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CathAI: fully automated coronary angiography interpretation
and stenosis estimation
Robert Avram1,2, Jeffrey E. Olgin1,3, Zeeshan Ahmed4, Louis Verreault-Julien4, Alvin Wan3, Joshua Barrios 1, Sean Abreau 1,
Derek Wan5, Joseph E. Gonzalez5, Jean-Claude Tardif 2, Derek Y. So4, Krishan Soni1 and Geoffrey H. Tison 1,3,5,6✉

Coronary angiography is the primary procedure for diagnosis and management decisions in coronary artery disease (CAD), but ad-
hoc visual assessment of angiograms has high variability. Here we report a fully automated approach to interpret angiographic
coronary artery stenosis from standard coronary angiograms. Using 13,843 angiographic studies from 11,972 adult patients at
University of California, San Francisco (UCSF), between April 1, 2008 and December 31, 2019, we train neural networks to
accomplish four sequential necessary tasks for automatic coronary artery stenosis localization and estimation. Algorithms are
internally validated against criterion-standard labels for each task in hold-out test datasets. Algorithms are then externally validated
in real-world angiograms from the University of Ottawa Heart Institute (UOHI) and also retrained using quantitative coronary
angiography (QCA) data from the Montreal Heart Institute (MHI) core lab. The CathAI system achieves state-of-the-art performance
across all tasks on unselected, real-world angiograms. Positive predictive value, sensitivity and F1 score are all ≥90% to identify
projection angle and ≥93% for left/right coronary artery angiogram detection. To predict obstructive CAD stenosis (≥70%), CathAI
exhibits an AUC of 0.862 (95% CI: 0.843–0.880). In UOHI external validation, CathAI achieves AUC 0.869 (95% CI: 0.830–0.907) to
predict obstructive CAD. In the MHI QCA dataset, CathAI achieves an AUC of 0.775 (95%. CI: 0.594–0.955) after retraining. In
conclusion, multiple purpose-built neural networks can function in sequence to accomplish automated analysis of real-world
angiograms, which could increase standardization and reproducibility in angiographic coronary stenosis assessment.
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INTRODUCTION
Coronary heart disease (CHD) is the leading cause of adult death
in the United States and worldwide1, caused by atherosclerotic
plaques narrowing the coronary arteries, also called coronary
artery disease (CAD). The coronary angiography procedure is the
gold standard procedure to diagnose coronary artery stenosis
which therefore provides crucial information for CAD treatment
decisions ranging from medical therapy alone to revascularization
with coronary stents or bypass surgery2. Physician visual estima-
tion of coronary stenosis severity from angiograms remains the
most common, guideline-supported approach to evaluate angio-
graphic narrowing of the coronary artery lumen2,3.
However, the limitations of visual estimation for coronary stenosis

severity are well described, and include intra- and inter-observer
variability, operator bias and poor reproducibility4,5. Variability in
visual stenosis assessment ranges from 7.6 to 22.5%4–6. And while
coronary angiography imaging quality has improved, variability still
remains and is greater in the setting of a single physician reader,
which is by far the most common clinical workflow4,7. Visual
assessment of stenosis can overestimate the severity of stenosis in
over a quarter of cases8 and may contribute to inappropriate
coronary artery bypass surgery in 17% of patients and stent usage in
at least 10% of patients4–6,8. A more standardized, reproducible
approach to angiogram interpretation and coronary stenosis
assessment would have substantial clinical importance.
Various adjunctive testing may supplement CAD assessment

during coronary angiography, such as physiologic assessment9,10

or intra-vascular imaging11, though most require additional
operator expertise and use of additional catheters, thus are used
in less than 10–20% of coronary angiograms9,11,12. Furthermore,
determining the need for adjunctive testing still relies primarily
upon physician visual estimation of angiograms during the
angiography procedure to identify intermediate-severity or
greater coronary stenosis (e.g. 40–69%)3. Quantitative coronary
angiography (QCA) is a technique providing analysis of angio-
grams that allows for more standardized stenoses assessment13.
However, QCA is not fully automated and requires operator input
for image calibration and frame selection, relegating it largely to
research settings5,14.
Artificial intelligence (AI) algorithms, and deep neural networks

in particular, have demonstrated the ability to automate important
clinical tasks in cardiology as well as interventional cardiology15

Our objective is to develop and validate an automated approach
for coronary angiogram interpretation, coronary artery stenosis
localization and severity estimation from real-world coronary
angiograms.

RESULTS
The Full Dataset consisted of 13,843 complete angiogram studies
(195,195 total angiographic videos) from 11,972 patients aged ≥18
years from the University of California, San Francisco (UCSF),
between April 1, 2008 and December 31, 2019 (Fig. 1a,
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Supplementary Fig. 1). Mean age was 63.5 ± 13.7 years in the Full
Dataset and 66.7 ± 12.0 in the Report Dataset.

CathAI performance to classify angiographic projection angle,
anatomic structures, and angiogram object localization
To classify angiographic projection angle, CathAI achieved a
frequency-weighted positive predictive value (PPV) of 0.90,
sensitivity of 0.90 and F1 score of 0.90 in the test dataset
(Supplementary Table 8). Highly used projection angles, such as
LAO Straight, RAO Straight and LAO Cranial, had better overall
performance. To classify the primary anatomic structure contained
in an angiogram video, CathAI achieved a frequency-weighted
PPV of 0.89, sensitivity of 0.89 and F1 score of 0.89 in the test
dataset (Table 1). CathAI performance was high for both the left

and right coronary arteries (LCA and RCA, respectively), which are
the primary angiographic objects of interest: PPV and sensitivity,
respectively, were 0.97 and 0.94 for LCA and 0.93 and 0.93 for RCA.
Once angiogram videos primarily containing the LCA and RCA

were identified, CathAI localized objects in the angiogram by
predicting bounding boxes around coronary artery segments such
as the proximal portion of a coronary artery, stenosis regions,
stents and coronary catheters. To measure CathAI performance to
localize these objects, mean average precision (mAP) was used to
compare predicted coordinates against ground-truth for each
object. CathAI exhibited a 48.1% weighted average mAP in the
test dataset, which corresponds to state-of-the-art results for
object-localization AI algorithms16 (Supplementary Table 9).
CathAI correctly localized 93.3% of coronary artery stenoses
(PPV) in UCSF test dataset.

