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Detection of left ventricular systolic dysfunction from
single-lead electrocardiography adapted for portable and
wearable devices
Akshay Khunte 1, Veer Sangha1, Evangelos K. Oikonomou2, Lovedeep S. Dhingra 2, Arya Aminorroaya2, Bobak J. Mortazavi 3,4,
Andreas Coppi 4,5, Cynthia A. Brandt6,7, Harlan M. Krumholz 2,4,8 and Rohan Khera 2,4,6,9✉

Artificial intelligence (AI) can detect left ventricular systolic dysfunction (LVSD) from electrocardiograms (ECGs). Wearable devices
could allow for broad AI-based screening but frequently obtain noisy ECGs. We report a novel strategy that automates the
detection of hidden cardiovascular diseases, such as LVSD, adapted for noisy single-lead ECGs obtained on wearable and portable
devices. We use 385,601 ECGs for development of a standard and noise-adapted model. For the noise-adapted model, ECGs are
augmented during training with random gaussian noise within four distinct frequency ranges, each emulating real-world noise
sources. Both models perform comparably on standard ECGs with an AUROC of 0.90. The noise-adapted model performs
significantly better on the same test set augmented with four distinct real-world noise recordings at multiple signal-to-noise ratios
(SNRs), including noise isolated from a portable device ECG. The standard and noise-adapted models have an AUROC of 0.72 and
0.87, respectively, when evaluated on ECGs augmented with portable ECG device noise at an SNR of 0.5. This approach represents a
novel strategy for the development of wearable-adapted tools from clinical ECG repositories.
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INTRODUCTION
Left ventricular systolic dysfunction (LVSD) is associated with more
than 8-fold increase in heart failure risk and to a nearly 2-fold
increase in the risk of dying prematurely1. Early diagnosis can
effectively mitigate this risk2–4, but LVSD is frequently diagnosed
only after patients develop symptomatic disease due to the lack of
effective screening strategies5–7. Artificial intelligence (AI) can
detect left ventricular systolic dysfunction (LVSD) from electro-
cardiograms (ECGs), a diagnosis that has traditionally relied on
comprehensive echocardiography or other cardiac imaging, which
is resource-intensive and challenging to use for generalized
screening strategies8,9. Even though AI-ECG is a promising
screening tool for detecting LVSD, the algorithms have been
designed in clinically obtained 12-lead ECGs. Advances in
wearable and handheld technologies now enable the point-of-
care acquisition of single-lead ECG signals, paving the path for
more efficient and scalable screening tools with these AI-ECG
technologies10,11. This improved accessibility could enable
broader AI-based screening for LVSD, but the reliability of such
tools is limited by the presence of noise in data collected from
wearable and handheld devices12,13. Consequently, the perfor-
mance of models for detecting LVSD from portable device ECGs
may degrade in the real-world setting, with lower performance
than observed in the original single-lead derivatives of the clinical
development studies14,15.
In the absence of large, labelled datasets of wearable ECGs,

the development of algorithms that can detect underlying
structural heart disease on wearable devices relies on single-

lead information specifically adapted from 12-lead ECGs
extracted from clinical ECG libraries. However, this process
does not specifically account for the unique data acquisition
challenges encountered with wearable ECG, possibly contribut-
ing to their inconsistent diagnostic performance. Indeed,
several sources of noise exist in wearable data, arising from
factors such as poor electrode contact with the skin, movement
and muscle contraction during the ECG, and external electrical
interference16–19. This noise has practical implications, as
models demonstrate poorer performance when tested on all
available wearable ECG data as opposed to selected high-
quality subsets15. This marked difference in performance based
on noise has limited wearable device-based screening pro-
grams, with a wearable device-based atrial fibrillation screening
study disqualifying 22% of patients due to insufficient signal
quality12. Accounting for this noise is a prerequisite to develop
broadly accessible models that will form the basis of effective
screening programs for LVSD in the community.
In the present study, we hypothesize that a novel, noise-

enhanced training approach can boost the performance of
wearable-adapted, single-lead ECG models for accurate and
noise-agnostic identification of LVSD. Our method, which relies
on training on single-lead ECG data derived from clinical ECGs and
augmented with custom noise patterns developed in key
frequency ranges relevant for specific ECG noise signatures,
explicitly accounts for, and generalizes to multiple real-world noise
patterns, including noise isolated from a portable ECG device.

