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FASDetect as a machine learning-based screening app for
FASD in youth with ADHD
Lukas Ehrig1,2,7, Ann-Christin Wagner2,7, Heike Wolter2, Christoph U. Correll2,3,4, Olga Geisel2,8 and Stefan Konigorski 1,2,5,6,8✉

Fetal alcohol-spectrum disorder (FASD) is underdiagnosed and often misdiagnosed as attention-deficit/hyperactivity disorder
(ADHD). Here, we develop a screening tool for FASD in youth with ADHD symptoms. To develop the prediction model, medical
record data from a German University outpatient unit are assessed including 275 patients aged 0–19 years old with FASD with or
without ADHD and 170 patients with ADHD without FASD aged 0–19 years old. We train 6 machine learning models based on 13
selected variables and evaluate their performance. Random forest models yield the best prediction models with a cross-validated
AUC of 0.92 (95% confidence interval [0.84, 0.99]). Follow-up analyses indicate that a random forest model with 6 variables – body
length and head circumference at birth, IQ, socially intrusive behaviour, poor memory and sleep disturbance – yields equivalent
predictive accuracy. We implement the prediction model in a web-based app called FASDetect – a user-friendly, clinically scalable
FASD risk calculator that is freely available at https://fasdetect.dhc-lab.hpi.de.
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INTRODUCTION
Fetal alcohol-spectrum disorder (FASD) is an umbrella term for
medical conditions caused by prenatal alcohol exposure, including
fetal alcohol syndrome (FAS), partial fetal alcohol syndrome
(pFAS), alcohol related birth defects (ARBD), and alcohol-related
neurodevelopmental disorder (ARND). The global prevalence of
FASD is estimated to be between 2–5% of the Western world’s
population1. Despite the prevalence rate, FASD is highly under-
diagnosed and many patients miss out on the beneficial effects of
an early childhood diagnosis and subsequent early
intervention2–5.
Established diagnostic systems for FASD are based on the

manifestation of growth deficiencies, craniofacial dysmorphia,
central nervous system damage/dysfunction, and gestational
alcohol exposure6,7. These neuropsychological impairments can
manifest as deficits in intelligence, learning, memory, executive
function and academic achievements, language and motor
development and attention8. People with FASD have a higher
risk to develop secondary psychiatric conditions, like conduct
disorder, attention-deficit/hyperactivity disorder (ADHD) and sleep
disorders, as well as to experience adverse life events8–11.
Hyperactivity, inattention and impulsivity are characteristically
seen both in patients with ADHD and FASD. More than half of
FASD patients suffer from comorbid ADHD11. These overlapping
symptoms of FASD and ADHD complicate the diagnostic process
and can lead to misdiagnosis as well as delayed intervention for
FASD. In a study conducted in 547 children and adolescent who
were adopted or in foster care and who underwent a compre-
hensive multidisciplinary diagnostic evaluation to identify FASD,
156 youth met criteria for FASD, but in as many as 80% the FASD
diagnosis had been missed and 6% were misdiagnosed within the
FASD spectrum. The mental health diagnosis most commonly
given to those children upon referral was ADHD12. The very high

proportion of missed FASD diagnosis and youth receiving a
misdiagnosis underscore the importance of evaluating youth
diagnosed with ADHD in order to detect any missed FASD
diagnosis.
The purpose of the present study is to (i) develop a machine

learning algorithm for detection of FASD in patients with ADHD
symptoms based on retrospectively gathered out-patient data,
and (ii) subsequently use this algorithm to create an easy and fast
as well as clinically scalable online screening tool. Based on the
analysis of medical record data from a German University
outpatient department including 275 patients with FASD with or
without ADHD and 170 patients with ADHD without FASD, we
identify a random forest model based on 6 variables – body length
and head circumference at birth, IQ, socially intrusive behaviour,
poor memory and sleep disturbance –that yields sufficient
accuracy to differentiate youth with versus without FASD. We
implement this algorithm in a screening tool called FASDetect
which is easy to use and yields a quick screening result.

