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CARE as a wearable derived feature linking circadian
amplitude to human cognitive functions
Shuya Cui 1,2,9, Qingmin Lin 3,9, Yuanyuan Gui1,2, Yunting Zhang4, Hui Lu 1,2, Hongyu Zhao 5, Xiaolei Wang 1,2,10✉,
Xinyue Li 6,10✉ and Fan Jiang 3,7,8,10✉

Circadian rhythms are crucial for regulating physiological and behavioral processes. Pineal hormone melatonin is often used to
measure circadian amplitude but its collection is costly and time-consuming. Wearable activity data are promising alternative, but
the most commonly used measure, relative amplitude, is subject to behavioral masking. In this study, we firstly derive a feature
named circadian activity rhythm energy (CARE) to better characterize circadian amplitude and validate CARE by correlating it with
melatonin amplitude (Pearson’s r= 0.46, P= 0.007) among 33 healthy participants. Then we investigate its association with
cognitive functions in an adolescent dataset (Chinese SCHEDULE-A, n= 1703) and an adult dataset (UK Biobank, n= 92,202), and
find that CARE is significantly associated with Global Executive Composite (β= 30.86, P= 0.016) in adolescents, and reasoning
ability, short-term memory, and prospective memory (OR= 0.01, 3.42, and 11.47 respectively, all P < 0.001) in adults. Finally, we
identify one genetic locus with 126 CARE-associated SNPs using the genome-wide association study, of which 109 variants are used
as instrumental variables in the Mendelian Randomization analysis, and the results show a significant causal effect of CARE on
reasoning ability, short-term memory, and prospective memory (β= -59.91, 7.94, and 16.85 respectively, all P < 0.0001). The present
study suggests that CARE is an effective wearable-based metric of circadian amplitude with a strong genetic basis and clinical
significance, and its adoption can facilitate future circadian studies and potential intervention strategies to improve circadian
rhythms and cognitive functions.
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INTRODUCTION
Circadian rhythms synchronized by the rotation of the Earth are
24-h self-sustained oscillations that can influence a range of
physiological responses and behavioral processes, such as
hormone secretion and sleep-wake cycles1–5. The circadian
rhythms are regulated by a complex transcriptional feedback
loop involving the “core circadian clock” in the suprachiasmatic
nucleus (SCN) of the hypothalamus and the other peripheral
clocks throughout the body6,7. Rhythmic fluctuations driven by
the core clock could be illustrated as a sinusoidal curve with a
period of about 24 h8, and hence the circadian rhythms are
typically described using three key parameters (Supplementary
Fig. 1): period (the length of one cycle), phase (the timing of a
reference point in the cycle relative to a fixed event), and
amplitude (the difference between crest and trough values of the
cycle)9. While methods for measuring period10,11 and phase12–17

are well-established and accurate in both laboratory and field
studies, assessing circadian amplitude remains challenging.
Although there is no accepted gold standard for measuring the

circadian amplitude18, the amplitude of pineal hormone melato-
nin has been used as one of its reliable biomarkers, and changes
in the melatonin amplitude are also observed in forced desyn-
chrony studies19,20. However, assessing the melatonin amplitude

requires a melatonin profile of at least 24 h with continuous
collection of blood or saliva samples21. Given that the collection
protocol of melatonin is costly, labor-intensive, and infeasible for
large population studies and intensive follow-up cohort studies in
natural settings, researchers have attempted to find alternative
methods to characterize circadian amplitude using wearable
sensor data22,23.
Wearable devices can continuously monitor the physical activity

of an individual for multiple days in a natural environment, and
thus can solve the challenges present in melatonin sampling. The
main rationale is based on the biological knowledge that both the
melatonin rhythms and rest-activity cycles are strongly influenced
by the core circadian clock and hence they may share similar
oscillation patterns8. Nevertheless, accelerometer data also have
some drawbacks. A major challenge is that the wearable device-
derived circadian amplitude is influenced by voluntary behavioral
changes in the natural environment that are not related to
circadian rhythms12,17,18. More importantly, the most commonly
used accelerometer-derived measure, relative amplitude, is
calculated solely based on the differences between the highest
and lowest activity counts22,24, which has lost rich information of
the high-dimensional activity data. Furthermore, the direct
relationship between the circadian amplitude characterized by

1State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics,
School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China. 2SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for
Translational Medicine, Shanghai Jiao Tong University, Shanghai, China. 3Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institution, Shanghai
Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. 4Developmental and Behavioral Pediatrics, Child Health Advocacy Institute,
Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. 5Department of Biostatistics, Yale University, New Haven, CT, USA.
6School of Data Science, City University of Hong Kong, Hong Kong SAR, China. 7MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, School of
Medicine, Shanghai Jiao Tong University, Shanghai, China. 8Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China. 9These authors contributed
equally: Shuya Cui, Qingmin Lin. 10These authors jointly supervised this work: Xiaolei Wang, Xinyue Li, Fan Jiang. ✉email: thundawner@sjtu.edu.cn; xinyueli@cityu.edu.hk;
fanjiang@shsmu.edu.cn