Fig. 1 Overview of CathAI. a Overview of the CathAI pipeline for automated angiogram interpretation. Angiogram videos flow from one
algorithm to the next to accomplish the 4 critical tasks required for automated interpretation. b Application of CathAI to an example coronary
angiogram. An example left anterior descending artery angiogram with severe stenosis (proximal to mid segment) is shown progressing
through the CathAI system to: identify angiographic projection, identify LCA (left), place bounding boxes around objects such as stenosis
(zoom, middle), and predict maximal stenosis severity (right).

Table 1. CathAI classification of the Anatomic Structure at the frame-level in the test dataset (Algorithm 2).

Anatomic class Positive predictive value Sensitivity F1 score Number of images Number of unique videos

Left coronary artery 0.97 0.94 0.95 1055 534

Right coronary artery 0.93 0.93 0.93 632 254

Bypass graft 0.49 0.62 0.62 71 15

Percutaneous coronary intervention 0.85 0.79 0.82 290 114

Catheter 0.78 0.91 0.84 512 236

Pigtail Catheter 0.69 0.55 0.55 44 32

Ventriculography 1.00 0.67 0.67 15 2

Radial Artery 0.55 0.63 0.63 11 3

Femoral Artery 0.95 0.97 0.97 286 136

Aortography 0.75 0.75 0.75 4 1

Other 0.44 0.44 0.44 55 26

Frequency- weighted average 0.89 0.89 0.89 2975 1353

Results are calculated on the hold-out Test Dataset for Algorithm 2.
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CathAI performance to predict stenosis severity
The final algorithm in the CathAI system estimated coronary artery
stenosis severity (Fig. 1b). Predicted estimates of stenosis severity
were averaged from all angiogram videos from a given study that
visualized a particular artery segment (called “artery-level”),
mirroring standard clinical practice. In the test dataset, CathAI’s
AUC to identify obstructive stenosis was 0.862 (95% CI:
0.843–0.880) at the artery-level (Table 2; Fig. 2a). Artery-level
stenosis prediction performed better than video or image level
predictions (Fig. 2a, Supplementary Table 10). For CathAI’s
prediction of stenosis severity as a continuous percentage
stenosis, the mean absolute percentage difference between the
AI-stenosis and report-stenosis was 17.9 ± 15.5% (Table 2;
Supplementary Fig. 3). There was a significantly lower mean
absolute percentage difference for the RCA versus the LCA
(16.4 ± 15.0 vs 19.0 ± 15.8; p < 0.001, Table 2; Supplementary Table
10), at similar training dataset sizes—likely reflecting the RCA
having less anatomic variation than the left. CathAI had modestly
higher AUC to identify severe stenosis in strata of females vs males
[0.890 (95% CI: 0.864–0.923) vs 0.830 (95% CI: 0.805–0.856)
respectively, P value for interaction: 0.02].
Of those ≥70% stenoses according to the REPORT-stenosis,

CathAI classified 74.5% correctly (95% CI: 70.0–78.4%; 260/349, Fig.
2b); and of those <70% stenoses by REPORT-stenosis, Algorithm 4
classified 78.1% correctly (95% CI:76.1–80.1%; 1082/1385). When
Algorithm 4’s sensitivity to detect obstructive coronary stenosis
was fixed at 80.0%, its specificity to detect obstructive stenosis
was 74.1%; and when specificity was fixed at 80.0%, its sensitivity
to detect obstructive stenosis was 71.6%. There were medium-
strong correlations between the continuous AI-stenosis and
REPORT-stenoses (Table 2). CathAI overestimated milder stenoses
and underestimated severe stenoses (Supplementary Fig. 3).

External validation of CathAI in the UOHI dataset
To examine external generalizability, we applied CathAI to 464
randomly sampled angiogram videos from UOHI. CathAI predicted
angiographic projection with high accuracy (Supplementary Fig.
4). In 100% of UOHI angiograms, Algorithm 2 successfully
identified the RCA or LCA. The two UOHI adjudicators agreed on
stenosis localization within the same coronary artery segment in
91.4% (n= 424). Within this subset CathAI localized stenosis in the
same artery segment in 84.5% (n= 360); in all the remaining
15.5% where the artery sub-segment was not correct, CathAI
assigned stenosis to the correct coronary artery overall (LCA vs
RCA). All CathAI-identified stenoses were true stenoses, as
opposed to artifact due to suboptimal opacification or vessel
tortuosity, according to both adjudicators.
Inter-observer variability for stenosis percentage assessment

between the two adjudicators was 15.7% ± 14.5%. For determina-
tion of obstructive (</≥70%) stenosis, adjudicators disagreed on
16.8% of stenoses as being obstructive (n= 78). We calculated the
arithmetic mean of the percent stenosis from the two adjudicators
to compare against CathAI’s prediction of stenosis severity
prediction. Compared to this, CathAI’s AUC for obstructive stenosis
(≥70%) was 0.869 (95% CI: 0.830–0.907; Figs. 2c, 3); sensitivity was
86.4% and specificity was 67.3% (Fig. 2d; same threshold used as
UCSF dataset, 0.54). The mean absolute percentage difference
between AI-stenosis and the percent stenosis averaged from the
two adjudicators was 18.02% ± 11.02%. In the UOHI dataset,
CathAI took ~3–5 s to analyze an angiography video, or 35 s for a
full exam, using a Nvidia GTX 1080 Ti GPU.

Retraining CathAI to predict QCA Stenosis
The RCT QCA dataset consisted of 709 patients with 858 exams
(1384 stenoses; 18 severe ≥70%, 71 severe ≥50% but <70% and
1295 non-severe). CathAI successfully identified 100% of LCA/RCATa
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videos and 78.7% (n= 1384) of stenoses (67.2% for LCA and 86.8%
for RCA). Average stenosis severity as assessed by QCA was
31.7 ± 11.6% (Supplementary Fig. 5). Given the divergent patient
population of the RCT QCA dataset of mostly mild CAD and QCA
adjudication criteria (≥50% QCA stenosis) instead of visual
estimation, the RCT QCA dataset provided an opportunity to
retrain CathAI to predict QCA labeled stenoses, as opposed to
visually estimated stenoses. Once re-trained, CathAI’s AUC to
discriminate obstructive QCA stenosis (≥50%) was 0.775 (95% CI:
0.594–0.955) at artery-level (Supplementary Table 11) and for QCA
stenosis ≥70%, the AUC was 0.75 (95% CI: 0.570-0.930). The
average stenosis difference between CathAI-predicted stenosis
and QCA-estimated stenosis was 6.5 ± 5.5% in the test dataset.