RESULTS
Study sample
This study was conducted at the outpatient unit of the
department of child and adolescent psychiatry at the Campus
Charité Virchow of the Charité Universitätsmedizin Berlin,
Germany. The sample for the analysis was selected to allow a
comparison of patients with a diagnosis of ADHD with patients
with a diagnosis of FASD. More specifically, a group of
consecutively assessed patients with a clinical diagnosis of ADHD
without FASD and a group of patients with an expert diagnosis of
FASD (with or without comorbid ADHD) was compared. Alto-
gether, 694 patients with ADHD symptoms were identified
consecutively from the general patient pool being potentially
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eligible for the study. 256 of the 694 ADHD patients had a
confirmed FASD diagnosis and therefore were excluded from the
ADHD pool. Further, 141 patients were excluded from the ADHD
group due to an unconfirmed ADHD diagnosis; 58 because they
had a suspected but not confirmed FASD diagnosis; 37 due to
other severe medical, psychiatric, or neurological conditions; and
32 patients were excluded because patient records were
unavailable. This yielded in total 170 patients in the ADHD group.
The consecutively enrolled FASD group was recruited from the
specialist center and consisted of 275 youth, including 129 FASD
patients with comorbid ADHD and 146 patients without comorbid
ADHD diagnosis. These 275 patients included most of the 256
FASD patients from the general patient pool. See also Fig. 1 for an
illustration of the two study groups.

Description of the patients’ characteristics
Tables 1, 2 give an overview of the main characteristics of the
n= 445 FASD and ADHD patients, which included 159 female
(mean age at initial presentation, 9.6 years [range, 0.2–18.8 years])
and 286 male (mean age at initial presentation, 8.9 years [range,
0.1–19.0 years]) patients. 139 of the FASD patients had a FAS
diagnosis, 127 had a pFAS diagnosis and 9 patients were
diagnosed with ARND. 170 patients belonged to the ADHD group
(31 female; mean age at initial presentation, 8.7 years [range,
3.7–16.8 years]; 139 male; mean age at initial presentation, 8.4
years [range, 2.3–15.7 years]) and 275 patients belonged to the
FASD group (128 female; mean age at initial presentation, 9.9
years [range, 0.2–18.8 years]; 147 male; mean age at initial
presentation, 9.4 years [range, 0.1–19.0 years]). There were very
low pairwise correlations between these variables, with the
exception of head circumference and birth length (Pearson
correlation coefficient of 0.57).

Prediction models to separate FASD and ADHD
The statistical analysis aimed at developing and evaluating a
prediction model that would be able to separate FASD from ADHD
cases with sufficient accuracy. After data preprocessing and
variable selection (see Materials & Methods), we tested the

Fig. 1 Flow chart of the ADHD and FASD patient groups included in the study.

Table 1. Patient characteristics.