www.nature.com/npjdigitalmed

Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00865-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00865-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00865-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00865-0&domain=pdf
http://orcid.org/0000-0002-0871-3529
http://orcid.org/0000-0002-0871-3529
http://orcid.org/0000-0002-0871-3529
http://orcid.org/0000-0002-0871-3529
http://orcid.org/0000-0002-0871-3529
http://orcid.org/0000-0003-3424-9659
http://orcid.org/0000-0003-3424-9659
http://orcid.org/0000-0003-3424-9659
http://orcid.org/0000-0003-3424-9659
http://orcid.org/0000-0003-3424-9659
http://orcid.org/0000-0001-8347-0830
http://orcid.org/0000-0001-8347-0830
http://orcid.org/0000-0001-8347-0830
http://orcid.org/0000-0001-8347-0830
http://orcid.org/0000-0001-8347-0830
http://orcid.org/0000-0003-1195-9607
http://orcid.org/0000-0003-1195-9607
http://orcid.org/0000-0003-1195-9607
http://orcid.org/0000-0003-1195-9607
http://orcid.org/0000-0003-1195-9607
http://orcid.org/0000-0002-9750-1906
http://orcid.org/0000-0002-9750-1906
http://orcid.org/0000-0002-9750-1906
http://orcid.org/0000-0002-9750-1906
http://orcid.org/0000-0002-9750-1906
http://orcid.org/0000-0003-1972-9021
http://orcid.org/0000-0003-1972-9021
http://orcid.org/0000-0003-1972-9021
http://orcid.org/0000-0003-1972-9021
http://orcid.org/0000-0003-1972-9021
http://orcid.org/0000-0003-0634-101X
http://orcid.org/0000-0003-0634-101X
http://orcid.org/0000-0003-0634-101X
http://orcid.org/0000-0003-0634-101X
http://orcid.org/0000-0003-0634-101X
https://doi.org/10.1038/s41746-023-00865-0
mailto:thundawner@sjtu.edu.cn
mailto:xinyueli@cityu.edu.hk
mailto:fanjiang@shsmu.edu.cn
www.nature.com/npjdigitalmed


accelerometer data and the circadian amplitude depicted by
melatonin data has not been well studied. Thus, it is critical to
establish and validate a sound method for extracting accurate
information about circadian amplitude from high-dimensional
accelerometer data to fully leverage the rich high-dimensional
information without the masking effect of behaviors.
Changes in the amplitude of melatonin have been widely

observed in age-related cognitive impairments and neurodegen-
erative diseases9,25–28. However, few studies investigated the
association between circadian amplitude and cognitive function in
general population. Given that the circadian rhythms vary greatly
during adolescence and many mental disorders also first appear in
the adolescent stage29,30, and that the circadian rhythms are
susceptible to heavy life and work during adulthood, it is
necessary to examine the correlation between circadian amplitude
and cognitive performance at these stages of life31. Furthermore,
currently there is no evidence to support a causal relationship
between circadian amplitude and cognitive performance9,32. One
prior study tried to study the causal relationship, but it only
measured the relative amplitude and found that it was only
associated with a small number of genetic variants that could not
be used to investigate the causal relationship using Mendelian
randomization (MR) analysis33. Thus, it is necessary to develop a
metric of circadian amplitude to well capture circadian amplitude
information with a strong genetic basis and clinical relevance,
which can allow us to infer the causal relationship between
circadian rhythms and cognitive functions.
Therefore, in this study we developed an amplitude metric for

circadian rhythms based on the accelerometer data and explored
its clinical potential in two large-scale databases with different age
groups. The workflow chart is shown in Fig. 1. First, we proposed a
pipeline to derive a metric called circadian activity rhythm energy
(CARE) which can remove the influence of behavioral factors using
spectral analysis approaches, and then we validated the metric
CARE with the melatonin amplitude. Secondly, we applied CARE to
two accelerometer datasets with 1703 adolescents and 92,202
adults, respectively, to examine the relationship between CARE
and cognitive functions. Finally, we explored the causal relation-
ship between CARE and cognitive performance through a
genome-wide association study (GWAS) and MR causal analysis.

RESULTS
A wearable-derived measure of circadian amplitude: CARE
In this paper, we developed a pipeline to extract a metric CARE
(i.e., circadian activity rhythm energy) to accurately quantify the
circadian amplitude at a large scale with low costs. CARE can
extract the circadian feature via acceleration signal decomposi-
tion, circadian sub-signal extraction, and energy estimation of the
sub-signals from accelerometer data (details shown in Fig. 2).
The accelerometer data can be considered as a composition of

sub-signals with different frequencies. In order to characterize
circadian rhythms with behavioral masking effects removed, we
decomposed the data of activity counts and extracted the sub-
signals with a period of ~24 h to represent the endogenous
circadian oscillation. Among a list of signal decomposition
approaches such as Fourier and wavelet analyses, we chose
singular spectrum analysis (SSA, see a detailed description in
Fig. 2c) in our study for its data adaptive property34,35 and better
performance compared to Fourier and wavelet transform meth-
ods. Inspired by previous decomposition analysis on acceler-
ometer data23,36, we used the relative energy of the circadian sub-
signal with respect to the original signal as an estimate of the
circadian amplitude. For a discrete-time signal x(t), energy is

defined as the envelope of squared signal magnitude (Eq. (1)):

Energy ¼ <x tð Þ; xðtÞ> ¼
Xt0þT

t0

ðx tð ÞÞ2 (1)

where t0 is the starting time point of x tð Þ and T is the time span of
x tð Þ. The unit of x tð Þ and energy are (activity counts)/minute and
(activity count)2/min2, respectively.
In summary, CARE is calculated using the following equation

(Eq. (2)):

CARE ¼ Energy of 24-h signal
Total energy of activity signal

¼
P

i2IjjXijj2F
jjXjj2F

(2)

where jjXijj2F is Frobenius norm of the ith sub-signal, I is the subset
of indices corresponding to the 24-h signal, and jjXjj2F is Frobenius
norm of the raw activity signal. It should be noted that CARE is
expressed as a ratio ranging from 0 to 1 and is unitless.
Furthermore, to effectively capture the dominant temporal scales
and variability in the accelerometer data, and to obtain a reliable
estimate of the autocovariance matrix feature, we required a
minimum input data length of three days to calculate the CARE
metric.