1Department of Computer Science, Yale University, New Haven, CT, USA. 2Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New
Haven, CT, USA. 3Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA. 4Center for Outcomes Research and Evaluation, Yale-New
Haven Hospital, New Haven, CT, USA. 5Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA. 6Section of Biomedical Informatics and Data Science, Yale
School of Medicine, New Haven, CT, USA. 7VA Connecticut Healthcare System, West Haven, CT, USA. 8Department of Health Policy and Management, Yale School of Public
Health, New Haven, CT, USA. 9Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA. ✉email: rohan.khera@yale.edu

www.nature.com/npjdigitalmed

Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00869-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00869-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00869-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00869-w&domain=pdf
http://orcid.org/0000-0003-3812-3260
http://orcid.org/0000-0003-3812-3260
http://orcid.org/0000-0003-3812-3260
http://orcid.org/0000-0003-3812-3260
http://orcid.org/0000-0003-3812-3260
http://orcid.org/0000-0002-5664-4126
http://orcid.org/0000-0002-5664-4126
http://orcid.org/0000-0002-5664-4126
http://orcid.org/0000-0002-5664-4126
http://orcid.org/0000-0002-5664-4126
http://orcid.org/0000-0002-2655-2095
http://orcid.org/0000-0002-2655-2095
http://orcid.org/0000-0002-2655-2095
http://orcid.org/0000-0002-2655-2095
http://orcid.org/0000-0002-2655-2095
http://orcid.org/0000-0002-5243-552X
http://orcid.org/0000-0002-5243-552X
http://orcid.org/0000-0002-5243-552X
http://orcid.org/0000-0002-5243-552X
http://orcid.org/0000-0002-5243-552X
http://orcid.org/0000-0003-2046-127X
http://orcid.org/0000-0003-2046-127X
http://orcid.org/0000-0003-2046-127X
http://orcid.org/0000-0003-2046-127X
http://orcid.org/0000-0003-2046-127X
http://orcid.org/0000-0001-9467-6199
http://orcid.org/0000-0001-9467-6199
http://orcid.org/0000-0001-9467-6199
http://orcid.org/0000-0001-9467-6199
http://orcid.org/0000-0001-9467-6199
https://doi.org/10.1038/s41746-023-00869-w
mailto:rohan.khera@yale.edu
www.nature.com/npjdigitalmed


RESULTS
Study population
There were 2,135,846 consecutive 12-lead ECGs performed at the
Yale-New Haven Hospital (YNHH) between 2015 and 2021,
440,072 of which had accompanying transthoracic echocardio-
grams (TTEs) acquired within 15 days of the ECG. We developed
the models on 385,601 of the ECG-TTE pairs, representing 116,210
unique patients, who had a complete 12-lead ECG recording (Fig.
S1). The signal from Lead I, the standard lead obtained from
wearable devices11, was then isolated from each 12-lead ECG. All
selected single-lead ECG recordings contained 10 s of Lead I signal
at 500 Hz. The single-lead ECGs were then split at the patient level
into training, validation, and test datasets (85%-5%-10%).
Of these ECGs, 56,894 (14.8%) were from patients with LVSD,

defined as having a paired TTE recording of LV ejection fraction
(LVEF) below 40%. Additionally, 40,240 (10.4%) had an LVEF
between 40% and 50%, and the remaining 288,467 (74.8%) had an
LVEF of 50% or higher. Patients had a median age of 68 years (IQR
56, 78) at the time of ECG recording and 50,776 (43.7%) of the
patients were women. A total of 75,928 (65.3%) patients were non-
Hispanic white individuals, 14,000 (12.0%) were non-Hispanic
Black, 9,349 (8.0%) were Hispanic, and 16,843 (14.5%) were from
other racial backgrounds (Table S1).

Detection of LV systolic dysfunction
The noise-adapted model was trained on a noise-augmented
development set. High and low pass filtering was used to isolate
five-minute samples of random gaussian noise within four different
frequency ranges encompassing real-world ECG noises, including
3–12Hz, 12–50 Hz, 50–100 Hz, and 100–150 Hz. The first of these four
ranges, 3–12 Hz, was selected to emulate motion artifact noises due
to tremors20,21, while the 12–50Hz and 100–150Hz frequency ranges
encompass more frequently occurring lower- and higher-frequency
muscle activation artifacts, respectively17,21. The 50–100 Hz domain
was selected to represent electrode motion noises21. Both this
domain and the 100–150 Hz frequency range, which contain
multiples of 50 and 60 Hz, the two mains frequencies used in ECG
acquisition17, also serve to emulate powerline interference noise17,21.
These noise samples were then used to generate the noise-
augmented development set, in which ECGs were selectively noised
with random, 10-second sequences of one of the four frequency-
banded gaussian noises at one of four signal-to-noise ratios (SNRs)
each time an ECG was loaded. The standard model was trained on
the original training set (described in Methods, Isolation of
Frequency-Banded Gaussian Noise and Methods, Noise
Augmentation).
Both models were trained to detect LVEF below 40%, a