Using neural network explainability to understand CathAI
performance
To better understand the elements within angiograms that
contributed to CathAI predictions, we applied two explainability
approaches to the fully-trained CathAI algorithms. This can help
illuminate how algorithms function and provide additional
decision-making context to clinicians. GradCAM17 highlights
image regions most critical to CathAI’s prediction, showing that
it used regions like a cardiologist, such as the left anterior

descending artery to identify LCA images (Fig. 4a). We also derived
saliency maps for CathAI’s prediction of stenosis severity using the
Layer Ordered Visualization of Information (LOVI) method18. The
highlighted pixels (Fig. 4b; Supplementary Fig. 6) were not only
limited to stenosed artery segments, but also to normal segments
and pixels immediately adjacent to the artery, suggesting that the
relationship between stenosed and non-stenosed artery segments
contributes to CathAI’s prediction of stenosis severity.

DISCUSSION
We described the development and validation of the CathAI
pipeline comprised of four algorithms and demonstrated sig-
nificant advancements in automated analysis of coronary angio-
grams. Each algorithm achieved a specific task that facilitated
accomplishment of the primary diagnostic aim of coronary
angiography—assessment of coronary artery stenosis severity—
achieving state-of-the-art performance for each task. Importantly,
CathAI was generalizable, without additional training, to predict
visually estimated stenoses from non-curated real-world UOHI
angiograms, a separate medical system in a different country.
CathAI was also successfully re-trained to predict QCA stenosis
estimates in a third external RCT QCA dataset. This provides a

Fig. 2 CathAI performance to predict obstructive coronary artery stenosis. a Receiver Operating Characteristic Curves (ROC) for CathAI
prediction of obstructive (</≥70%) coronary stenosis in the test dataset. Black dot: AI-stenosis threshold chosen to optimize F1 score in the
artery-level dataset. Red cross: Specificity when sensitivity is fixed at 80%. Blue cross: Sensitivity when specificity is fixed at 80%. b Confusion
matrix for CathAI prediction of obstructive stenosis vs. REPORT-stenosis. c UOHI External Validation Dataset-ROC for CathAI prediction of
obstructive (</≥70%) stenosis. Black dot: AI-stenosis threshold chosen to optimize F1 score in the artery-level dataset. Red cross: Specificity
when sensitivity is fixed at 80%. Blue cross: Sensitivity when specificity is fixed at 80%. d UOHI External Validation Dataset-Confusion matrix for
CathAI prediction of obstructive stenosis vs. expert adjudicators. AUC area under the curve, CI confidence interval, AI artificial intelligence.
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broad foundation for various future angiogram-relevant tasks—
such as automatic estimation of a stenosis severity or identifica-
tion of intermediate-grade stenoses requiring adjunctive testing.
Furthermore, the adoption of explainability methods such as
GradCAM and LOVI provides clinicians better understanding of the
CathAI’s predictions.
Prior work has reported neural networks performing individual

tasks in experimental settings related to angiogram analysis such
as frame extraction19, stenosis prediction from (manually-selected)
RCA images19–25, coronary vessel segmentation26,27 or stenosis
identification28. However, to our knowledge fully automated
analysis and stenosis prediction for coronary angiogram videos
has not yet been demonstrated on real-world angiograms. Many
experimental prior approaches focused on the RCA19–25 likely
because it has substantially less anatomic variability and complex-
ity compared to the LCA, decreasing the difficulty of analyzing
RCA angiograms. However, approaches trained on pre-selected
RCA angiograms cannot analyze real-world datasets, which
include non-RCA and non-coronary artery videos. In a recent
effort Du et al. analyzed single frames from both LCA and RCA
angiograms to localize coronary segments and stenosis28, but did
not predict severity of stenosis which is a critical component. Our
work advances the state-of-the-art that is generalizable to real-
world external angiograms and mirroring the standard-of-care
guideline-recommended “worst view” assessment2,3. Because
coronary angiography is critical to all CHD clinical decision-
making2,3 CathAI has substantial potential to automate angiogram
interpretation. The deviation of CathAI’s predictions from human
experts’ visual assessment was well within, and often less than,
commonly reported inter-observer variability4–7,29; whereas Cath-
AI’s retrained QCA deviation was 6.5 ± 5.5% in the RCT QCA
dataset which is substantially lower than the 10.2–16.6%
difference between physician visual assessment and QCA reported
in the literature5

Automated analysis of angiograms has greater similarities to the
perception-side of “self-driving car” technology than to standard

radiologic analysis (i.e. X-rays), given angiograms’ highly variable,
operator-determined video acquisitions and the sequence of
complex tasks required for analysis. Successful analysis of real-
world angiograms requires the AI-system to process any type of
video encountered during real-world procedures, identify relevant
images, then accurately localize important objects. CathAI’s state-
of-the-art performance on each core task and also stenosis
estimation19–25,28 provides proof-of-concept that multiple
purpose-built deep learning algorithms can overcome the barriers
that to date have prevented fully automated angiogram analysis.
The multiple sub-tasks CathAI accomplishes en route to the final
stenosis prediction provides a robust foundation to support many
future additional tasks that build upon any CathAI sub-task, such
as predicting stent under-expansion, atherosclerotic plaque
morphology or fractional flow reserve from contrast flow patterns.
CathAI can be readily adapted to additional tasks. Like self-driving
car technology, however, much work remains to achieve very high
accuracy before CathAI is “clinically ready,” given the central role
of coronary stenosis assessment to CHD clinical decision
making2,3. Undoubtedly, additional improvement in each of
CathAI’s individual algorithms will likely be needed prior to clinical
deployment, achievable for example by increasing the sizes of
human-expert annotated datasets or training purpose-built
algorithms for specific views (such an RCA-LAO only artery
localization algorithm). This work provides the foundation for
rapid improvement or to develop future algorithms for additional
tasks, like demonstrated for QCA retraining.
The most immediate clinical implication of deploying a pipeline

such as CathAI would be to increase standardization in the
assessment of coronary stenosis. Human expert visual estimation
of coronary stenosis is well established to have high variability of
between 7–22%4–7,29 and between 10–17% against a QCA gold-
standard5, directly impacting decisions for life-saving CHD
revascularization therapies. Multiple studies have consistently
reported overestimation of stenosis by visual estimation5,6,8. One
study re-evaluated clinical angiograms by multiple readers,