Validating CARE with melatonin amplitude
We validated the feature CARE by examining its association with
the melatonin amplitude in a dataset of 33 healthy participants
aged 23–61 years, where accelerometer activity and melatonin
were simultaneously collected (Table 1). Among the 33 partici-
pants, mean CARE was 0.26 (SD= 0.05; range 0.14–0.35), mean
relative amplitude was 0.86 (SD= 0.07; range 0.67–0.96), and
mean melatonin amplitude was 11.44 pg/ml (SD= 6.81; range
1.02–28.27). The correlation analysis revealed that the melatonin
amplitude was only significantly associated with CARE (Pearson’s
r= 0.46, P= 0.007; Fig. 3a). On the other hand, we observed no
significant association between melatonin amplitude and relative
amplitude (Pearson’s r= 0.24, P= 0.19; Fig. 3) or relative energy of
behavioral noise signals (Pearson’s r= 0.07, P= 0.68; Fig. 3).
Moreover, our study found no significant association between age
and sex with melatonin amplitude (P > 0.05; Supplementary Table
1). We also found that CARE accounted for 21.16% of the total
variance of melatonin amplitude, whereas age and sex accounted
for only 4.3% and 0.03% of the variance, respectively (Supple-
mentary Table 1).

Correlation between CARE and cognitive outcomes in
adolescents and adults
We applied CARE to two population-based accelerometer datasets
with a total of 1703 adolescents aged 10–19 years from China and
92,202 adults aged 39–70 years from UK. Characteristics of the
participants and accelerometers data are presented in Table 1, and
other analyzed variables are described in Supplementary Tables 2
and 3.
Mean CARE values were 0.10 (0.04) and 0.13 (0.04) for

adolescents and adults, respectively. And mean relative amplitude
values were 0.91 (0.05) and 0.87 (0.06) for adolescents and adults,
respectively. Our results showed that CARE was significantly
associated with relative amplitude in both populations (Pearson’s
r= 0.41, P < 0.0001 for the adolescents; Pearson’s r= 0.35,
P < 0.0001 for the adults). Furthermore, we confirmed the internal
consistency of CARE by analyzing the intra-subject versus inter-
subject variance. The results showed that the intra-subject
variability of CARE values was not significant in both adolescents
(P= 0.18) and adults (P= 0.25), while the inter-subject variability
was significant in both datasets (P < 0.0001, Supplementary Table
4). Moreover, we found significant between-group differences in
CARE values among individuals with psychiatric disorders, such as
bipolar affective disorder, schizophrenia, depression, and those in
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the control group from the adult dataset (P= 0.02, Supplementary
Table 5).
In the adolescent dataset, we used the Behavior Rating

Inventory of Executive Function (BRIEF)37 to assess adolescent
cognitive functions in nature settings, which includes three
summary indices, namely the Behavioral Regulation Index (BRI),
the Metacognition Index (MI), and the Global Executive Composite
(GEC). After adjusting confounding factors, the results showed that
CARE had significant associations with GEC scores (P= 0.016), but
it was not associated with BRI (P= 0.10) and MI scores (P= 0.03)
(see detailed results in Table 2). However, no significant
association was found between relative amplitude with any of
the cognitive scores (P > 0.017) (see detailed results in Supple-
mentary Table 6).
In the adult dataset, cognitive assessment was conducted via

touchscreen cognitive tests, and four main tasks were considered,
i.e., reaction time test assessing processing/reaction speed
domain, fluid intelligence test assessing reasoning ability domain,
pairs matching test assessing short-term memory domain, and

prospective memory test assessing prospective memory. We
found that CARE showed significant correlations with reasoning
ability, short-term and prospective memory (P < 0.0001), but
correlations were not significant for processing/reaction speed
(P= 0.31). Details regarding the associations between CARE and
cognitive scores are represented in Table 3. Though we found that
relative amplitude was correlated with processing/reaction speed
(P < 0.0001), it was not associated with reasoning ability, short-
term and prospective memory (P > 0.013). Details regarding the
associations between relative amplitude and cognitive scores are
represented in Supplementary Table 7.

Genomic locus associated with CARE
We conducted a GWAS study of CARE in the adult sample, which
contains filtered genetic data for 85,361 people. One genomic
locus on chromosomes 3 was found to correlate with CARE at the
genome-wide significance level of 5 × 10−8, including 126 single-
nucleotide polymorphisms (SNPs) (Fig. 4, lead CARE-associated
variants in Supplementary Table 8 and 126 CARE-associated SNPs

Fig. 1 Workflow chart of the study. CARE circadian activity rhythm energy. *We also selected the significant loci that were associated with
the relative amplitude. However, only three single-nucleotide polymorphisms (SNPs) were found, the number of which was too small to
conduct further causal analysis.
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in Supplementary Table 9). The quantile–quantile (QQ) plot
checking for population stratification indicated proper control of
population structure, with a slight deviation in test statistics
compared to the null (Fig. 4, λGC= 1.10). The heritability estimate
for CARE was >11% (h2SNP= 0.114, se= 0.007). This locus was

reported to be associated with common executive functions38,
intelligence39, and educational attainment40 in previous studies.
However, only three SNPs were found to be associated with
relative amplitude, which was too few for causal inference using
MR methods (Supplementary Fig. 2 and Supplementary Table 10).

