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To pay or not to pay for artificial intelligence applications in
radiology
Franziska Lobig1✉, Dhinagar Subramanian2, Michael Blankenburg1, Ankur Sharma1, Archana Variyar2 and Oisin Butler1

Artificial Intelligence-supported digital applications (AI applications) are expected to transform radiology. However, providers need
the motivation and incentives to adopt these technologies. For some radiology AI applications, the benefits of the application itself
may sufficiently serve as the incentive. For others, payers may have to consider reimbursing the AI application separate from the
cost of the underlying imaging studies. In such circumstances, it is important for payers to develop a clear set of criteria to decide
which AI applications should be paid for separately. In this article, we propose a framework to help serve as a guide for payers
aiming to establish such criteria and for technology vendors developing radiology AI applications. As a rule of thumb, we propose
that radiology AI applications with a clinical utility must be reimbursed separately provided they have supporting evidence that the
improved diagnostic performance leads to improved outcomes from a societal standpoint, or if such improved outcomes can
reasonably be anticipated based on the clinical utility offered.

npj Digital Medicine           (2023) 6:117 ; https://doi.org/10.1038/s41746-023-00861-4

INTRODUCTION
Artificial Intelligence-supported digital applications (AI applica-
tions) are expected to transform radiology. With more than 200 AI
applications cleared by FDA, they have a broad range of use cases
in radiology1. Image interpretation AI applications that help
detect, quantify, and classify radiological abnormalities have been
in the limelight. These applications aid in image processing and
interpretation with greater accuracy and sensitivity by capturing
subtle and complex patterns inconspicuous to the human eye or
are burdensome to report by human readers2. By automating
quantification and characterization of areas of interest, they help
reduce variability between readers3. Their ability to discriminate
lesions of interest with a greater degree of accuracy can aid with
monitoring the progression of a disease2.
Although AI applications for image interpretation have caused

the most excitement within radiology, non-interpretative AI
applications also have the potential to play important roles in
improving efficiency, safety, and quality. For example, deep
learning using convolutional neural networks can successfully
denoise 3D magnetic resonance images, which can improve
scanning times without compromising on image quality4, to the
advantage of improved protocoling, worklist prioritization, and
reduced radiation exposure3,5.
Despite the promise AI applications hold in radiology, there are

many barriers to the widespread adoption of AI. Integration of AI
applications into radiology workflows can be complex and time-
consuming. Radiologists and other users of AI software may resist
to adopt to the new ways of working that some AI applications
require. Hospitals and radiology practices may consider invest-
ment in radiology AI applications to be irrecoverable overheads
that may not lead to direct cost-savings or additional revenue6.
The question on who will pay is critical for ensuring adoption of

AI applications in radiology. Most mature healthcare systems use a
prospective payment system for paying healthcare providers.
Payments made under a prospective payment system for
diagnostic radiology services are meant to cover the cost of
conducting the imaging study and the associated reporting.

Prospective payment systems are generally slow to account for
increases in costs that are due to the adoption of innovations,
which may not bear well for the adoption of AI in radiology7. On
the other hand, payers may be concerned that paying separately
for AI technologies may lead to over-use8. Therefore, healthcare
systems need to find the right balance when determining which
AI applications to pay for separately from the underlying imaging
study, and which AI applications not to. Payers admit that this can
be challenging8.
Although the payment pathways for radiology AI applications

are in their nascent stages of development, a few radiology AI
applications are already paid for separately in the Unites States
(US). The National Health Service (NHS) in the United Kingdom
(UK) and the National Health Insurance system of Japan also pay
separately for radiology software applications that are offered as a
Software-as-a-Service (SaaS)9.
In this article, we summarise the current reimbursement

pathways for AI algorithms in radiology with specific focus on
the US healthcare system, review the evidence basis for the
radiology software applications currently reimbursed, and propose
a conceptual framework to help determine when AI applications
should be paid for separately from the underlying imaging study
to incentivise adoption.