threshold present in most heart failure diagnosis guidelines4,

and consistent with prior work8,22. Using DeLong’s test to compare
area under the receiver operating characteristic curves (AUROCs)
of the noise-adapted and standard models for detection of
LVEF < 40%23,24, the noise-adapted and standard models, with an
AUROC of 0.90 (95% CI 0.89–0.91) and 0.90 (95% CI 0.88–0.91),
respectively, performed similarly on a held-out test set without
added noise (p-value= 0.60). Area under the precision-recall curve
(AUPRC) on this held-out test set was 0.46 and 0.48, respectively.
With separate threshold values selected that achieved sensitivity
of 0.90 in the validation set without added noise for each model,
the noise-adapted model had specificity and sensitivity of 0.68
and 0.92, respectively, and a PPV and NPV of 0.20 and 0.99,
respectively, in the held-out test set. The standard model had
sensitivity and specificity of 0.69 and 0.91, respectively, and a PPV
and NPV of 0.21 and 0.99, respectively. The noise-adapted model’s
performance was comparable to the standard model across
subgroups of age, sex, and race (Table 1).

Standard and noise-adapted model performance on noised
ECGs
The performance of each model was also tested on four distinct
real-world noise recordings, including three half-hour recordings
containing electrode motion, muscle artifact, and baseline wander
noise sourced from the publicly available MIT-BIH noise stress test
database17. Both models were tested on separate versions of the
held-out test set augmented with each of these 3 real-world
noises at seven different signal-to-noise ratios (described in
Methods, Acquisition of Real-World, Public ECG Noise Recordings,
and Methods, Noise Augmentation).
For the noise-adapted model, model performance was compar-

able across all SNRs for each MIT-BIH noise with AUROC between
0.86–0.89, 0.87–0.89, and 0.88–0.89 for electrode motion, muscle
artifact, and baseline wander noise, respectively, for SNRs from 0.5
to 2.0. The standard model had lower performance across all SNRs
for every noise, with AUROC between 0.79–0.86, 0.81–0.86, and
0.80–0.86 for electrode motion, muscle artifact, and baseline
wander noise, respectively (Table 2 and Fig. 1).

Standard and noise-adapted performance with portable ECG
device noise
Real-world portable ECG device noise, isolated using a Fast Fourier
Transform-based technique on a 30-second, single-lead ECG
recording from a KardiaMobile 6 L portable ECG device, was also
used to evaluate both models (Methods, Noise Extraction from a
Portable Device ECG). Each model was used to generate
predictions for noise-augmented ECGs across all SNRs, with the
noise-adapted model’s AUROC ranging from 0.87 to 0.89. The
standard model’s performance was significantly lower at each

Table 1. Performance of noise-adapted model on test ECGs without noise across demographic subgroups.

Labels PPV NPV Specificity Sensitivity AUROC (95% CI) AUPRC OR

All 0.203 0.990 0.676 0.924 0.896 (0.886–0.905) 0.455 25.195

Male 0.231 0.986 0.653 0.916 0.881 (0.867–0.894) 0.478 20.508

Female 0.163 0.994 0.716 0.923 0.913 (0.898–0.927) 0.404 30.318

White 0.204 0.990 0.675 0.922 0.894 (0.883–0.906) 0.445 24.544

Black 0.211 0.990 0.596 0.945 0.880 (0.854–0.906) 0.461 25.407

Hispanic 0.208 0.992 0.740 0.923 0.917 (0.881–0.953) 0.535 34.158

Other 0.218 0.995 0.772 0.941 0.932 (0.900–0.964) 0.545 54.122

65 or older 0.198 0.989 0.606 0.936 0.879 (0.865–0.893) 0.432 22.611

Under 65 0.209 0.990 0.731 0.910 0.908 (0.895–0.921) 0.481 27.543

PPV positive predictive value, NPV negative predictive value, AUROC area under receiver operating characteristic curve, CI confidence interval, AUPRC area
under precision-recall curve, OR odds ratio.
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SNR, ranging from 0.72 to 0.83. This difference was most
pronounced at an SNR of 0.5, at which the noise-adapted model
retained an AUROC of 0.87 (95% CI 0.86–0.88) and the standard
model had an AUROC of 0.72 (95% CI 0.71–0.74, p-value < 0.001)
(Table 2 and Fig. 1).