Fig. 3 Summary of study results from CathAI internal and external validation. Main results for University of California, San Francisco (UCSF)
internal validation and University of Ottawa Heart Institute (UOHI) external validation are shown for each of the 4 tasks.
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reporting that the recommendation for coronary bypass surgery
changed from “necessary/appropriate” to “uncertain/inappropri-
ate” in 17–33% of cases, including 10% of cases for stent
placements4. This study4 suggested performing a second

independent angiogram interpretation before revascularization,
though this is generally infeasible and not the clinical standard-of-
care given clinical interventional cardiology workflows. However,
CathAI could easily perform this function in an automated,

Fig. 4 Explainability methods applied to CathAI algorithms. a GradCAM applied to CathAI classification of primary anatomic structure. Two
original angiogram images are shown (left), alongside corresponding images highlighted by GradCAM (right) showing areas of greater
importance for algorithm decisions. GradCAM-highlighted areas focused around the left coronary artery within the angiogram image, with
blue color indicating lowest importance, yellow color indicating medium importance and red color indicating highest importance to CathAI
Algorithm 2’s prediction. b LOVI Saliency Maps of CathAI prediction of coronary stenosis severity. Original angiogram images (top) and
corresponding images with LOVI saliency maps (bottom). White pixels represent greater contribution to CathAI’s (Algorithm 4) prediction,
showing that Algorithm 4 focused on pixels near the region of coronary artery stenosis in most cases. LOVI Layer Ordered Visualization of
Information.
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reproducible manner to provide near real-time predictions during
the procedure to supplement physicians’ own ad-hoc diagnosis.
However, since CathAI was trained with the same biased visually
estimated stenoses, it also tends to overestimate stenoses. To
address this, CathAI could be re-trained using QCA data, which, as
we demonstrate, tends to predict less severe stenoses as is shown
in the literature.
Some recent studies have suggested that there may be sex

differences in stenosis estimations, where stenoses tend to be
overestimated in females30. To investigate whether CathAI could
help reduce this bias in stenosis estimation across sex, we
compared the performance of Algorithm 4 between males and
females in our internal dataset. Our analysis found a small but
significant difference between the algorithm’s performance in
strata of males and females. Future work should aim to balance
examples of severe and non-severe stenoses in both males and
females to further address the issue of sex-based bias in stenosis
severity estimation.
The UOHI dataset provided external validation showing that

CathAI generalizes well to external real-world angiograms
adjudicated by physician visual estimation. In comparison, the
RCT QCA dataset represented a not only a different method of
stenosis adjudication (that also uses different thresholds for severe
stenosis ≥50% for QCA vs. ≥70% for visual estimation), making it
effectively a different task, but a very different patient population
with predominantly mild-CAD due to the RCTs’ dataset design. In
most UCSF clinical angiograms, as is common in clinical practice,
coronary stenoses ≤50% were simply described as “non-obstruc-
tive stenosis” and not given a percentage estimate; in contrast,
QCA provides stenoses values in all cases. This is exemplified by
CathAI identifying 78.7% QCA dataset stenoses compared to 100%
of those in the real-world clinical UOHI datset, since the QCA
dataset had predominantly mild stenosis. For these reasons, the
RCT QCA dataset provided an opportunity to examine how CathAI
(Algorithm 4) could provide a pre-trained foundation to learn the
new task of QCA prediction using a small dataset of <500 patients
with a different CAD distribution. Once retrained, CathAI’s
performance to discriminate obstructive stenosis by QCA was
numerically lower (AUC= 0.775) than for obstructive stenosis by
visual estimation in the main analysis, possibly due in part to the
small size of the QCA dataset, although confidence intervals
overlapped. However, it is notable that the deviation of 6.5 ± 5.5%
of CathAI’s prediction from QCA was substantially lower than the
previously reported human visual estimate deviation from QCA in
the PROMISE trial of 10–17%. This underscores one of the most
immediate potential contributions of AI-automated analysis
workflows to decrease interpreter-variability and increase stan-
dardization. We believe that this first demonstration of a
retrainable CathAI automated angiogram analysis system provides
a path forward for future research, highlighting the areas
necessary to improve to ultimately build a clinically ready
automated angiographic analysis system.
Our work has several limitations. A notable limitation arises

from our use of training labels derived during routine clinical care
using physician visual estimation. Due to the resource-intensive
nature of generating large numbers of cardiologist annotations for
angiographic images, to achieve the largest dataset to train CathAI
for stenosis severity, we used clinically-generated REPORT-stenosis
values which were available in large numbers. Though these were
generated by sub-specialty trained interventional cardiologists at
UCSF, they likely still exhibit variability inherent in any clinically
generated label. Such variability in both the training and testing
data could place an artificial ceiling on observed algorithmic
performance; however these CathAI algorithms can be easily re-
trained and refined with purpose-generated labels. To demon-
strate this, we retrained CathAI with QCA stenosis labels, whose
performance could likely be improved with a larger QCA dataset.
For example, our QCA dataset had very low number of severe

stenoses (≥70%) therefore future efforts should increase examples
of severe stenoses adjudicated by QCA. In addition, the text-
parsing method we used to extract the REPORT-stenosis from the
clinical procedure report may have introduced errors in either the
location of the stenosis or the degree of severity. Future algorithm
improvements will likely come from using purpose-generated
labels, such as from a core-lab using either protocol-guided visual
assessment, QCA, or physiologic assessment such as FFR31. Our
objective with this proof-of-concept study was to demonstrate the
“building blocks” required for automatic interpretation of coronary
angiograms, and not necessarily to replace the current clinical
standard for angiogram interpretation. To achieve the latter,
substantial human effort will likely be required to label large
datasets with precise methods. Furthermore, we only included the
main epicardial vessels in this version of CathAI. Other pertinent
vessels/objects, like bypass grafts, diagonals, chronic total occlu-
sions or collaterals were excluded, but represent prime targets for
near-term future work.
In conclusion, CathAI is the first multi-stage fully automated

analysis pipeline for coronary angiograms. CathAI achieves state-
of-the-art performance for each task required for interpretation of
real-world angiograms, is externally valid, and provides a
foundation for future tasks in automated angiographic interpreta-
tion. The automated stenosis assessment enabled by CathAI may
serve to increase standardization and reproducibility in coronary
stenosis assessment, one of the most critical junctures in CHD
clinical decision making.