PAYMENT PATHWAYS ALREADY EXIST FOR RADIOLOGY AI
APPLICATIONS
The Centers for Medicare and Medicaid Services (CMS), the largest
payer in the US, determines the coverage and payment for
healthcare services furnished in inpatient and outpatient settings
using the Inpatient Prospective Payment System (IPPS) and
Hospital Outpatient Prospective Payment System (OPPS) respec-
tively. Physician services provided in the office setting are paid
through the Medicare Physician Fee Schedule (MPFS) (Table 1).
All three prospective payment systems require three compo-

nents for successful reimbursement: coding, coverage, and
payment. Coding refers to the existence of an alphanumerical
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code that describes the service or technology. Having an
appropriate code is a pre-requisite for providers to bill payers
for the service they provide. CMS must then make a positive
decision to cover the service or technology, typically through a
coverage policy, defining when a service or technology would be
eligible for payment. The criteria for services or technologies to
achieve coverage vary depending on the pathway, but CMS
generally requires the service or technology to be ‘reasonable and
necessary’. Finally, CMS must determine how much they would
pay for the service or technology. Again, the method for
determining payment varies across various Medicare pathways,
but they typically consider the actual costs incurred by providers
in providing the service, among other factors10.
The OPPS and MPFS pathways use Current Procedural

Terminology (CPT) codes, a subset of Healthcare Common
Procedure Coding System (HCPCS) codes to describe the service.
CPT codes are created and managed by the American Medical
Association (AMA). CMS can also create their own HCPCS codes for
payment through OPPS. IPPS uses International Classification of
Disease (ICD) codes.
Inpatient services are paid by grouping healthcare services that

are similar from a clinical and resource-consumption standpoint
into Medicare Severity Diagnosis Related Groups (MS-DRGs), each
of which is assigned a payment. Novel healthcare services in the
inpatient setting meeting certain criteria attract a temporary
payment called the New Technology Add-on Payment (NTAP) in
addition to the MS-DRG payment for a period of up to three years.
NTAP was introduced in 2001 by the CMS to incentivise hospitals
to adopt cost-increasing innovative technologies, since the
payments for MS-DRGs lag actual costs by two to three years.
NTAPs are temporary payments for a period of up to three years,
the typical time for the cost of innovative technologies to reflect in
the MS-DRG cost structure. Technologies approved under NTAP
are paid additional amounts above the MS-DRG payment amount
if they fulfill the following three criteria: the technology should be
less than three years old; the cost of the technology should not be
adequately covered under the MS-DRG; the technology should
provide substantial clinical improvement over existing technolo-
gies. NTAP allows hospitals to bill CMS the lower of 65% of the
amount by which the cost of the technology exceeds the DRG or
65% of the cost of the technology11,12.
OPPS uses a different grouping called Ambulatory Payment

Classification (APC) to determine payments. New single-use
physical medical devices can qualify for an additional payment
for two to three years after FDA approval through transitional
pass-through payments. CMS places new services that are unable
to be placed in an existing APC in temporary APCs called New
Technology APCs until sufficient claims data have been collected
to allow CMS to assign the service to a routine clinical APC group
that is appropriate in clinical and resource terms, which takes two
to three years. To qualify under the New Technology APC, the

service must satisfy the following criteria: the service must be truly
new, it is not eligible for transitional pass-through payment,
describe a distinct procedure, and is medically reasonable and
necessary8,12–15.
The MPFS does not have a grouping; instead, payments are set

for each CPT based on the Relative Value Units (RVUs), a measure
of physician resource consumption for providing the service. AMA
makes RVU recommendations to the CMS, which are then used by
CMS to set the payments. New services require AMA to establish a
new CPT code, to which CMS will allocate a payment based on the
AMA RVU recommendation11,12.
Other countries have also started paying for radiology AI

applications through existing prospective payment systems or
special funding streams. In the UK, the MedTech Funding Mandate
(MTFM) operates as a special policy mechanism to accelerate
access to innovative medical devices, diagnostics, and digital
products16. Technologies qualify if they have a positive NICE
Medical Technology Guidance (MTG) or Diagnostic Guidance (DG),
are cost-saving within three years of implementation and the total
budget impact does not exceed £20 million in any of the first
three years. MTFM does not provide direct funding for the
technologies but mandates local payers to pay for the technol-
ogies16. In Germany, new technologies used in the inpatient
setting can secure temporary add-on payments called New
Examination and Treatment Methods (Neue Untersuchungs- und
Behandlungsmethoden; NUB), whereas new technologies used in
the ambulatory sector need to secure a listing in the Uniform
Assessment Standard (Einheitlicher Bewertungsmassstab; EBM)
catalogue after a positive health technology assessment by the
Federal Joint Committee (Gemeinsamer Bundesausschuss; GBA)17.
However, manufacturers cannot make a direct application, but
must reply upon the hospitals and medical associations to make
the applications in the inpatient- and outpatient settings
respectively. In Japan, software applications approved by the
Pharmaceutical and Medical Devices Agency (PMDA) are con-
sidered as medical devices and can be reimbursed through the
medical device pathway using fee-for-service system18.