Variable All patients FASD
patients

ADHD
patients

Mean SD Mean SD Mean SD

Age at first presentation 9.15 4.03 9.60 4.53 8.43 2.94

Gestational age 38.57 2.39 38.58 2.21 38.56 2.68

z-score of birth length −0.58 1.16 −0.87 1.13 −0.08 1.03

z-score of birth weight −0.48 1.19 −0.80 1.09 0.05 1.17

z-score of head circumference
at birth

−0.45 1.11 −0.70 1.11 0.07 0.93

z-score of length at first
presentation

−0.27 1.17 −0.50 1.12 0.27 1.12

z-score of weight at first
presentation

−0.02 1.21 −1.20 1.15 0.38 1.24

z-score of head circumference
at first presentation

−1.06 1.55 −1.37 1.37 0.23 1.58

Number of mothers
pregnancies

2.78 2.14 2.84 2.12 2.53 2.22

Number of mothers births 2.09 1.39 2.21 1.48 1.91 1.23

Mean and standard deviation (SD) of number of mothers pregnancies and
births, gestational age, age at first presentation, length, weight, head
circumference at time of birth and first presentation for all patients, FASD
and ADHD patient groups.
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performance of 6 machine learning algorithms to predict ADHD or
FASD using the 13 remaining variables on our data with nested
cross-validation. Table 3 provides an overview of the main results
for the prediction model based on the 13 variables number of
mother’s births, gestational age, z-scores of length, weight and
head circumference at birth, z-scores of length and weight at
initial presentation, as well as the presence of low IQ, socially
intrusive behavior, speech development disorder, poor memory,
sleep disturbance and psychiatric comorbidities. When predicting
FASD cases among ADHD patients, an AUC of 0.92 (95%
confidence interval CI [0.84, 0.99]) was reached by the RF model.
91% of the FASD patients were correctly identified and overall
85% of patients received a correct classification. Of all patients
that were classified as FASD cases, 86% were true FASD cases. The
kNN and Gaussian Process classifiers both reached an AUC of 0.90
and accuracy of 0.84. The SVM also had a ROC AUC of 0.90 ([0.80,
0.99]), but recognized more positive cases with a sensitivity of
0.92, the highest among all evaluated algorithms. Logistic
regression and GBDT both yielded an AUC of 0.91 (95% CI [0.83,

0.99] and 0.91 [0.82, 0.99], respectively). The highest positive
predictive value (0.89) was reached by the logistic regression
model, however at the cost of the lowest sensitivity (0.84). The RF
had a Brier score of 0.11, the other models had a Brier score of
0.12.
In all experiments and cross-validation trials, only 6 of the 13

variables were frequently selected in the ML pipelines. These six
variables were: z-scores of body length and head circumference at
birth, IQ below 85 IQ points, socially intrusive behaviour, poor
memory and sleep disturbance. When using this reduced variable
set in our second set of analyses, the RF model had an AUC of 0.93
(95% CI [0.85, 1]) and could on average identify 91% of FASD cases
in the test sets, with 85% of patients being classified correctly.
Patients that were classified as FASD patients were true cases in
87%. All other algorithms separated the ADHD and the FASD
groups similarly well with an AUC of 0.90 or 0.91 (see Table 4).
Hence, the various performance metrics of the algorithms were
very similar compared to the prediction models using 13 variables.

Table 2. Patient characteristics.

Variable All patients FASD patients ADHD patients

Yes No Yes No Yes No

Male sex 286 (64.3%) 159 (35.7%) 147 (53.5%) 128 (46.5%) 139 (81.8%) 31 (18.2%)

Intelligence below 85 IQ points 119 (34.4%) 227 (65.6%) 92 (51.4%) 87 (48.6%) 27 (16.2%) 140 (83.8%)

Socially intrusive behaviour 196 (47.6%) 216 (52.4%) 155 (63.5%) 89 (36.5%) 41 (24.4%) 127 (75.6%)

Impairment in memory 272 (66.2%) 139 (33.8%) 208 (86.0%) 34 (14.0%) 64 (37.6%) 105 (62.1%)

Sleep disorder/disturbance 147 (37.1%) 249 (62.9%) 107 (47.3%) 119 (52.7%) 40 (23.5%) 130 (76.5%)

Speech development disorder 221 (54.2%) 187 (45.8%) 145 (60.7%) 94 (39.3%) 76 (45.0%) 93 (55.0%)

Psychiatric comorbidities 289 (72.3%) 111 (27.8%) 185 (80.4%) 45 (19.6%) 104 (61.2%) 66 (38.9%)

Prescribed psycho-tropic medications 186 (47.7%) 204 (52.3%) 64 (29.1%) 156 (70.9%) 122 (71.8%) 48 (28.2%)

Absolute and relative frequencies for sex and cognitive, behavioral and sleep variables, speech development, psychiatric comorbidities and medication in all
patients, FASD and ADHD patient groups.

Table 3. Cross-validated evaluation results of prediction with 13 variables.

Model (13 variables) AUC Accuracy Precision Recall Brier

Logistic Regression 0.91 [0.83, 0.99] 0.84 0.89 0.84 0.12

Support Vector Machine 0.90 [0.80 0.99] 0.85 0.85 0.92 0.12

Random Forest 0.92 [0.84, 0.99] 0.85 0.86 0.91 0.11

Gradient Boosting Decision Tree 0.91 [0.82, 0.99] 0.85 0.86 0.91 0.12

kNN Classifier 0.90 [0.81, 0.99] 0.84 0.87 0.88 0.12

Gaussian Process Classifier 0.90 [0.81, 0.99] 0.84 0.86 0.89 0.12

The best model is highlighted in bold.

Table 4. Cross-validated evaluation results of the pipeline with 6 variables.