Standard and noise-adapted performance with multiple
simultaneous noise types
Three unique, multiple-noise recordings were generated by
adding the MIT-BIH electrode motion, baseline wander, and
muscle artifact noise recordings to the portable ECG device noise
at an SNR of 1.0. These generated noise recordings were then
used to evaluate each model’s performance on ECGs augmented
with multiple-noise signatures simultaneously. For the noise-
adapted model, model performance was comparable across all
SNRs for the combinations of portable ECG device noise and
electrode motion, muscle artifact, and baseline wander noise with
AUROC between 0.86–0.89, 0.87–0.89, and 0.88–0.89, respectively,
for SNRs from 0.5 to 2.0. The standard model had lower
performance across all SNRs for every noise combination, with
AUROC between 0.77–0.85, 0.77–0.85, and 0.78–0.86 for portable
ECG device noise combined with electrode motion, muscle
artifact, and baseline wander noise, respectively (Table S3).

Explaining performance differences in standard and noise-
adapted models
To gain mechanistic insights into the variation in performance for
standard and noise-augmented data by different models, we
visually and quantitatively assessed differences in the embedding
outputs of both noised and standard ECGs for both standard and
noise-adapted models. For this, we focused on the output of the
320-dimensional last fully connected layer of each model before
generating final predictions. These predictions were collected for
five different versions of the same 1000 ECGs—once with the
original ECG, and once for each of the four real-world noises. The
variation in these predictions due to the addition of noise was
visualized by using uniform manifold approximation and

projection (UMAP)25, which constructs a two-dimensional repre-
sentation of the 320-dimension prediction vectors for each noise
and model combination. The magnitude of the shift in the UMAP
projection due to noise augmentation, which approximates the
shift in the underlying prediction vectors, corresponds to each
models’ resilience to a shift in predicted probabilities due to noise
and artifacts in the signal. This shift was also quantitatively
assessed using scaled Euclidean distances between prediction
vectors for the same ECG with and without each type of noise for
both models.
For the standard model, the predictions for each of the noised

ECGs were visually distinct from those of the standard ECGs,
despite being for the same set of 1000 ECGs, and differing only on
the added noise. However, for the noise-adapted model, there was
no visual separation in the model’s predictions between standard
and noised ECGs, indicating that the predictions of the noise-
adapted model are more resilient than those of the standard
model (Fig. 2).
Quantitatively, the scaled Euclidean distances between predic-

tions for noised and standard versions of the ECGs were lower for
the noise-adapted model across all four noises. In the ECG with
noise derived from portable ECGs, for instance, the average scaled
Euclidean distance for the standard model was 0.50 (95% CI
0.49–0.51) and for the noise-adapted model was 0.41 (95% CI
0.40–0.42). Similarly for the baseline wander it was 0.52 (0.51–0.53)
and 0.36 (0.36–0.37), respectively (Table 3).

DISCUSSION
We developed a novel strategy that automates the detection of
hidden signatures of cardiovascular diseases, such as LVSD,
adapted for noisy single-lead ECGs obtained on wearable and
portable devices. Using this approach, we developed a noise-
adapted deep-learning algorithm that accurately identifies LV
systolic dysfunction from single-lead ECG data and was resilient to
significant noisy artifacts, despite not encountering the specific
noises in the model development process. Specifically, the
algorithm demonstrates excellent discriminatory performance

Table 2. Performance of noise-adapted and standard model on noise-augmented test set ECGs across different types of noise.