Fig. 2 Pipeline to derive the measure circadian activity rhythm energy (CARE) from accelerometer data. a Actogram to show 7 days of
wrist accelerometer activity of a single participant. b A visual representation of the raw activity signal and the singular spectrum analysis (SSA)
decomposed signals, including the base signal (i.e., the first sub-signal indicating the non-periodic trend with the largest energy among all
sub-signals), the 24-h signal, and the behavioral noise signal (i.e., sum of the sub-signals with periods <24 h). We can obtain the raw activity
signal by adding these three signals together. c The graphical display of SSA algorithm. Specifically, the activity time series XN of length N
could be decomposed using SSA as follows. First, we chose an appropriate window length L such that 2 � L � N

2. Then, XN was transferred into
a trajectory matrix with K lagged vectors of XL as given by T, where K= N – L+ 1. The trajectory matrix T was decomposed by singular value
decomposition. By grouping the eigentriples and averaging the elements of reconstructed trajectory matrix along anti diagonals, we could
get filtered time series represented by GN ¼ g1; g2; ¼ ; gNf g.

Table 1. Description of the participants and the accelerometer data.

The melatonin dataset The adolescent dataset
(Chinese SCHEDULE-A)

The adult dataset (UK Biobank)

Participants

n 33 1703 92,202

Sex Females (%) 48.45 48.6 56.4

Age (years) Mean (SD) 34.18 (9.26) 14.59 (1.98) 56.16 (7.82)

Accelerometer data

Length (day) Mean (SD) 7.63 (1.24) 6.62 (0.88) 6.99 (0.03)

Range 5–11 3–7 3–7

Sampling rate (second) 60 60 60

Accelerometer type Micromotion logger sleep watch,
Ambulatory Monitoring Inc., Ardsley, NY

ActiGraph wGT3X-BT,
Pensacola, FL, USA

Axivity AX3 wrist-worn triaxial
accelerometer, Newcastle University, UK

Note. All the accelerometer data used in our study were activity count data.
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Causal relationship between CARE and cognitive phenotypes
To investigate whether CARE has a causal effect on cognitive
outcomes, we performed MR analyses on significant correlation

pairs, i.e., CARE with reasoning ability, short-term and prospective
memory (Table 3). Of the 126 CARE-related SNPs, a total of 109
variants were used as instrumental variables to conduct the MR
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Fig. 3 Correlations between wearable-derived CARE, relative amplitude, and relative energy of behavioral noise with melatonin
amplitude. CARE circadian activity rhythm energy. Scatter plots between CARE, relative amplitude, and relative energy of behavioral noise
with melatonin amplitude in the melatonin study are shown in the bottom-left corner, and the correlation coefficients between these
variables are shown in the upper-right corner. The black lines indicate the linear regression fits, and the shaded areas represent the confidence
intervals of the fitted mean values. The correlation coefficients annotated with an asterisk (*) indicate that the correlation is significant at
P < 0.05 level, while two asterisks (**) indicate that the correlation is significant at P < 0.01 level.

Table 2. Associations between CARE and cognitive functions in
adolescents.

Cognitive scores n Coefficient SE P value

BRI 1703 20.68 12.38 0.10

MI 1703 25.27 11.76 0.03

GEC 1703 30.86 12.35 0.016

Median regression models were used with adjusting age, sex, parental
education level, family income, and primary caregiver. The significance
level was set at P < 0.017.
BRI Behavioral Regulation Index, GEC Global Executive Composite, MI
Metacognition Index, SE standard error.

Table 3. Associations between CARE and cognitive functions in adults.

Cognitive scores n Coefficient/OR SE P value

Processing/reaction speed 91,830 −8.37 8.22 0.31

Reasoning ability 34,656 0.01 0.003 <0.0001

Short-term memory 77,439 3.42 0.62 <0.0001

Prospective memory 34,173 11.47 6.86 <0.0001

Models were adjusted for age, sex, ethnicity, Townsend score, and the season
when the participant started wearing the accelerometer. Linear regression for
processing/reaction speed, ordinal logistic regression for reasoning ability
and short-term memory scores, and logistic regression for prospective
memory were employed. The significance level was set at P < 0.013.
OR odds ratio, SE standard error.
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analyses (Supplementary Table 9). Using the weighted median
method, we found that the genetically predicted CARE had a
significant causal effect on reasoning ability (β ¼ �59:91,
P < 0.0001), short-term (β ¼ 7:94, P < 0.0001) and prospective
memory (β ¼ 16:85, P < 0.0001). Sensitivity analyses including
inverse variance weighted (IVW)41, MR-Lasso42, the mode-based
estimate (MBE)43, and constrained maximum likelihood-based
method (MR-cML)44 all showed consistent results with weighted
median methods (Supplementary Table 11).

Single-tissue and cross-tissue transcriptome-wide association
analysis
Single-tissue enrichment analysis identified 119 unique genes
associated with CARE (P < 2.9 × 10−6) in 44 Genotype-Tissue
Expression (GTEx) tissues (Supplementary Table 12). Among them,
APEH was associated with CARE in 18 tissues and was found to
correlate with blood protein measurements in previous GWAS
studies45. TRAIP was detected in 11 tissues and was reported to be
associated with intelligence38, mental disorders46,47, insomnia48,
blood protein measurement49,50, and body mass index51. MST1R
was associated with CARE in 9 tissues and is related to physical
activity measurements52, intelligence53, and body mass index54.
These correlation results also emphasized shared genetic archi-
tecture between the central nervous system, the metabolic
system, and the circadian system. Furthermore, a total of 13
significant genes were detected using joint-tissue tests for
gene–CARE associations across tissues (P < 2.9 × 10−6; Supple-
mentary Table 13).