METHODS
Study participants and study datasets
For our Full Dataset, we obtained retrospective, de-identified
coronary angiographic studies from all patients 18 years or greater
from the University of California, San Francisco (UCSF), between
April 1, 2008 and December 31, 2019 (Supplementary Fig. 1) that
underwent a coronary angiogram. Patients without videos of the
left or right coronary artery were excluded. Angiograms were
acquired with Philips (Koninklijke Philips N.V., Amsterdam, Nether-
lands) and Siemens (Siemens Healthineers, Forchheim, Germany)
systems at 15 frames per second using Iopromide contrast. We
generated specifically annotated training datasets (either through
available meta-data or expert annotation) of Full Dataset subsets
for each of the four primary tasks performed by CathAI.
To maximize the manual labeling efforts required to generate

training data for each Algorithm, we generated an “extracted Full
dataset” by first automatically identifying the frames within the video
that likely contained peak-contrast by calculating the structural
similarity index measure (SSIM) from the frame in position ‘0’ where
no dye is usually present, which we called the “reference” frame.
SSIM is higher if images have similar pixel values and lower if there is
greater difference. The frame with the lowest similarity index from
the reference frame was selected as most likely containing peak-
contrast (e.g. when the artery is full of contrast). Up to 8 frames were
then extracted from each video by retaining the reference frame, the
peak-contrast frame and the 3 frames immediately preceding and
following the peak-contrast frame. This is referred to as the
“extracted” Full Dataset frames (n= 1,418,297). All frames of a video
were converted to images of dimension 512*512 pixels for
algorithmic analysis. Subsets of frames from the extracted Full
Dataset were then labeled for each task, as described below, to
generate training data for Algorithms 1–3.
For all algorithms, except Algorithm 3, data was split randomly

for each algorithm into Training (70%), Development (10%) and
Test (20%) datasets, each containing non-overlapping patients.
The development dataset was used for algorithm tuning, when
required. For Algorithm 3, dataset splits were Training (80%) and
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Test (20%); since we used original hyperparameters and did not
require algorithm tuning16,32.
Algorithm 1 labels were taken directly from the DICOM

metadata describing the cranial-caudal and LAO-RAO orientations.
Algorithm 2 and 3 required annotations by a board-certified
cardiologist (Supplementary Fig. 8 and Supplementary Table 1, 2
and 3 for definitions). For Algorithm 4, the stenoses were taken
directly from the procedural report.

The Report dataset
Shortly after performing the procedure, interventional cardiolo-
gists typically interpret the angiogram using visual assessment, as
per standard clinical practice, and describe the severity of
coronary stenosis in the procedure report. This procedural report
text was parsed (see below) to identify: any description of
coronary artery stenosis, the maximal stenosis percentage (called
the REPORT-stenosis) and its location in one of 11 coronary artery
segments (Supplementary Table 3). We identified 9782 coronary
stenoses in artery segments (REPORT-stenoses) and identified in
1766 non-stenosed complete vessels yielding a total of 10,088
non-stenosed vessel segments, derived from 84,153 images. Then
we randomly sampled 10,000 images corresponding to healthy
artery subsegments (Supplementary Fig. 1). Metadata was
extracted from each angiogram video including the procedure
date, the primary (Right Anterior Oblique [RAO]/Left Anterior
Oblique [LAO]) and secondary (cranio-caudal) angles of rotation, a
unique exam identifier and a unique patient identifier. Non-
matched REPORT-stenoses were removed from the dataset. We
also excluded videos where an intra-coronary guidewire was
present in more than 4 frames, as automatically determined by
Algorithm 3 (6,076 videos, 41,780 stenosis-frames identified with
guidewires), since these videos likely represent percutaneous
coronary interventions which could alter the stenosis percentage
within that video (Supplementary Fig. 1); videos were retained
from studies prior to the insertion of an intracoronary guidewire.

Text parsing methods
The free text from the procedural report was first segmented
using commas (“,”) or periods (“.”). We then applied text parsing
methods to identify distinct coronary segments (Supplementary
Table 3). When a coronary segment was found, we identified any
description of corresponding stenosis percentage by localizing
“%” and the nearest one to three-digit number in that sentence.
We initially searched using standard terms (such as “right coronary
artery”), then expanded the keywords by manual review of the
text, over multiple iterations, to include the most common
abbreviations, alternate spellings and permutations (Such as
“RCA”). Qualitative descriptions of obstructive CHD, such as “mild”,
“moderate” or “severe” disease were not extracted. Furthermore,
we searched for keywords such as “thrombus”, “obstruction” or
“occlusion” in the report; when present in a coronary segment,
100% stenosis was assigned to that segment. For analysis, ostial
and proximal coronary segments were merged in the ‘proximal’
class and ostial, proximal, middle, and distal left main arteries were
merged under the ‘left main’ class. The most severe stenosis
within any of the 11 segments was retained (Supplementary
Table 3). We did not analyze chronic total occlusions and stenoses
in diagonals, marginals, septals, ramus, left posterior descending
artery, left posterolateral or in bypass grafts.

Human subjects research
This study was reviewed by the University of California, San
Francisco Institutional Review Board and need for informed
consent was waived. The external validation was reviewed and
approved by the University of Ottawa Institutional Review Board.

Algorithm development
The CathAI system is comprised of 4 neural network algorithms
organized in a pipeline (Fig. 1a). Angiographic images are
analyzed by each algorithm and “flow” sequentially to the next
to accomplish the four foundational tasks for automated
angiogram analysis: (1) classification of angiographic projection
angle; (2) classification of an angiogram’s primary anatomic
structure; (3) localization of relevant objects within an angiogram,
including coronary artery sub-segments and stenoses; (4) predic-
tion of coronary artery stenosis severity (as a percentage of artery
narrowing).
We customized each of CathAI’s 4 algorithms base neural

network architecture to achieve an angiogram-relevant task, as
detailed in sections below. As a high-level summary, Algorithm 1
accepted individual images (coronary angiogram video frames) as
input and identified the angiographic projection angle used
described by LAO-RAO and cranial-caudal axes (LAO cranial, RAO
caudal, etc); labels were available from each video’s metadata.
Algorithm 2 identified the primary anatomic structure (Supple-
mentary Table 2), since it is common to capture angiogram videos
containing non-cardiac anatomic structures such as the aorta or
the femoral artery. Algorithm 2 allowed CathAI to subsequently
focus on only angiogram videos primarily containing the left and
right coronary arteries (LCA and RCA, respectively). Algorithm 3
localized relevant objects within images of the LCA and RCA by
outputting bounding box coordinates for identified objects
(Supplementary Video). Coronary artery stenosis location was
assigned according to greatest overlap between two Algorithm
3-predicted bounding boxes of the coronary artery sub-segment
and stenosis (Fig. 1b). Algorithm 4 accepted images cropped
around stenosed artery segments (by Algorithm 3 bounding
boxes) and predicted the maximal percentage stenosis within the
image as a continuous value between 0 and 100 for each image.
Predictions were averaged across a video to provide the video-
level prediction; and the mean of video-level predictions from all
videos that visualized an artery segment within a study provided
the final artery-level prediction.