Model (6 variables) AUC Accuracy Precision Recall Brier

Logistic Regression 0.90 [0.81, 0.99] 0.82 0.89 0.81 0.13

Support Vector Machine 0.90 [0.81, 0.99] 0.84 0.85 0.91 0.12

Random Forest 0.93 [0.85, 1.00] 0.85 0.87 0.91 0.11

Gradient Boosting Decision Tree 0.91 [0.83, 0.99] 0.84 0.87 0.87 0.12

kNN Classifier 0.91 [0.83, 0.99] 0.84 0.87 0.88 0.11

Gaussian Process Classifier 0.91 [0.82, 0.99] 0.83 0.86 0.88 0.12

The best model is highlighted in bold.
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The results of all experiments including ROC curves can be found
in Supplementary Figs. 1–6.
For our screening application, we selected the RF model

because of its high sensitivity, robustness to changes of the
variable set, and its good overall performance. The probability
score distributions of the RF model are depicted in Fig. 2 and
illustrate that the estimated probabilities of having FASD are
generally high for FASD patients and low for ADHD patients. There
are only few patients that are assigned a low risk of FASD while
having a diagnosis of FASD or that are assigned a high risk despite
having an ADHD diagnosis without FASD. The figure also shows
the number of true and false classifications at different probability
thresholds. For any probability threshold used for the decision
whether a patient is assigned to the ADHD or FASD group, ADHD
patients right of that threshold (i.e., that were assigned a higher
probability by the prediction model) are false positives, FASD
patients left of that threshold are false negatives, and all others
were classified correctly.

Implementation of machine learning model in FASDetect
screening application
In the final step, we developed a screening app for the detection
of FASD among ADHD cases based on the RF algorithm. Our focus
was on the target user group of medical professionals from
different fields (e.g., pediatricians, psychiatrists). Requirements
derived for the application included that it should be user-friendly,
quick and easy-to-use and that the screening result is immediately
visible.
The frontend of the application was built using Vue.js/quasar,

the backend using Python/flask. The resulting app consists of
three screens and is based on the RF model of 6 variables that can
be quickly and appropriately assessed by all possible users. The
first screen contains the disclaimer and provides some information
about the app. The next screen contains a questionnaire, where
information about the 6 variables is obtained. The last screen
shows the results and some context of how to interpret the
screening results (see Fig. 3). In order to facilitate quick decision-
making, the results are visually represented using a traffic light
metaphor. A yellow signal is shown in FASDetect when the model
estimates the FASD risk to be 50–74% and therefore classifies the
patient as a potential FASD case. When the risk exceeds 75%, the
red signal is shown, indicating a high risk. The FASDetect app is
designed in such a way that if all the variables are known, the data
entry and retrieval of the result can be completed very easily in
less than 1min. Currently, the app exists in English and German,
but can easily be extended to include more languages. The app is
available open-source and free-of-charge at https://fasdetect.dhc-
lab.hpi.de.

DISCUSSION
In this study, we developed a screening tool, called FASDetect,
based on machine learning models to detect FASD among
patients with ADHD symptoms. FASDetect only requires answers
to 6 questions to yield a quick screening result. Our motivation
was that the diagnosis of FASD is often challenging as well as
time-consuming and the most common mental health diagnosis
given to FASD patients is ADHD when missing the FASD
diagnosis12. Also, we were not aware of any tool to screen for
the risk of FASD in patients with ADHD. To develop the prediction
model, medical record data from a German University outpatient
department were assessed including 275 patients with FASD with
or without ADHD and 170 patients with ADHD without FASD. We
compared different machine learning algorithms and implemen-
ted a random forest model in FASDetect, which performed best
with a cross-validated AUC of 0.92 (95% confidence interval [0.84,
0.99]).
The high predictive accuracy in our study is similar to previous

studies using machine learning in patients with ADHD or FASD,
but all prior studies focused on different patient groups and had
different objectives than our study. For example, Duda et al.13