Model Noise SNR PPV NPV Specificity Sensitivity AUROC (95% CI) AUPRC

Noise-adapted None N/A 0.203 0.990 0.676 0.924 0.896 (0.886–0.905) 0.455

Portable ECG 0.5 0.152 0.993 0.523 0.956 0.871 (0.861–0.882) 0.392

Portable ECG 2 0.188 0.992 0.636 0.940 0.889 (0.880–0.899) 0.439

Electrode motion 0.5 0.126 0.993 0.395 0.971 0.858 (0.846–0.869) 0.361

Electrode motion 2 0.167 0.991 0.579 0.945 0.885 (0.875–0.895) 0.426

Muscle artifact 0.5 0.175 0.989 0.608 0.927 0.871 (0.861–0.882) 0.389

Muscle artifact 2 0.194 0.990 0.654 0.930 0.891 (0.881–0.900) 0.449

Baseline wander 0.5 0.186 0.990 0.634 0.932 0.883 (0.873–0.893) 0.427

Baseline wander 2 0.201 0.991 0.669 0.929 0.892 (0.883–0.902) 0.457

Standard None N/A 0.207 0.988 0.688 0.910 0.895 (0.884–0.905) 0.475

Portable ECG 0.5 0.091 0.981 0.132 0.972 0.723 (0.706–0.739) 0.200

Portable ECG 2 0.125 0.991 0.398 0.958 0.834 (0.822–0.847) 0.329

Electrode motion 0.5 0.088 0.988 0.079 0.990 0.792 (0.779–0.806) 0.239

Electrode motion 2 0.152 0.988 0.537 0.925 0.855 (0.843–0.866) 0.333

Muscle artifact 0.5 0.100 0.991 0.210 0.979 0.807 (0.795–0.820) 0.245

Muscle artifact 2 0.181 0.988 0.631 0.912 0.864 (0.853–0.875) 0.344

Baseline wander 0.5 0.095 0.993 0.158 0.987 0.802 (0.789–0.816) 0.236

Baseline wander 2 0.169 0.986 0.599 0.908 0.855 (0.843–0.866) 0.322

SNR signal-to-noise ratio, PPV positive predictive value, NPV negative predictive value, AUROC area under receiver operating characteristic curve, CI confidence
interval, AUPRC area under precision-recall curve.
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even on ECGs containing twice as much noise as signal, features
that make it ideal for wearable device-based screening strategies.
Notably, the algorithm was developed and validated in a diverse
population and demonstrates consistent performance across age,
sex, and race subgroups. The noise-adapted approach defines a
novel paradigm on how to build robust, wearable-ready, single-
lead ECG cardiovascular screening models from clinical ECG
repositories, with significant potential to expand the screening of
LV structural cardiac disorders to low-resource settings with
limited access to hospital-grade equipment.
Noise-adapted training of deep-learning algorithms represents a

relatively novel field of AI research, focused on expanding the use
of AI tools to everyday life by accounting for noise and artifacts
that may preclude their reliable use in this setting. Models trained
on clinical ECGs have been applied to wearable device ECGs, but
have traditionally shown significantly lower performance on
wearable device ECGs than on held-out clinical ECG test sets14,15.
Additionally, models which have successfully generalized to
wearable device ECGs have relied on automated algorithms to
select high-quality subsets of available ECG data, with reduced
performance when evaluated on all collected ECGs15,26. While such
algorithms can improve performance, this approach has limita-
tions. Studies have shown high rates of poor signal quality among
data recorded by wearable devices, and significant variation in
quality across different manufacturers13. Excluding large portions
of collected data may limit the scope of community-wide
screening programs, which may use multiple different devices to
collect ECGs and may not be able to collect multiple ECGs per
person until a certain quality threshold has been met. A model
which generalizes to ECGs with varying types and levels of noise
may be necessary for implementation in such settings.
Due to the lack of publicly available wearable device ECG

datasets, training models using wearable ECG data directly is
challenging. The current 12-lead ECG-based models are limited to
investments by health systems to incorporate tools into digital
ECG repositories, and thereby limited to individuals who already
seek care in those systems. In addition to the clinically indicated
ECGs limiting the scope of screening, even this technology may
not be available or cost-effective for smaller hospitals and clinics
with limited access to digital ECGs.

Wearable devices allow obtaining ECGs that are more accessible
and allow for community-wide screening, an important next step
in the early detection of common and rare cardiomyopathies. On
this note, our approach represents a major advancement from a
methodological and clinical standpoint. First, it augments clinical
ECG datasets in such way that it enables reliable modelling of
noisy, wearable-derived, single-lead ECG signals. Second, it
demonstrates that through noise-augmentation, single-lead ECG
models can retain the prognostic performance of 12-lead ECG
models, as shown here for the task of predicting LV systolic
dysfunction. Additionally, this approach avoids the unnecessary
exclusion of collected data, which increases its generalizability
across different device platforms and is particularly important for
community-wide screening programs, which may not be able to
collect multiple ECGs per person and consistently meet high signal
quality thresholds for each participant.
Our approach also offers a strategy to examine the process by