Algorithm 1: classification of angiographic projection angle
Algorithm 1 accepted individual images (video frames) as its input
and identified the angiographic projection angle used. The
projection angle refers to the fluoroscopic angulation used to
obtain the image, commonly described on two axes defined by
LAO-RAO and cranial-caudal (LAO cranial, RAO caudal, etc). For
Algorithm 1 training data, all images from the extracted Full
Dataset were categorized into 12 categories of left-right and
cranio-caudal projection angles based on the primary and
secondary angles extracted from each video’s metadata (−180
and 180 degrees for the primary angle and −50 and 50 degrees
for secondary; Supplementary Table 1). We then split the extracted
Full Dataset into training (990,082), development (128,590) and
test datasets (299,625).
Algorithm 1 architecture was based on Xception, which is a

convolutional neural network that has achieved state-of-the-art
performance at image recognition tasks33. It was initialized with
‘ImageNet’ weights34, as commonly performed to initialize
weights for faster algorithm convergence in image classification
settings; all layers were trainable. Images were augmented by
random zoom (range=0.2) and shear rotate (range=0.2). The
development dataset was used to iteratively compare algorithm
performance and fine tune hyperparameters using grid search
(Supplementary Table 5). We experimented with different
architectures such as VGG-16, ResNet50 and InceptionNet-V3 but
found no incremental benefit over Xception. A grid search was
used to fine-tune hyperparameters. The Test dataset was not used
at all during training and was only used to report final
performance. The most common prediction across extracted the
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frames of each video was assigned as the angiographic projection
of that video; ties were addressed by selecting the projection with
the highest average probability across all frames. We used
Algorithm 1 weights as a ”core model” to initialize the weights
for training the subsequent algorithms based on the Xception
architecture.

Algorithm 2: classification of primary anatomic structure
Algorithm 2 aimed to identify the primary anatomic structure
present in an angiographic video (Supplementary Table 2), since it
is common to capture angiogram videos containing non-cardiac
anatomic structures such as the aorta or the femoral artery during
the procedure. To generate Algorithm 2 training data, we
randomly selected 14,366 images from the extracted Full Dataset,
and a cardiologist categorized each image into one of 11 classes
describing the primary anatomic structure (Supplementary
Table 2). This dataset was split into Training/Development/ Test
datasets, containing 9887 (70%), 1504 (10%), and 2975 (20%)
images, respectively. We trained Algorithm 2 using the Xception
architecture, initialized weights from trained Algorithm 1, and
tuned hyper-parameters (Supplementary Table 5). Images were
augmented by random zoom (range= 0.2) and shear rotate
(range= 0.2). The predicted primary anatomic structure of a video
was the mode prediction of all of its extracted Full Dataset frames.
Only videos that primarily contained right or left coronary arteries
flowed to Algorithm 3 for subsequent CathAI analyses (Supple-
mentary Fig. 1). F1 scores and model performance varied by
anatomic class, but in general classes with lesser frames had lower
performance (Supplementary Fig. 3b), suggesting a possibility to
improve performance if more labeled data were available.

Algorithm 3: localization of angiogram objects
Algorithm 3 aimed to localize relevant objects within images of
the left and right coronary arteries (the output of Algorithm 2).
While Algorithm 3 was trained to localize multiple objects
(Supplementary Table 3), the tasks most critical to the CathAI
pipeline were to (i) identify coronary artery segments, (ii) identify
stenoses (if present) and (iii) localize other relevant objects such as
guidewires or sternotomy. To generate training data for Algorithm
3, 2338 contrast-containing images of LCA and RCA both with and
without stenosis (as identified by Algorithm 2) were annotated by
a cardiologist who placed bounding boxes around all relevant
objects in the image (Supplementary Table 3). Only stenoses in
the main epicardial vessels, not side branches such as diagonals or
marginals, were labeled. In 100% of the 2338 frames, the LCA or
RCA was the primary anatomic structure contained, and the artery
was well visualized, well opacified, and not underfilled, according
to the annotating cardiologist.
In our final CathAI pipeline we trained two versions of Algorithm

3: Algorithm 3a was trained on and accepted both LCA and RCA
images as input. Since the RCA in the LAO projection contained
the greatest number of annotated images in our dataset, we also
trained a dedicated Algorithm 3b on this projection to demon-
strate possible performance gains from focusing an algorithm on a
specific artery/projection (RCA in LAO). To train Algorithms 3a/b,
we split our labeled images for this task into two separate
datasets: One containing left/right coronary arteries (2,338
images) and one containing RCA images in the LAO projection
(450 images). Each dataset was subsequently split into 90%
training (2,104 and 405 images respectively) and 10% test (234
and 45 images respectively) and Algorithms 3a/b were trained for
50 epochs. Once deployed in the CathAI pipeline, Algorithm 3b
served to decrease input variability for Algorithm 3a, which
produced performance improvements for both algorithms. Since
we achieved performance gains by developing an algorithm on
this specific artery/projection, future gains may be achieved with
other dedicated algorithms.

Algorithms 3a/b employed the RetinaNet architecture and were
trained using original hyperparameters16; a development dataset
was not used. RetinaNet has achieved state-of-the-art perfor-
mance for object localization such as the pedestrian detection for
self-driving cars35. For our task, Algorithms 3a/b output bounding
box coordinates for any objects present in each input image.
Because some artery segments in certain angiographic projections
are known a priori to be foreshortened or not visible, we applied a
post-hoc heuristic to exclude certain Algorithm 3a/b-predicted
artery segments from angiographic projections as predicted by
Algorithm 1 (Supplementary Table 4). This thereby represents a
fusion of intermediate predictions from two CathAI pipeline
algorithms to achieve more clinically-relevant overall pipeline
performance. To assess Algorithm 3a/b performance, the pre-
dicted coordinates were compared with the ground-truth
coordinates using the ratio of the area of intersection over the
area of union (called Intersection-over-union [IoU])36. An IoU≥0.5
between the predicted and annotated coordinates was consid-
ered a true positive. Next, we measured the mean average
precision (mAP), which represents the ratio of true positives over
true and false positives at different thresholds of IoU, for each
class37 A mAP of 50% compares with state-of-the-art results for
this type of task16,35.