showed that machine learning algorithms are capable of
accurately differentiating between patients with ADHD and
autism-spectrum disorder with an AUC of 0.96. In another study,
Zhang et al.14 successfully used machine learning to distinguish
between FASD patients and healthy controls through use of eye
movement, psychometric and neuroimaging data with 85%
classification accuracy. Further studies have investigated the use
of machine learning models to classify and diagnose FAS15–17. For
example, Fu et al.15 developed a transfer learning approach
utilizing a network learned on large facial recognition datasets and
demonstrated its applicability in an experimental evaluation.
Blanck-Lubarsch et al.16 showed a high accuracy of 90% using
decision trees, support vector machine and k-nearest neighbor
models to analyze facial 3D scans to differentiate children from
the severe end of the FAS spectrum among healthy controls,
based on a study sample of 30 patients and 30 controls. Based on
similar input data containing 3D facial scans of 149 individuals,
Fang et al.17 developed an automated classification algorithm,
which diagnosed up to 91% of FAS patients correctly within their
ethnicity group. With similar predictive accuracy but requiring
input data that is much easier to collect in clinical practice and
with less data privacy challenges, our work provides a scalable and
cost-effective screening and diagnostic support tool for classifying
FASD among patients with ADHD. FASDetect has the potential to
optimize screening and diagnostic procedures that can help
improve treatment selection and outcome predictions in clinical
psychology and psychiatry18. Importantly, FASDetect can be

Fig. 2 Distribution of predicted probabilities for the random forest model. The x-axis shows the predicted probability of having FASD and
the y-axis the number of actual ADHD/FASD cases for this probability, for the model with 13 variables (A, left panel) and with 6 variables
(B, right panel).
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Fig. 3 Illustration of the FASDetect app. The first screen (A, left panel) onboards the user, the second screen (B, middle panel) contains a
questionnaire asking for input to the 6 selected variables in the middle of which we show here one question on socially intrusive behaviour,
and the third screen (C, right panel) shows the screening result displayed in form of a traffic light.
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scaled easily to many patients worldwide, as no extra equipment
is needed to utilize it and as it requires little effort. These
characteristics are most helpful for a screening application and set
our study apart from prior research in this area.
The 6 most important variables that were retained for efficient

FASD screening via FASDetect are the z-scores of birth length and
birth head circumference, low IQ, social intrusiveness, poor
memory and sleep disturbance. All of these variables are known
to be medically linked to FASD19–25. Previous studies have shown
that FASD patients are more likely to be microcephalic and remain
to be microcephalic and length growth-restricted throughout life.
They also show a lower intelligence than ADHD patients and have
been found to suffer from memory problems. Socially intrusive
behaviour and sleep disturbance are also often seen in FASD
patients. All of this is also shown in our data, which adds face
validity to the finding that these predictors were selected during
automatic feature selection. Thus, we are optimistic that our
results will generalize and can be replicated in other populations.
FASDetect may represent the time-saving clinical screening

application for FASD that has been missing until now. Such a tool
is urgently needed in clinical practice. In next steps, FASDetect has
to be evaluated prospectively and licensed for medical use. Then,
we can imagine the following use: If the screening result shows
red or yellow, further medical examination is highly recom-
mended. Child psychiatrists who specialise in FASD should
examine the patient and investigate the presence of FASD.
Experts consider additional information, such as facial dysmorphia
or prenatal alcohol exposure that are required to meet official
medical diagnostic criteria but were considered inapplicable for a
screening tool. For any future implementation of FASDetect in
clinical practice, the following considerations are relevant. It is
important to prevent any premature diagnosis based on a
screening tool. In order to achieve this, every physician or clinical
facility using FASDetect should be trained and sensitized to this
issue, and there should be a clear protocol established, such as
described above, on how to deal with patients with a high
screened risk of FASD. It is further important to note that
FASDetect is trained and aiming to screen for (and not diagnose)
FASD patients among youth patients with ADHD, so we suggest to
disregard any use in the general population or in adults, which this
tool was not developed for and where results might contain
biases. Furthermore, race was not assessed in our study. While
facial features can certainly differ considerably between races, we
are not aware of studies that have indicated a different
presentation of symptoms among races. In our study, we expect
that most patients were Caucasian from Western Europe, so any
application in other contexts that differ in the race distribution in
the target population should be interpreted with caution.
Regarding the choice of variables in our prediction model, we
aimed to select variables in the final model that are less prone to
bias and are more likely to yield accurate and generalizable
prediction models. To this end, we had made an expert screening
of the assessed variables using expert-generated directed acyclic
graphs26. As one example, the variable “foster care” was not
included in the model since we expected that this variable might
have introduced unwanted confounding. Finally, for any applica-
tion of FASDetect, it should be noted that we used birth length
percentiles in our model specific for the German population,
which should be evaluated for their application to other
populations in follow-up studies, or adjusted to the national norm
if it turns out that this may be necessary.
Paediatricians vastly underrecognize FASD and are often