A SMALL PROPORTION OF APPLICATIONS ARE REIMBURSED
Over the last five years, eight of the 200-plus FDA-approved
radiology software applications have been evaluated by CMS
(Table 2). Two technologies have been rejected, while CMS has
made positive coverage and payment decisions for the remaining
six. One technology is covered through NTAP, five technologies
through OPPS, and one through MPFS.
Technologies used in the inpatient setting need to meet the

substantial clinical improvement criterion, which can be challen-
ging (Table 3). CMS has turned down two of the three NTAP
requests made by vendors of triaging software applications used
in the inpatient settings. ContaCT (also called Viz LVO), which

Table 1. Existing reimbursement pathways for AI applications in the US.

Inpatient Prospective Payment
System (IPPS)

Outpatient Prospective Payment System (HOPPS) Medicare Physician Fee
Schedule (MPFS)

Coding International Classification of
Disease (ICD)

Current Procedural Terminology (CPT) or
Healthcare Common Procedure Coding System
(HCPCS)

Current Procedure
Terminology (CPT)

Payment mechanism for
services

Medicare Severity Diagnosis
Related Groups (DRGs)

Ambulatory Payment Classification (APCs) Relative value units

Additional payment
mechanism for AI applications

New Technology Add on
Payment (NTAP)

New Technology APCs New CPT codes

Criteria for qualifying for
additional payment

Newness
Cost
Substantial clinical improvement

Newness
Distinct procedure
Medically reasonable and necessary

Medically reasonable and
necessary
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detects large vessel occlusion (LVO) on computed tomography
(CT) angiogram images, is the only inpatient-use radiology AI
application to have successfully secured NTAP status19,20. Evi-
dence presented for ContaCT showed that the application
reduced time-to-diagnose large vessel occlusion. A historical
comparison study additionally presented showed that the
reduction in time-to-diagnosis also translated into superior clinical
outcomes for patients, which was a crucial piece of evidence that
helped convince CMS that ContaCT improves clinical outcomes.
However, in 2021, CMS turned down the NTAP request made for

Rapid ASPECTS, a software to characterise brain tissue in patients
with stroke (Table 3). RapidAI, the company behind Rapid
ASPECTS, presented data from reader studies comparing Rapid
ASPECTS scores with radiologist-reported ASPECTS score against
an expert consensus read that served as the ground truth. The
data showed that Rapid ASPECTS scoring had a higher level of
agreement with consensus reads. RapidAI also presented addi-
tional data from a prospective study done in Egypt showing that
Rapid ASPECTS reduces the time-to-treatment. However, CMS
considered that high correlation between expert and Rapid
ASPECTS scoring is not necessarily indicative of substantial clinical
improvement. CMS also pointed out that there was no clinical
evidence presented to support that the faster time-to-treatment
shown for Rapid ASPECTS translates into superior clinical out-
comes for patients20,21.
In 2021, CMS also turned down the NTAP request made for

Aidoc Briefcase, a software for triage and notification of suspected
pulmonary embolism (PE) cases in CT pulmonary angiography
examinations (Table 3). Aidoc submitted data from a retrospective
study showing that Aidoc Briefcase for PE reduced the time to
notification. The vendor also presented pre-post analysis from an
unpublished retrospective study comparing outcomes before and
after implementation of Aidoc Briefcase for PE, that showed lower
mean length of stay and mortality after implementation of the AI
software. Even though the data supported the case for a
substantial clinical improvement by showing not only improved
time-to-diagnosis but also improved clinical outcomes, CMS
considered that the studies did not compare Aidoc Briefcase with
the existing standards of care, for example, prioritization through
electronic health records. CMS concluded that the substantial
clinical improvement criterion was not met.