Algorithm 4: predicting the percentage of coronary artery
stenosis
Algorithm 4 was developed to predict the severity of coronary
artery stenosis as a percentage, given input images cropped
around stenosed artery segments identified by Algorithm 3.
Algorithms 3a/b were run on all Report dataset videos to localize
artery segments and stenoses. All frames that contained a stenosis
bounding box overlapping with a coronary artery segment
bounding box with IoU ≥0.20 comprised potential input frames
for Algorithm 4. A stenosis was localized to the artery segment
that Algorithm 3 identified which had the greatest overlap by IoU.
To derive train/test labels for Algorithm 4, we cross-matched
stenoses found by Algorithm 3a/3b with the stenosis percentage
found in the procedural report in corresponding artery segments
(Supplementary Fig. 1). Matched procedural report values served
as labels to train Algorithm 4 with input images cropped around
stenosed artery segments according to Algorithm 3a/b bounding
boxes. Non-matched stenoses were removed from our dataset. We
also excluded all videos where an intra-coronary guidewire was
present in more than 4 frames, as automatically determined by
Algorithm 3a/b (6,076 videos, 41,780 stenosis-frames identified
with guidewires), since these videos likely represent percutaneous
coronary interventions which could alter the stenosis percentage
within that video (Supplementary Fig. 1); videos were retained
from studies prior to the insertion of an intracoronary guidewire.
To train and validate Algorithm 4, we combined 6258 images of
non-stenosed coronary artery segments with the remaining
98,756 images of stenoses.
Once a stenosis was identified, bounding box coordinates were

expanded by 12 pixels in all dimensions, then cropped and resized
to the nearest of three predetermined sizes: 256*256 pixels
(aspect ratio no.1), 256*128 pixels (aspect ratio no.2) and 128*256
pixels (aspect ratio no.3). This was performed to maximize signal-
to-noise (vessel-to-background) ratio, due to different vessel
orientations and stenosis sizes. The “Report Dataset” used to train
Algorithm 4 consisted of 105,014 images (6667 stenoses coming
from 2,736 patients and 5,134 healthy vessel segments from 1,160
patients; Supplementary Fig. 1). Since non-stenosed vessel
segments tended to be longer than focal stenosis which may
bias training, we cropped all non-stenosed segments randomly to
a height and width, mirroring the distribution of stenosis image
sizes within that coronary segment. This yielded similar vessel
sizes between the stenosed and non-stenosed images for each
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vessel segment. Images were randomly split into 70% training,
10% development and 20% in testing datasets.
Algorithm 4 was based on a modified Xception architecture

where the last layer (Softmax layer, used for classification) was
replaced with an ‘average pool’ then dense layer with a linear
activation function to enable prediction of stenosis severity as a
continuous percentage value. Image metadata consisting of the
coronary artery segment label and cropped aspect ratios were also
added as inputs into the final layer of Algorithm 4, which
improved performance. The algorithm output a percentage
stenosis value between 0 and 100 for every input image
representing the maximal stenoses in that coronary artery
segment. The percentage value was then averaged across all
frames of the stenosed artery segment in a video, then averaged
across videos of the same artery segment to obtain a final stenosis
percentage (artery-level percentage).
Model weights were initialized using those from the trained

Algorithm 1. Images were augmented by random flip (both
horizontal and vertical), random contrast, gamma and brightness
variations, random application of adaptive histogram equalization
(To improve contrast in images). The algorithms were trained to
minimize the squared loss between the predicted (AI-stenosis)
and the report-stenosis using the RADAM optimizer38 with an
initial learning rate of 0.001, momentum of 0.9 and batch size of
12, trained for 50 epochs. Training was halted when loss stopped
improving for 8 consecutive epochs in the test dataset.
For Algorithm 4, we modified the training scheme such that

each epoch was trained on images of one aspect ratio, with the
next epoch training on another aspect ratio (copying all weights
from the previous iteration), as performed previously for multi-size
inputs39. This was iterated until convergence. We measured the
algorithm performance on the complete test dataset, consisting of
the three aspect ratios. We observed that the convergence of the
multi-size input training was like other algorithms that used a
fixed size for training. We also examined various pre-processing
approaches and sequences without improvement in algorithm
performance (Supplementary Table 7s).

Neural network explainability methods
We applied two neural network explainability approaches to the
fully-trained CathAI algorithms in order to better understand how
algorithms made their predictions, respective to their relative
tasks. The GradCAM17 technique highlights image regions most
critical to prediction. Red highlighted areas denote higher
importance to algorithm prediction, whereas more blue high-
lighted regions denote lower importance. We also derived saliency
maps using the Layer Ordered Visualization of Information (LOVI)
method18, which highlights individual pixels in the image that
contribute most to algorithm predictions. Brighter pixels represent
greater contribution to the algorithm’s prediction.

External validation
For external validation, we randomly sampled 1000 coronary
angiogram videos performed at the University of Ottawa Heart
Institute (UOHI) between July 1st 2020 and October 31st 2020,
acquired with Philips Azurion systems (Koninklijke Philips N.V.,
Amsterdam, Netherlands), at 15 fps, using Iopromide dye.
Algorithms 1, 2 and 3 were applied to each video to identify
and localize stenoses, and Algorithm 4 predicted AI-stenosis. We
then sampled up to 40 examples of angiogram videos per
coronary artery segment to form our external validation dataset,
identifying a total of 464 coronary angiograms with distinct
stenoses. Two board certified interventional cardiologists at the
UOHI, each with over 2500 coronary angiograms of experience as
primary operators, adjudicated these 464 videos in a blinded
fashion by grading stenosis severity as a percentage between 0
and 100%, describing the underlying anatomic structure and

localizing the stenosis to a coronary artery sub-segment. Algo-
rithm performance in this dataset was reported as the AUC of the
AI-stenosis compared to each adjudicator, and to the average of
both adjudicators. Since stenoses in this external validation
dataset were only visualized in one video, there was no calculation
of artery-level AI-stenosis performance. The same binary threshold
(0.54) was used for obstructive AI-stenosis as in the primary
analysis. We also described the concordance between the
localization of the stenosis as determined by Algorithm 3 and
by the two adjudicators as well as the average difference between
each adjudicator stenosis percentage.
To train CathAI Algorithm 4 for the different population

distribution of the QCA dataset, we split the QCA dataset into
training (75%), development (12.5%) and testing (12.5%) and fine-
tuned the last two fully-connected layers of Algorithm 4, to allow
the algorithm to learn to predict the QCA stenosis values from the
input stenosis images rather than visually assessed stenosis. We
performed a grid-search of initial learning rates from 1e−4 to 1e−8

and selected the rate which produced the lowest loss value on the
development set in 100 epochs. We then trained the model
starting with a learning rate of 1e-6 and dropping by a factor of 0.1
every 100 epochs, for 300 epochs.