unfamiliar with the diagnostic criteria, leading to a higher chance
for misdiagnosis and missed diagnosis27. The risk of under-
recognition and misdiagnosis is at least as high for child and
adolescent psychiatrists. FASDetect could enable inexperienced
medical staff to screen for FASD and direct patients to specialists.
This can help FASD patients to be diagnosed earlier in life and be

seen by specialists. Thus, FASDetect could help to reduce the
misdiagnosis rates and aide the diagnostic process in busy clinical
settings. The successful implementation promises an earlier
diagnosis for FASD patients who are currently frequently
incorrectly diagnosed with ADHD. Thus, patients who are screened
using FASDetect will benefit from earlier treatment, a reduction of
secondary conditions and eventually from improved general
health.
The results of this study have to be interpreted within its

limitations. First, the analysis of archived patient records was
limited by the available content of the data. Including further
clinical variables might further improve the predictive accuracy of
FASDetect. Second, we only examined the discriminatory power
and accuracy of the FASDetect app for FASD cases among a
sample of patients with a primary diagnosis of ADHD. Further
studies are needed that include a broader variety of mental health
diagnoses, ideally also oppositional defiant disorder, autism-
spectrum disorders and youth with intellectual disability/low IQ
who share some other features of FASD than patients with ADHD.
The inclusion of further variables that were not available such as
reduced eyesight, head circumference at initial presentation and
academic achievements are promising predictor candidates for
future iterations of the model that are relatively easy to obtain
clinically and that should therefore be assessed in future studies.
Third, FASD cases were not distributed evenly within the

spectrum (139 FAS, 127 pFAS, 9 ARND), which may have aided the
differentiation of the ADHD and FASD groups by the machine
learning algorithms. Future research is needed to evaluate how
well FASDetect identifies patients across the entire FASD
spectrum. Fourth, the study was conducted in a university hospital
setting, and testing of generalizability to other clinical settings is
further required. Fifth, the patient data for the FASD cases was
gathered by psychiatrists specialized in FASD diagnosis. The ADHD
cases were diagnosed by outpatient clinicians trained in child and
adolescent psychiatry, but without a specific focus on ADHD. The
high level of expertise and elaborate testing (e.g. intelligence
testing) cannot necessarily be expected of the average user of
FASDetect. We adapted the selection of variables that went into
final screening tool accordingly. Nevertheless, it is possible that
variables seem less distinctive to lesser experienced pediatricians
and may be underrecognized when screening with FASDetect.
To our knowledge, this study is the first that developed an

empirically-based, machine-learning-derived screening app that
robustly differentiates between FASD and ADHD using parameters
that can be relatively easily obtained as part of clinical care. The
tool, which we call FASDetect, provides a green-yellow-red light
rating system on the risk for FASD in ADHD patients calculated
from easily obtainable patient data and is an efficient tool for
general pediatric practice. The FASDetect is freely available, and
we hope that future research with this tool can validate and
extend its utility and assess to what degree FASDetect can aide
clinical diagnosis and decision-making for subjects with FASD
compared to usual care.