which the models achieve better performance. Compared with the
current approach of developing models, our noise-adapted
approach resulted in selective removal of noise from signal, even
for noises the model had not encountered before, while
preserving the model’s robustness in discerning complex hidden
labels. This strategy is particularly important for a model intended
for use on wearable devices, which capture ECGs in unpredictable
settings with varying types and magnitudes of noise.
This study has several limitations. First, this model was

developed using ECGs from patients who had both an ECG and
a clinically indicated echocardiogram. Though this population
differs from the intended broader real-world use of this algorithm
as a screening method for LV systolic dysfunction among
individuals with no clinical disease, the consistent performance
across demographic subgroups suggests robustness and general-
izability of the model’s performance. Nevertheless, prospective
assessments in the intended screening setting are warranted.
Second, the model performance may vary by the severity of LV
systolic dysfunction. Though the LVEF threshold of 40% was
selected due to its therapeutic implications4, it is possible that the
model performance among patients with an LVEF near to this
cutoff differed compared with those individuals with LVEF
significantly higher or lower than 40%. This might also be
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Fig. 1 Standard and noise-adapted model performance at increasing levels of noise. AUROC area under receiver operating characteristic
curve, ECG electrocardiogram.
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attributable to a lack of precision in LVEF measurement by
echocardiography, which has shown to be less precise relative to
other approaches, such as magnetic resonance imaging27,28.
Finally, four distinct types of randomly generated noise were
used during training and randomly selected sequences of four
real-world noises were used at multiple signal-to-noise ratios in
the evaluation of performance on the test set. Though this
suggests that the model performance generalizes well to unseen
noise, we cannot ascertain whether it maintains performance on
every type and magnitude of noise possible on wearable devices,
including any device-specific noise signatures.
We developed a novel strategy that automates the detection of

hidden signatures of cardiovascular diseases, such as LVSD,
adapted for noisy single-lead ECGs obtained on wearable and

portable devices. Using this approach, we developed a single-lead
ECG algorithm that accurately identifies LV systolic dysfunction
despite significant noisy artifacts, suggesting a novel approach for
the development of wearable-adapted tools from clinical ECG
repositories.

METHODS
Study design
The study was reviewed by the Yale Institutional Review Board,
which approved the study protocol and waived the need for
informed consent as the study represents secondary analysis of
existing data. The data cannot be shared publicly.

Fig. 2 UMAP projections of last-layer predictions of standard and noise-adapted model for standard and noise-augmented ECGs. UMAP
uniform manifold approximation and projection, ECG electrocardiogram.
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The study was designed as a retrospective analysis of a cohort
of 116,210 patients, 18 years of age or older, who underwent
clinically indicated ECG with paired echocardiograms within
15 days of the index ECG at the Yale-New Haven Health hospital.
To ensure the generalizability of our models, we applied no
exclusion criteria, including patients of all sexes, races, and
ethnicities (Table S1).

Data source and population
Raw voltage data for lead I was isolated from 12-lead ECGs
collected at the Yale-New Haven Hospital (YNHH) between 2015
and 2021. Lead I was chosen as it represents the standard lead
obtained from wearable devices11. Each clinical ECG was recorded
as a standard 10-second, 12-lead recording with a sampling
frequency of 500 Hz. These ECGs were predominantly recorded
using Philips PageWriter and GE MAC machines. Patient identifiers
were used to link ECGs with an accompanying transthoracic
echocardiogram within 15 days of the ECG. These echocardio-
grams had been evaluated by expert cardiologists, and the LVEF
defined in their interpretation was identified. If multiple echo-
cardiograms were performed within the 15-day window, the one
nearest to each ECG was used to define the LVEF for the model
development and evaluation.

Data preprocessing
A standard preprocessing strategy was used to isolate signal from
lead I of 12-lead ECGs, that included median pass filtering and
scaling to millivolts. The Lead I signal was then isolated from each
ECG, and a one second median filter was calculated for and
subtracted from each single-lead ECG to remove baseline drift.
The amplitudes of each sample in each recording were then
divided by a factor of 1000 to scale the voltage recordings to
millivolts.