Quantitative coronary angiography dataset
The CathAI system provides an algorithmic foundation to be re-
trained for future angiogram-relevant tasks. To demonstrate this,
we obtained an external dataset of coronary angiograms of an a
priori different patient population adjudicated at the Montreal
Heart Institute (MHI) Core laboratory using the CMS QCA system
(MEDIS, Leiden, Netherlands). This dataset was comprised of
angiograms analyzed by the MHI Angiographic Core lab, obtained
during randomized controlled trials (RCT) in ≥18 year old patients
that had a coronary angiography intervention as part of the study,
and received novel lipid lowering drugs or placebo40 The trials
from which this data were derived used inclusion criteria that
excluded patients with obstructive coronary artery disease (CAD)
at the start of the study, which resulted in a majority of mild-to-
moderate severity coronary stenosis in this dataset. QCA analysis
was performed by two trained technicians and was supervised by
an expert physician. For this dataset, severe stenosis was defined
as ≥50% QCA stenosis severity6,13.
Coronary angiogram images were acquired using the Philips

(Koninklijke Philips N.V., Amsterdam, Netherlands), General Electric
Medical Systems (General Electric, Chicago, Illinois, United States)
and Toshiba (Toshiba Corporation, Minato City, Tokyo, Japan) at 15
frames per second, by injection Iopromide dye into coronary
arteries. For each QCA stenosis analysis at the MHI core lab, an
end-diastolic frame was selected with angulations that best
showed the stenosis at its most severe degree with minimal
foreshortening and branch overlap. QCA software automatically
calculated the percent diameter stenosis for coronary artery
segments with reference diameter ≥1.5 mm.
This RCT QCA dataset contained a different patient population a

priori from the real-world clinical UCSF dataset, since all stenoses
≥ 50% were not present during the baseline angiogram (but could
be present at a follow-up angiogram), leaving primarily mild-CAD
with a mean QCA stenosis severity of 31.7% ± 11.6%. This
provided an optimal opportunity to examine how CathAI could
provide a foundation for retraining using QCA stenosis labels to
function as an automated tool for core lab angiogram analysis. We
split the QCA dataset into training (75%), development (12.5%)
and testing (12.5%) datasets and fine-tuned the last two fully
connected layers of CathAI Algorithm 4 to predict QCA values
rather than visually assessed stenosis estimates.
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Algorithm evaluation and statistical analysis
As appropriate for each task, each algorithm’s performance for
categorical values was evaluated using positive predictive value
(PPV), negative predictive value, sensitivity, specificity, area under
the receiver operating characteristic curve (AUC), F1 score and
Bland-Altmann plots. For continuous values, we present the intra-
class (ICC [2,2])41 and Pearson correlation and the mean absolute
error between CathAI’s stenosis prediction and the report stenosis
or QCA stenosis. All three centers report continuous percentage
stenoses as part of their routine clinical care.
Neural networks were trained using Keras v.2.24 and Tensor-

Flow v.1.12. Final algorithms performance was reported in the Test
Dataset. All analyses were performed using Python 2.7.
Algorithms 1 and 2 were evaluated on the frame/image level

using precision (i.e. positive predictive value), recall (sensitivity)
and plot the performance using confusion matrices. We also
derived the F1 score for each class, which is the harmonic mean
between the precision and recall.
To evaluate Algorithm 3a and 3b, we calculated the area of

intersection over the area of union (IoU) between predicted
bounding-box coordinates and the expert-annotated bounding-box
coordinates of objects in each class in the test dataset. The IoU is the
ratio between the area of overlap over the area of union between the
predicted and annotated sets of coordinates36. An IoU≥0.5 signifies
at least 50% area of overlap between the predicted and true
bounding-boxes, which we considered a true positive. We then
report the performance of Algorithm 3a/b as the mean average
precision (mAP) metric, which represents the ratio of true positives
over true and false positives at different thresholds of IoU, for every
class37. A mAP value of 50% compares with state-of-the-art results for
this type of task16,35. We also present the mean average precision for
algorithm 3a and algorithm 3b by calculating the proportion of
correct class prediction with an IoU≥0.1 with our ground-truth
labeling across all our classes in our test dataset, as well as the
positive predictive value of stenosis localization using the report or
QCA dataset as ground truth.
To evaluate Algorithm 4, the primary metric of interest was the

average absolute error between the reported value (REPORT-
stenosis) and the predicted value (AI-stenosis) at the artery level.
This mirrors guideline-based standard clinical practice for stenosis
estimation, by measuring stenosis in multiple orthogonal projec-
tions and reporting the maximal degree of stenosis narrowing2,3.
Image-level AI-stenosis was averaged across a video to obtain
video-level AI-stenosis and compared against REPORT-stenosis
using the mean squared error. Pearson and Intra-class correlation
(ICC) and Bland-Altman42 plots were then calculated between the
REPORT-stenosis and AI-stenosis at the video-level and artery-
level. The reliability was classified as poor ( < 0.5), moderate
(0.50–0.75), good (0.76-0.90), or excellent (0.91-1.0).(52) Finally, we
present the mean squared error between REPORT-stenosis and AI-
stenosis at the video-level.
To predict binary “obstructive” coronary artery stenosis, defined

as ≥70% stenosis2,3, a threshold of 0.54 was used which optimized
the F1 score. Based on this, we also report the area under the
receiver operating characteristic curve (AUC), sensitivity, specificity
and diagnostic odds-ratio43, at the frame level, video level and
artery level, based on this threshold.
Confidence intervals for performance metrics were derived by

bootstrapping 80% of the test data over 1000 iterations to obtain
5th and 95th percentile values. We present the performance of
Algorithm 4 stratified by sex, by left and right coronary arteries, by
artery segment and by age group. We also present two-sided P
values for interaction (between the CathAI stenosis, the covariates
and reported stenosis calculated by the Wald test). We
categorized AI-stenosis and REPORT-stenosis in concordant and
discordant lesion groups based on the visual ≥70% cutoff. For
discordant lesions we present their prevalence, stratified by

coronary artery segment. For lesion/vessel level data, a mixed
effects logistic regression model as used to account for within-
subject correlation and for repeated angiograms.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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