MATERIALS AND METHODS
Study population
This study was conducted at the outpatient unit of the
department of child and adolescent psychiatry at the Campus
Charité Virchow of the Charité Universitätsmedizin Berlin, Ger-
many. For the analysis, a group of consecutively assessed patients
with a clinical diagnosis of ADHD without FASD and a group of
patients with an expert diagnosis of FASD (with or without
comorbid ADHD) was compared. ADHD patients were included
from the general pool of patients who were treated at Campus
Charité Virchow of the Charité Universitätsmedizin Berlin between
January 2019 and September 2020. FASD patients were included
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from two sources: from the general pool of ADHD patients
described above, as well as from the pool of ambulatory patients
of the FASD specialist center at the Campus Charité Virchow of the
Charité – Universitätsmedizin Berlin who were treated between
January 2019 and September 2020. The two groups were
ascertained based on the following inclusion and exclusion
criteria.
Inclusion criteria for children and adolescents with ADHD were

a. age between 0 and 19 years,
b. diagnosis of ADHD, combined type of inattentive type, with

or without oppositional defiant or conduct disorder accord-
ing to ICD-10 by child and adolescent psychiatrists at our
department of child and adolescent psychiatry at the
Campus Charité Virchow of the Charité Universitätsmedizin
Berlin,

c. diagnosis of ADHD confirmed during longitudinal assess-
ment and care at our department

Exclusion criteria for children and adolescents with ADHD were

a. severe medical, psychiatric, or neurological conditions (such
as microdeletion, microduplication, genetic syndromal
diseases, autism-spectrum disorders or hydrocephalus)
which can affect the youth’s behaviour

b. suspected or confirmed comorbid FASD diagnosis

Inclusion criteria for children and adolescents with FASD (with
or without ADHD) were

a. age between 0 and 19 years,
b. diagnosis of FASD according to ICD-10 and the 4 digit code7

c. diagnosis of FASD confirmed as part of longitudinal
assessment and care at our department

Exclusion criteria for children and adolescents with FASD were
severe medical, psychiatric, or neurological conditions.
Of each patient, the following data were extracted retro-

spectively from medical records: height, weight and head
circumference at all available time points; presence or absence
of any psychiatric comorbidities, prescribed psychotropic medica-
tions yes versus no, fascial dysmorphia and malformation; the
results of intelligence tests, whether or not the patient’s IQ was
below 85 IQ points; as well as pregnancy- and birth-related data
such as consumption of alcohol, nicotine and other drugs, number
of the mother’s pregnancies and births, child’s gestational age at
first ultrasound and at time of birth, Apgar score28 and pH of the

umbilical cord after birth. The presence or absence of opposi-
tional, hyperactive and impulsive behavior, lack of concentration
and attention, developmental disorders, sleep disorders, socially
intrusive behavior, and impaired executive function and cognitive
flexibility were also assessed clinically. Those symptoms were
recorded during clinical assessments, history taking, parent and
patient interviews and through behavioral questionnaires such as
the child behavior checklist29 or DISYPS30. Assessed symptoms
were documented as “present” or “absent”, no degree of severity
was assessed.

Statistical analysis
The statistical analysis aimed at developing and evaluating a
prediction model that would be able to separate FASD from ADHD
cases with sufficient accuracy. All machine learning analyses were
performed in Python 3.7.3. The code is publicly available at https://
github.com/HIAlab/FASDetect. After overall data quality control
steps, the training and evaluation of different prediction
algorithms was performed in several steps.
In a first overall quality control step, we removed variables with

more than 35% missing values for either group (ADHD/FASD). This
missing values threshold was chosen in order to include head
circumference at birth, which had 35% missing values for ADHD
patients, as an indicator for growth deficiencies in FASD patients
that is easy to assess and well-suited for use in a screening
application. The quality control retained 42 predictive variables,
from which we further removed variables with redundant
information, such as re-coded duplicates (20 variables), variables
that would be too complex to assess for practitioners during a
clinical screening visit (5 variables, e.g., executive dysfunction),
and variables that might limit generalizability (8 variables). For
some variables, multiple reasons for exclusion applied. From the
resulting 13 variables, none had more than 23% missing values
across both the ADHD and FASD groups. On average, 11% of the
variable values were missing for the ADHD group and 12% for the
FASD group.
Next, we tested the performance of 6 machine learning

algorithms to predict ADHD or FASD using the 13 remaining
variables on our data with nested cross-validation (see Fig. 4). To
initialize our machine learning pipeline, we randomly split the
entire data set into 10 folds (outer split), where each of these folds
consisted of 10% of the ADHD cases (n= 170) and 10% of the
FASD cases (n= 275), respectively. We used these outer folds to

