For
external testing we used the textbooks detailed in Table 2 and
DermEducation. As input data we only use the skin pixels extracted
from our previous section (See Selected pixels in Fig. 3B, C). We
aimed to label skin images as FST I-IV or FST V-VI. For these

experiments, we explored feature-engineered and deep learning
approaches. For the feature-engineered vectors, we use the
concatenation of the HOG feature vector, the mean and standard
deviation of Luminance (L) and Yellow (b) channels in CIE LAB color
space and ITA values, which are highly correlated to melanin
indexes9,12,23. These feature vectors were used in multiple
Ensemble methods (Random Forest34, Extremely Randomized
Trees35, AdaBoost36 and Gradient Boost16), see Table 1 as all
models performed similarly at an average level. Random Forest and
Randomized trees performed similarly to the other methods,
requiring less compute time than Ada Boost and Gradient Boosting.
All the models were implemented with scikit-learn v0.24.237 and
imbalanced-learn38. Additionally, we evaluated deep learning
models. We used a pretrained ResNet-18, which is a convolutional
neural network that is 18 layers deep. The pretrained weights
contain 11689512 parameters. The network was trained on more
than a million images from the ImageNet dataset18. After loading
the weights, we modify the last layer to consider only two classes
(FST I-IV and FST V-VI) and perform a weighted retraining for twenty
epochs. The retraining was performed with standard Stochastic
Gradient Descent optimization on weighted cross-entropy loss, a
learning rate of 1e−3 with a linear decay, and a batch size of 32. The
implementation was done with the Scientific Python Stack v3.6.939

and Pytorch v1.8.140. Results can be seen in Table 1 and Fig. 4. We
also tested an existing approach that maps ITA values on to
Fitzpatrick skin tone. When using ITA-based methods, the ITA is
later mapped to FST as shown in Supplementary Table 1.
The six Fitzpatrick skin tone indices are then merged into two

categories (FST I-IV and FST V-VI) and results are compared with
STAR-ED. The skin tone estimation was evaluated across all
methods with a data split of 70% of the data used for training,
10% for validation, and 20% for training. These splits only apply to
the Fitzpatrick17K dataset; the rest of the datasets were used
purely as testing datasets.

Fig. 5 Domain expert versus non-dermatologist labels. Label distributions from non-dermatologists and previously reported total numbers
by domain experts across multiple chapters from Bolognia and Atlas books.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
DermEducation is a private educational dataset that is available on request. The
textbooks consisted of Rook’s textbook of dermatology (ISBN 9781118441190),
Bolognia 4e27 (ISBN 9781118441190), Fitzpatrick Color Atlas 8e (ISBN 9781259642197)
and Fitzpatrick Dermatology in General Med 9e (ISBN 9781259642197). Fitzpatrick17k
is publicly available at https://github.com/mattgroh/fitzpatrick17k.

CODE AVAILABILITY
Code for the skin image detection, skin pixel segmentation, and skin tone estimation
and the SkinSegmentation dataset is available here: https://github.com/IBM/star-ed.
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