Isolation of frequency-banded Gaussian noise
Random gaussian noise within four distinct frequency ranges was
isolated to train the noise-adapted model. High pass and low pass
filters were applied to five minutes of random gaussian noise to
isolate noise within each of the frequency ranges, which included
3–12 Hz, 12–50 Hz, 50–100 Hz, and 100–150 Hz. Each frequency
range was specifically selected to model an element of real-world
ECG noises. 3–12 Hz models the motion artifact noises attributable
to tremors, which occur within this frequency range20,21. The
50–100 Hz domain reflects consistent electrode contact noise21,
while the 12–50 Hz and 100–150 Hz ranges contain the lower and
higher-frequency muscle noises, respectively17,21. Additionally, the
50–100 and 100–150 Hz ranges each contain multiples of 50 and
60 Hz, the two mains frequencies used in ECG acquisition17, which
make up powerline interference noise17,21 (Fig. 3).

Acquisition of real-world, public ECG noise recordings
Four real-world noise records, not included during training of
either model, were used to test the models. These included three

half-hour noise recordings from the MIT-BIH Noise Stress Test
Database. The MIT-BIH dataset noises, each obtained at a
sampling frequency of 360 Hz, represent three types of noises
frequently encountered in ECGs: baseline wander noise, a low-
frequency noise produced by lead or subject movement17, muscle
artifact, caused by muscle contractions21, and electrode motion
artifact, which is caused by irregular movement of the electrodes
during ECG recordings17,21. Each of these recordings were
obtained using a standard 12-lead ECG recorder by positioning
the electrodes on patient limbs such that the patients’ ECG signals
were not visible in the recordings (Fig. 4)17.

Noise extraction from a portable device ECG
Real-world noise was also isolated from a 30-s, 300 Hz, single-lead
ECG recording obtained using a KardiaMobile 6 L portable ECG
device. The noise was extracted from the recording by applying a
modified version of the Fourier transform-based approach
previously used to denoise ECGs29. First, a fast Fourier transform
(FFT) was applied to a 30-second ECG recording and the result was
plotted in the frequency domain. Then, a threshold was manually
selected to separate the high- and low-amplitude frequencies,
which contained signal and noise, respectively. Finally, instead of
computing the inverse FFT on the frequencies with amplitudes
greater than this threshold, an inverse FFT was applied to all
frequencies with amplitudes below the selected threshold,
yielding the noise (Fig. 5).

Noise augmentation
While training the noise-adapted model, each ECG was included in
the training dataset twice, with one of the four frequency ranges
for the generated noise randomly selected each time an ECG was
loaded. A 10-s sequence was then randomly selected from the full
five-minute length of the selected noise recording. This noise
sequence was then added to the standard ECG at a signal-to-noise
ratio (SNR) randomly selected from a set of SNRs, including 0.50,
0.75, 1.00, and 1.2530.
During model evaluation, the noised versions of the test set

were generated by following the same procedure as with the
noised training set with several key modifications. First, the noise
added to ECGs in the test set was sourced from either the baseline
wander, electrode motion, or muscle artifacts noise recordings
from the MIT-BIH dataset or from the 30-s noise sample from the
KardiaMobile 6 L portable ECG device. Second, the MIT-BIH noises
and the portable ECG noise were all up-sampled from their
original sampling frequencies, 360 Hz and 300 Hz, respectively, to
a 500 Hz sampling frequency to match that of the clinical device
ECGs. Third, the specific 10-second sequence of noise added to
each ECG in the test set was randomly selected once and defined
for each ECG, ensuring that every time any model was tested at
any SNR for any specific noise, each individual ECG was always
loaded with the same randomly selected sequence of noise.
Model performance was evaluated separately for ECGs augmen-
ted with each noise type on a larger set of SNRs, including all the
SNRs used in training and SNRs of 1.50, 1.75, and 2.00. Three

Table 3. Scaled Euclidean distance between last-layer predictions of noise-adapted and standard models for noise-augmented and standard ECGs
across different noise types at an SNR of 0.5.

Noise type Standard model scaled euclidean distance (95% CI) Noise-adapted model scaled euclidean distance (95% CI) P-value

Portable ECG 0.50 (0.49–0.51) 0.41 (0.40–0.42) <0.001

Electrode motion 0.56 (0.55–0.58) 0.49 (0.48–0.50) <0.001

Muscle artifact 0.53 (0.52–0.54) 0.40 (0.39–0.41) <0.001

Baseline wander 0.52 (0.51–0.53) 0.36 (0.36–0.37) <0.001

SNR signal-to-noise ratio, ECG electrocardiogram, CI confidence interval, P-value probability value calculated using the paired t-test.
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additional multiple-noise recordings were generated by separately
combining a randomly selected, 10-second segment of portable
ECG noise with randomly selected, 10-second segments of each of
the three MIT-BIH noise recordings at a 1:1 ratio. These multiple-
noise recordings were then used to evaluate both models’
performance on ECGs augmented with multiple simultaneous
noise signatures with the same larger set of SNRs.