DISCUSSION
In the present study, we proposed a pipeline to derive a wearable-
based feature (i.e., CARE) to characterize circadian amplitude and
applied it to identify the association between circadian amplitude
and cognitive functions in two large-scale datasets with different
age groups. We found a significant association between CARE and
melatonin amplitude (a reliable measure of circadian amplitude),
while relative amplitude (a commonly used amplitude of the
activity) was not. Findings that CARE was associated with a
multitude of cognitive outcomes in adolescents and adults
demonstrated that CARE could be a clinically meaningful circadian
feature derived from objective accelerometer records. Furthermore,

we identified one genetic locus with 126 SNPs associated with
CARE, and provided the first direct evidence of the causal relations
between CARE with reasoning and memory abilities in an adult
sample.
Our study found a moderate correlation between the feature

CARE and melatonin amplitude in general population under
natural settings. The use of CARE can effectively eliminate the
influence of behavioral noise on the assessment of circadian
amplitude using the accelerometer data, as supported by the lack
of significant association between behavioral noise signals and
melatonin amplitude. Notably, we calculated CARE values using
accelerometer activity data of at least 3 days, making it a summary
statistic across multiple days for each individual. This computation
approach enhances the stability of CARE values and reduces the
intra-subject variability. Nonetheless, it is important to note that
the CARE values may be impacted by data obtained from various
accelerometer devices, which could potentially affect their
comparability. Furthermore, the range of CARE values observed
in the melatonin dataset is relatively narrow, which is likely due to
the limited range of observed melatonin amplitude, as the
maximum melatonin amplitude can be up to 84 pg/ml in healthy
adults55. Therefore, it would be beneficial to investigate whether a
broader range of melatonin amplitude leads to a wider range of
CARE values in the future research.
The findings that age and sex were not significantly associated

with melatonin amplitude may contradict with previous research
that melatonin levels typically decrease with age starting from
middle age and that women tend to have higher melatonin
amplitude than men56–58. This might be due to the limited
number of middle-aged and elderly participants (age >40 years)
and the limited sample size in our dataset. Future research shall
recruit larger samples, especially from the elderly adults, to further
examine age and sex differences.
Our study demonstrated that CARE and relative amplitude may

assess different aspects of circadian rhythmicity. Although they
are all derived from accelerometer data, CARE was designed to
reflect the strength of the core circadian clock located in the SCN,
and relative amplitude is more of a metric to quantify the highest/
lowest disruption of rest-activity rhythms. The identification of a
sufficient number of CARE-associated variants can enable us to
perform causal inference through MR analysis, which is not
possible with relative amplitude. In addition, the SNP heritability of

Fig. 4 Manhattan and QQ plots for CARE in genome-wide association study in the adult sample (n= 85,361). a The Manhattan plot shows
association test (−log10 P value on the y-axis against physical autosomal location on the x-axis). The red line represents the genome-wide
significant locus (P < 5×10−8). Heritability estimates were calculated using LDSC tool. b The QQ plot identifies a slight inflation (λGC = 1.10) in
the test statistic.
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CARE accounted for a higher proportion of population variance
than relative amplitude in the adult sample (UK Biobank). These
results further supported CARE as a clinically meaningful feature.
Future research is still warranted to systematically compare and
assess the relative contribution and relevance of CARE and relative
amplitude, particularly in the context of health and disease.
Our study observed a differential association between CARE and

cognitive functions in adolescent and adult groups. In adults, we
observed a correlation between CARE and the problem-solving
component of cognitive functions, specifically reasoning and
memory domains. However, in adolescents, this association was
not present. This discrepancy may indicate the existence of a
compensatory mechanism in adolescents that counterbalances
the impact of circadian rhythm impairments on problem-solving
ability. More research is needed to confirm our hypothesis in the
future.
In the present study, we demonstrated a causal effect of CARE

on reasoning and memory abilities in adults, and we also provided
evidence for the shared genetic architecture of circadian rhythms
with neurological function9. The genome-wide significant locus
was found to be associated with common executive functions38,
intelligence39, and educational attainment40. Furthermore, results
from the single-tissue and cross-tissue transcriptome-wide asso-
ciation analyses further confirmed the CARE’s strong biological
basis and highlighted the important role of circadian rhythms on
the central nervous system, which is in line with previous findings
from the other UK Biobank studies59.
In conclusion, the feature CARE that we derived from

accelerometer data, is closely related to the melatonin amplitude
in natural settings, and also serves as a meaningful metric for a
wide range of cognitive functions in general adolescents and
adults. Future studies with large sample size and different
protocols such as forced desynchrony settings and shift work
should be conducted to validate the feature CARE and to confirm
its causality on other health-related outcomes.

METHODS
The melatonin dataset
Participants. This dataset recruited 33 healthy adults (17 male
and 16 female) aged 23–61 years in January 2023. Prior to
enrollment, all participants underwent screening to exclude the
use of sleep aid supplements (e.g., melatonin), a history of shift
work, and sleep disorders. The participants were asked to
complete a range of demographic, lifestyle, and health related
questionnaires, to wear an accelerometer, and to collect saliva
samples with 5 times. This protocol was approved by the Shanghai
Children’s Medical Center’s Human Ethics Committee (SCMCIRB-
K2021070-2) and Shanghai Jiao Tong University School of
Medicine (SJTUPN-202301). All participants provided digital
written informed consent.