Fig. 4 Overview of the 10-fold nested cross-validation procedure. The data are randomly split into 10 stratified folds where one fold is held
out as a test set (blue colour). For each split, the 9 folds are split again into 10 folds, with one fold (green colour) to validate the
hyperparameters. The hyperparameters with the best average ROC AUC on the validation sets are used to fit the machine learning pipeline on
the complete training set (i.e., the 9 outer folds framed in red colour) and tested against the test set (blue colour), resulting in 10 ROC AUC
scores.
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perform 10-fold cross-validation (CV) with nine folds for training
and the remaining fold for testing. The training data from the
outer split with 90% of the data were split again into 10 stratified
folds used for training and 10% for validation of the hyperpara-
meters of the pipeline (see below) using a grid search. After the
optimized hyperparameter configuration was found in the nested
10-fold CV, the respective model was refit on the complete
training data of the outer split (i.e. training and validation data of
the inner split) and evaluated against the fold’s test set. The
nested CV scheme is depicted in Fig. 4.
The training and testing of the different models contained the

following steps which are described in more detail below: robust
scaling, imputation, feature selection, and model fitting, all
embedded in the 10-fold CV. To ensure that the contribution of
each variable was similar in the prediction models, we trans-
formed all 13 variables using robust scaling. In robust scaling, the
median is subtracted from the value of each variable and each
value is then divided by the interquartile range. As a second data
processing step, missing values were imputed using k-nearest
neighbours (kNN) imputation: each missing value was imputed
using the (uniform or distance-weighted) mean value from k_i
nearest neighbours found in the training set with non-missing
values for the variable, where k_i is a hyperparameter of the
pipeline. The distance between two points was measured by
Euclidean distance, ignoring variables that were missing for either
point. In the next step, we performed a variable selection among
the 13 selected variables based on their estimated mutual
information with the target variable. Mutual information measures
the dependency between two random variables based on entropy
and allows to capture also non-linear relationships. Each variable is
ranked based on its mutual information with the target variable,
and the highest-ranking k_f variables are selected, where k_f is a
hyperparameter optimized in the pipeline. Finally, based on these
transformed and quality-controlled variables, we trained and
evaluated the different machine-learning algorithms. In particular,
we tested a logistic regression (LR), support vector machine (SVM),
random forest (RF), gradient boosting decision tree (GBDT), kNN
classification and Gaussian process classification algorithms. We
used the lightgbm package for gradient-boosting decision trees,
for all other algorithms, we used the Scikit-learn implementation.
Optimized hyperparameters included the number of neighbours
used for imputation (k_i), the number of variables to select (k_f) or
the decision whether to average values of the neighbours
distance-based or uniformly for imputation. Model-specific
hyperparameters for the GBDT model included the learning rate,
boosting type and number of trees. For random forest models,
optimized model-specific hyperparameters were the minimum
number of samples required to split an internal node, and the
number of trees in the ensemble. For logistic regression, the
regularization parameter was optimized. For support vector
machines and Gaussian process classifier, the regularization
parameter and kernel type were optimized. Hyperparameters
optimized for the kNN classifier were the distance metric, the
decision whether to average the values of the neighbours either
distance-based or uniformly and the number of neighbours.
The main outcome measure for the classification quality of each

algorithm was the area under the receiver operating characteristic
(ROC) curve (AUC), which was averaged across the 10 test
datasets. The reported confidence intervals for ROC AUC scores
are the average interval boundaries of confidence intervals
calculated for each CV fold according to DeLong31. In addition,
we assessed the accuracy, precision, recall, and the calibration
measured through the Brier score of each model. Lower Brier
scores indicate better calibration32.
In a follow-up analysis, our aim was to evaluate the performance

of a most parsimonious prediction model using fewer variables,
which is easier to apply in practice. To this aim, the pipeline was
run again with a modified variable selection step, where only

variables were selected that had been selected by at least half of
the different machine learning models in at least 9 of the 10 CV
trials. As described above, a variable was selected in a CV trial of
an experiment with a classifier when the estimated mutual
information with the target was among the k_f highest ranking
features on the training set and the classifier with the best
hyperparameters (including the number of variables, validated on
the validation sets of this CV trial) used this variable. Six variables
satisfied these criteria and were used to train the machine learning
pipelines a second time.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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