Outcome label
Each ECG included in the dataset had a corresponding LVEF value
from a paired echocardiogram within 15 days of the ECG. The
cutoff for low LVEF was set as LVEF < 40%, a threshold present in
most heart failure diagnosis guidelines4, and consistent with prior
work in this space8,22.

Model training
All unique patients represented in the set of ECGs were then
randomly subset on the patient level into training, validation, and
held-out test sets (85%, 5%, 10%). We built and tested multiple
convolutional neural network (CNN) models with varying numbers
and sizes of convolutional layers and total model parameters. We
selected the architecture yielding the highest area under the
receiver operator characteristic (AUROC) curve on the validation
set with the fewest number of parameters for the standard model.
This architecture consisted of a (5000, 1, 1) input layer,
corresponding to a 10-s, 500 Hz, Lead I ECG, followed by seven
two-dimensional convolutional layers, each of which were
followed by a batch normalization layer31, ReLU activation layer,
and a two-dimensional max-pooling layer. The output of the
seventh convolutional layer was then taken as input into a fully
connected network consisting of two dense layers, each of which

Standard ECG

Fig. 3 Noise extraction and ECG augmentation for noise-adapted training. ECG electrocardiogram, Hz hertz, s seconds.
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were followed by a batch normalization layer, ReLU activation
layer, and a dropout layer with a dropout rate of 0.532. The output
layer was a dense layer with one class and a sigmoid activation
function. Model weights were calculated for the loss function such
that learning was not affected by the lower frequency of
LVEF < 40% compared to the incidence of LVEF ≥ 40% using the
effective number of samples class re-weighting scheme33 (Fig. S2).
Both models were trained on the Keras framework in Tensor-

Flow 2.9.1 and Python 3.9 using the Adam optimizer. First, the
models were trained at a learning rate of 0.001 for one epoch. The
learning rate was then lowered to 0.0001 and training was
continued until performance on the validation set did not improve
for three consecutive epochs. The epoch with the highest
performance on the validation set was selected for each model.

Learning representation assessments for noise-adapted
model
To visualize the variation between predictions for standard and
noise-augmented data for each model, we first modified both the
standard and noise-adapted models by removing their final output
layers so both models instead produced the 320-dimensional
vector output of the model’s final fully connected layer. We then
randomly selected a 1000 ECG subset from the held-out test set.
For each of the two models, we generated the 320-dimension
prediction vectors five times for each of the 1000 ECGs—once
without noise, and once augmented at an SNR of 0.5 for each of
the four noises used for testing. We then visualized the variation in
the predictions separately for the standard and noise-adapted
models using uniform manifold approximation and projection
(UMAP), which constructs a two-dimensional representation of the
320-dimension prediction vectors25. The variation in predictions

was numerically assessed by the pair-wise calculation of the
Euclidean distances between the 320-dimensional prediction
vectors for the standard and noised data for each of the four
noises. These Euclidean distances were then scaled on a per-model
and per-noise basis by dividing by the total range of pair-wise
Euclidean distances for each model and noise combination. The
average scaled Euclidean distance and a 95% confidence interval
was then calculated for each model and noise combination.

Statistical analysis
Summary statistics are presented as counts (percentages) and
median (interquartile range, IQR), for categorical and contin-
uous variables, respectively. Model performance was evaluated
in the held-out test set both with and without added real-world
noises. We used area under receiving operation characteristics
(AUROC) to measure model discrimination. We also assessed
area under precision-recall curve (AUPRC), sensitivity, specifi-
city, positive predictive value (PPV), negative predictive value
(NPV), and diagnostic odds ratio, and chose threshold values
based on cutoffs that achieved sensitivity of 0.90 in validation
data. We used a DeLong’s test to compare AUROCs of the
noise-adapted and standard models for each noise at each
signal-to-noise ratio23. 95% confidence intervals for AUROC
were calculated using DeLong’s algorithm23,24. A paired t-test
was used to compute the probability of overlap for the scaled
Euclidean distances between last-layer projections of the
noise-adapted and standard models. All analyses were per-
formed using Python 3.9 and level of significance was set at an
alpha of 0.05.

Fig. 4 Noise augmentation of test set with MIT-BIH real-world noises. ECG electrocardiogram, s seconds.
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