Accelerometer data collection and processing. The participants
were asked to wear an accelerometer (Micromotion logger sleep
watch, Ambulatory Monitoring Inc., Ardsley, NY) on their non-
dominant wrist for 9 consecutive days, meanwhile, they were
required to keep a diary recording bedtime, rise time, and off-wrist
period on each day. They were informed not to remove the device
unless engaged in special activities (e.g., showering), and to re-
wear it immediately after the activities were finished. We defined
the daytime period as 08:00–20:00 and the nighttime period as
20:00–08:00. According to the diary recording for the off-wrist
periods, we defined a criterion that at least 15 min of consecutive
zero counts were identified nonwear periods in period
08:00–23:00, and at least 3 h of consecutive zero counts were
identified nonwear periods in the remaining period. We also
considered that the valid data on each day should meet at least
20 h (i.e., more than 83% of the whole 24 h) of wearing time

without more than three consecutive hours of missing data. If less
than 3 h of missing data existed, we used the mean of the
corresponding time points on the other days to fill the gaps. After
checking, if there were still missing values (often due to the
missing data being at a fixed time every day, so it could not be
filled using the mean value), the average of physical activity
counts around the missing area (i.e., about 6 epoch) was used to
fill. After preprocessing the invalid and missing raw data, each
individual included should have at least three valid days of data,
and the activity counts with 1-min resolution were used to
calculate the feature CARE using the above-proposed pipeline and
to compute the commonly used feature relative amplitude by the
difference between the average activity level of an individual
during the most active consecutive 10 h (M10) and the least active
consecutive 5 h of the day (L5) (Eq. (3)).

Relative amplitude ¼ M10� L5
M10þ L5

(3)

Saliva melatonin data collection and processing. We used the
Salivettes® (Sarstedt, Nümbrecht, Germany) to collect saliva. On
the eighth and ninth day of wearing the accelerometer, the
participants were asked to collect 2 ml saliva samples 5 times (i.e.,
9 a.m., 15 p.m., 21 p.m., 3 a.m., and 9 a.m. of the next day; time
window ±1 h) across 24 h, of which the saliva sample at 21 p.m.
and 3 a.m. were required to be collected under the dark light (light
intensity <30 lux) if the participants usually went to sleep at that
time. The participants were informed to follow their usual sleep
schedule and do not intake caffeine, alcohol, and fatty foods on
the sampling day, to keep their mouth clean (e.g., food intake
restriction) in the 30min prior to sampling, and do not swallow
saliva while chewing the swab. They were also informed to store
each sample immediately in the freezer layer of the refrigerator
after collection, and to transfer all of the samples to the laboratory
using ice packs. Subsequently, after centrifugation at 4 °C for
10min at 3000 rpm, the supernatant saliva samples were collected
into 2 ml EP tube and stored at −80 °C until use.
Saliva melatonin was measured by liquid chromatography-

tandem mass spectrometry, which can quantify the range of the
melatonin from 1 to 1000 pg/ml, and only use small volume of the
saliva samples (100 µl). Detailed measurement was based on an
article to be published, which was similar to the quantification of
melatonin in human milk60. For more information, please contact
the corresponding authors. After quantification of saliva melatonin
levels, we checked the extreme values, and excluded the values
less than 2 pg/ml which collected at 3 a.m. (time window ±1 h).
And then melatonin profiles were obtained by linear interpolation
and curve fitting using skewed baseline cosine function (SBCF)
(Supplementary Fig. 3), a robust model for melatonin estimation
when there were limited time points in the collection of
melatonin61.

The adolescent dataset
Participants. The Shanghai Children’s Health, Education, and
Lifestyle Evaluation-Adolescent (SCHEDULE-A) is a population-
based cross-sectional study designed to investigate the physical
and mental health of adolescents (10–19 years). A total of 1703
adolescents from a subsample of SCHEDULE-A (Shanghai city,
China) were utilized for this study. Two data acquisition schemes,
an online questionnaire survey, and offline accelerometer wearing,
were performed simultaneously to collect adolescents’ social-
demographic information, lifestyle behaviors, physical and mental
health outcomes. Details of the protocol can be found in one prior
published study62. This study was approved by the Human Ethics
Committee of the Shanghai Children’s Medical Center according
to the Declaration of Helsinki (SCMCIRB-K2018103). Written
informed consent was obtained from all participants.
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Accelerometer data collection and processing. Participants were
asked to wear an accelerometer (ActiGraph wGT3X-BT, Pensacola,
FL, USA) on the non-dominant wrist for seven consecutive days.
The other requirements including device wearing and diary
recording were similar to the melatonin dataset. Using the same
way to preprocess the raw activity data, and then CARE and
relative amplitude were calculated.

Measurement of cognitive functions. The Chinese version of the
BRIEF was used to assess adolescent cognitive functions in nature
settings63. The BRIEF has 86 items, each one is rated on a three-
point Likert-type scale, including never, sometimes and often, and
parents of the participants were asked to select the most suitable
answer for their adolescents in the past 6 months. After cleaning
the raw data62, three indexes were calculated: (1) the BRI,
represents the ability to modulate behavioral and emotional
responses appropriately; (2) the MI, evaluates the ability to solve
problems, including initiating activities and tasks, holding
information in mind for purpose of completing a task, anticipating
future events, monitoring the effects of one’s behaviors on others
and keeping track of daily assignments; (3) the GEC, is a composite
measure of all the cognitive functions mentioned above. Values of
BRIEF scores reflect the extent of impairment of the corresponding
cognitive functions, and higher scores indicate greater
impairments.

Covariates. One of the participants’ parents was asked to
complete a questionnaire about their social-demographic char-
acteristics, i.e., adolescents’ age, sex, primary caregiver (parents/
grandparents or others), family income (<50,000 CNY/year,
50,000–150,000 CNY/year, ≥150,000 CNY/year), and parental
education level (below high school, high school, college and
above).

The adult dataset
Participants. The UK Biobank is a general longitudinal study with
over 500,000 participants recruited from the United Kingdom (UK).
In the current study, we selected 92,202 participants who
provided qualified accelerometer data for at least three days after
data preprocessing and who had complete records in age and sex.
The demographic, lifestyle, health, mood, cognitive, and physical
conditions of the participants were collected at 22 assessment
centers. The application number for the UK Biobank dataset was
57,947 and the UK Biobank had received ethical approval from the
North-West Research Ethics Committee (11/NW/03820) and all
participants gave written informed consent.

Accelerometer data collection and processing. Participants were
asked to wear an accelerometer (Activity AX3 wrist-worn triaxial
accelerometer, Newcastle University, UK) for 7 consecutive days.
The accelerometer raw data were preprocessed similarly to the
above melatonin and adolescent datasets. Participants were also
excluded if their data were identified by UK Biobank as poorly
calibrated (n= 11) or unreliable (unexpectedly small or large size,
n= 4692). Participants who provided accelerometer data for less
than 72 h or who did not provide data for all one-hour periods
within the 24-h cycle (n= 4465) were also excluded from further
analyses. Similarly, after cleaning the raw data, CARE and relative
amplitude were calculated.

Measurement of cognitive functions. Four tests were used to
assess adult processing/reaction speed, reasoning ability, short-
term memory, and prospective memory. (1) The processing/
reaction speed was assessed by the reaction time test. During the
test, participants were shown 12 pairs of images of cards for 12
rounds, and they pressed the button on the touchscreen when the
two cards are the same. The processing/reaction speed was then

calculated by the mean reaction time of the correct matches over
the last 7 rounds after the exclusion of times below 50ms and
above 2000ms. Due to negative skewness in reaction time, we
performed the analyses using both the raw and log-transformed
data form. Since the results were equivalent, only the results of
raw reaction time were reported for ease of interpretation. (2)
Reasoning ability was measured by the fluid intelligence tests.
Participants were asked to answer 13 fluid intelligence questions
within 2 minutes and the total number of correct answers to these
questions was recorded as the fluid intelligence score. (3) Short-
term memory was assessed by the pairs matching tests.
Participants were asked to memorize as many pairs of cards as
possible within the time the cards were shown. Then the cards
were turned face down and the participants were asked to match
the cards. The test was conducted in two rounds, with 3 and 6
pairs of cards presented in each round. The outcome measure
used in this study was the number of incorrect matches in rounds,
as suggested by the UK Biobank website. (4) Prospective memory
was assessed by the prospective memory test. Before the other
touchscreen cognitive tests, the participant was shown the
message “At the end of the games we will show you four colored
shapes and ask you to touch the Blue Square. However, to test
your memory, we want you to actually touch the Orange Circle
instead.” The results were divided into 3 categories, 0 for
instruction not recalled, 1 for correct recall on the first attempt,
and 2 for correct recall on the second attempt, respectively. The
outcome measure used in this study was the number of attempts
before getting the correct recall.

Covariates. Participants provided data on social-demographic
characteristics including age, sex, ethnicity, educational attain-
ment, and lifestyle at the baseline assessment. Townsend’s social
deprivation score is defined based on the postcode of residence,
with negative scores reflecting relatively greater affluence. The
season when the participant started to wear the accelerometer
was derived from raw accelerometer records, i.e., spring for March
to May, summer for June to August, autumn for September to
November, and winter for December to February according to the
UK Meteorological Office definitions.

Determining a suitable method for signal decomposition
We have used data from the melatonin dataset to compare the
correlations between melatonin amplitude and CARE values
derived from three signal decomposition methods: the Fourier
transform (FFT), discrete wavelet transform (DWT), and singular
spectral analysis (SSA). We found that SSA-derived CARE value was
significantly associated with melatonin amplitude (Pearson’s
r= 0.46, P= 0.007), but not FFT-derived (Pearson’s r= 0.20,
P= 0.26) and DWT-derived CARE values (Pearson’s r= 0.15,
P= 0.41). Besides, unlike FFT and DWT, SSA does not require a
fixed base function for signal decomposition, which makes it
entirely data-driven and flexible to use in practice. Thus, we chose
SSA as the decomposition method in our pipeline.

Step 1: Validation of the wearable-derived feature CARE
We firstly calculated the feature CARE using the above-proposed
pipeline from accelerometer data. Secondly, using the same
pipeline, we also derived the relative energy of behavioral noise
signals (sub-signals with a period less than 24 h) from accel-
erometer activity data (Eq. (4)):

Relative energy of behavioral signals ¼ Energy of behavioral noise signal
Total energy of activity signal

¼
P

u2UjjXujj2F
jjXjj2F

(4)

where jjXujj2F is Frobenius norm of the uth sub-signal, U is the
subset of indices corresponding to the behavioral noise signal
(sub-signals with a period <24 h), and jjXjj2F is Frobenius norm of
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the raw activity signal. Thirdly, we obtained the melatonin profiles
by linear interpolation and curve fitting using SBCF61; Fourthly, the
melatonin amplitude was measured by subtraction of the
maximum and minimum values of the melatonin secretion curve;
and finally, we conducted Pearson correlation analyses between
CARE, relative amplitude, and the relative energy of behavioral
high-frequency signals with melatonin amplitude. Additionally, we
examined the associations between CARE and melatonin ampli-
tude while adjusting for age and sex.

Step 2: Determining the correlation relationship of CARE with
multitude of cognitive functions in adolescents and adults
Prior to performing the association analysis, we evaluated the
internal stability of CARE values through two distinct analyses.
Firstly, we randomly selected a subset of 1,000 individuals each
from the adolescent and adult datasets who had at least six days
of accelerometer data. We then calculated the CARE values using
the first three days of recordings (repetition 1) and the fourth to
sixth days of recordings (repetition 2), respectively. An Analysis of
Variance (ANOVA) was then performed to compare the intra-
subject and inter-subject variability of CARE values. Secondly, we
conducted another ANOVA to explore the within-group and
between group variability of CARE values in bipolar affective
disorder (n= 147), schizophrenia (n= 42), depression (n= 2252),
and control groups (n= 36,315) in the adult dataset. Specifically,
the control group comprised individuals who did not currently
have the above-mentioned psychiatric diseases, did not have a
history of mental disease, did not take psychiatric medication, did
not receive any professional help for mental distress, and had not
suffered from mental distress.
We then performed different regression models to determine

the relationship of CARE with multitude of cognitive functions in
two datasets. Specifically, in adolescents, because all the three
BRIEF indices (i.e., BRI, MI, and GEC) were skewed distributed,
median regression analysis was used with adjustment for the
demographic variables (i.e., age, sex, parental education level,
family income, and primary caregiver); and in adults, linear
regression model was performed to assess the associations
between CARE and processing/reaction speed, ordinal logistic
regression model was employed to investigate the associations
between CARE and count outcome variables (reasoning ability,
and short-term memory), while logistic regression model was
conducted to test the correlation between CARE and the binary
cognitive measures of prospective memory. Similarly, models
were adjusted for age, sex, ethnicity, Townsend score, and the
season when the participant started wearing the accelerometer.
To maximize sample sizes, available-case analyses were employed,
and sample sizes for each model were reported. Moreover, the
analyses mentioned above were also performed on relative
amplitude for the purpose of comparison.
All analyses were performed in R 4.1.2, and the threshold for

significance was set at P < 0.05/3= 0.017 (3 cognitive outcomes)
and P < 0.05/4= 0.013 (4 cognitive outcomes) to correct for
multiple testing according to Bonferroni’s approach in adolescent
and adult dataset analyses, respectively.

Step 3: Identifying the causal relationship between CARE and
cognitive functions in the adult dataset
Identification of loci associated with CARE. Before the genetic
analysis, we excluded SNPs with Minor Allele Frequency <0.1%,
Hardy–Weinberg equilibrium <1 ´ 10�10, and imputation quality
score (UKBB information score) <0.8. Furthermore, for related
individuals (first cousins or closer), one individual from each pair of
related individuals was randomly selected for inclusion in the
analysis, and non-white individuals were also removed from the
analysis. After data filtering, a total of 85,361 samples remained for
further analysis. To identify genetic variants associated with CARE,

we performed a GWAS analysis using PLINK64. Linear regression
models were adjusted by age, sex, and the first 20 genetic
principal components, and the genome-wide significance level
was set at 5 × 10−8. To estimate SNP heritability (h2SNP), the
Linkage Disequilibrium Score Regression (LDSR) was applied to
the GWAS summary statistics of CARE with the LDSC tool65,66.
Furthermore, we identified one significant locus that was
associated with the relative amplitude; however, only three SNPs
were found, which was just too little that we could not conduct
the further causal analysis.

Causal relationship between CARE and cognitive functions. To
investigate the causal relationship between CARE and cognitive
functions, we conducted MR analyses using the R package
“MendelianRandomization”67. In order to exclude instrumental
variables with weak power, we pruned CARE-related SNPs and
finally determined 109 SNPS as instrument variables. To avoid
inflation of associations caused by the sample overlap, genetic
effect sizes for reasoning ability, short-term and prospective
memory were obtained from GWAS analysis after excluding all
individuals used in the GWAS analysis of CARE (n= 360,885). In
the MR analyses, the weighted median approach68 was used as
the main analysis due to its robustness to pleiotropy69.
Furthermore, we applied inverse variance weighted (IVW)41, MR-
Lasso42, the mode-based estimate (MBE)43, and constrained
maximum likelihood-based method (MR-cML)44 to perform
sensitivity analyses. The beta coefficients were reported and
Bonferroni-adjusted P values <0.017 (3 outcomes) were consid-
ered evidence of associations.

Single-tissue and cross-tissue transcriptome-wide association analy-
sis. In addition, we examined the biological and functional
mechanisms underlying CARE by performing transcriptome-wide
analysis in 44 tissue types in GTEx v7. We identified single-tissue
and cross-tissue gene-CARE associations based on GWAS sum-
mary statistics and expression quantitative trait loci (eQTL)
information, using UTMOST (Unified Test for MOlecular Signa-
Tures)70. The Bonferroni-corrected threshold for significance in
UTMOST is 2.9 × 10−6 for 17,290 genes.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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