The decisions made by CMS suggest that radiology AI
applications in the inpatient setting intending to qualify for NTAP
need to show that they not only offer clinical utility in terms of the
ability to influence clinical care decisions, but also have clinical
evidence showing that the improvement in clinical care decisions
positively influence the clinical outcomes downstream. Undoubt-
edly, the quality of the studies also matters, as seen by the
rejection of Aidoc Briefcase for PE for using a comparator that was
not considered as the standard of care.
In contrast to the relatively high hurdle radiology AI applications

have faced in the inpatient setting, AI applications have had
relatively higher success in securing separate payment in the
hospital outpatient setting since they did not have to meet the
‘substantial clinical improvement’ criterion.
The five applications covered through OPPS APCs have varied

levels of evidence (Table 4). HeartFlow, a coronary flow
quantification software, had robust evidence from a randomized
controlled study and a non-randomized comparative study
demonstrating that the application allows coronary flow to be
quantified from CT coronary angiography images with compar-
able diagnostic performance and clinical outcomes as invasive
pressure-wire based measurement, the existing standard of care.
The studies also showed that HeartFlow lowers the cost of care
since it helps avoid invasive interventions. HeartFlow is also
recommended through the MedTech funding mandate by NHS
England considering its cost-saving potential and is also paid
separately through the medical fee schedule in Japan16,22–27.
LiverMultiScan, a software that helps quantify liver pathologies
from liver magnetic resonance imaging (MRI), had evidence from
clinical studies showing that the technology detects liver diseases
with a high degree of accuracy compared to gold-standard
invasive liver biopsies, and that the parameters identified from
LiverMultiScan analysis strongly predicted clinical outcomes in
prospective studies28–32. Unlike HeartFlow, LiverMultiScan did not
have direct real-world evidence that the application reduces the
need for liver biopsies, but this was implicit since the application is
proven to have a similar diagnostic information as liver biopsy
without the risks associated with an invasive procedure. Optel-
lum’s Lung Cancer Prediction (LCP) application showed greater
accuracy in assessing and differentiating cancerous and benign
pulmonary nodules compared to traditional risk detection

Table 2. Radiology software applications considered by CMS for coverage.

Pathway Technology Description CMS decision

IPPS (NTAP) Viz LVO (ContaCT) Triage and notification software for stroke patients with suspected large
vessel occlusion (LVO) in patients undergoing computed tomography
(CT) angiography

NTAP status granted in 2020 and
applicable until 2022

Rapid ASPECTS Software to calculate Alberta stroke programme early CT score
(ASPECTS) from CT images in patients with stroke

Rejected in 2022

Aidoc Briefcase for PE Triage and notification software for pulmonary embolism (PE) in
patients undergoing CT pulmonary angiography

Rejected in 2022

OPPS (APC) HeartFlow Software to quantify coronary flow from coronary CT images New Technology APC granted in
2018; reassigned to clinical APC in
2022

LiverMultiScan Software to quantify liver pathology such as iron and fat content from
liver magnetic resonance imaging (MRI)

New Technology APC granted
from 2022

Optellum Lung Cancer
Prediction (LCP)

Software algorithm to produce a raw risk score for pulmonary nodules
seen on chest CTs

New Technology APC granted
from 2022

MRCP+ Software to reconstruct biliary tree and quantify biliary obstruction
from magnetic resonance cholangiopancreatography (MRCP)

New Technology APC granted
from 2022

Cleerly labs coronary
analysis

Software application to determine the presence and extent of coronary
atherosclerosis and stenosis from coronary CT angiography images

New Technology APC granted
from 2023

MPFS HeartFlow Software to quantify coronary flow from coronary CT images Included in the 2022 Medicare
Physician Fee Schedule
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models33,34 MRCP+, a software for use in magnetic resonance
cholangiopancreatography (MRCP) to quantify biliary obstruction,
had mainly data from a validation study using 3D-printed
phantom models showing high accuracy in identifying biliary
obstruction35,36. Finally, Cleerly labs coronary analysis software,
used to quantify coronary obstruction from CT coronary angio-
graphy images without the need for invasive coronary angio-
graphy, had clinical evidence showing comparable diagnostic
performance to quantitative coronary angiography, an invasive
diagnostic test37–40.
CMS did not evaluate the clinical evidence for these five

technologies in detail since they did not have to meet the
‘substantial clinical improvement’ criterion unlike technologies in
the inpatient setting. Despite the varied levels of evidence that
these technologies have, they have something in common: most
of them provide new diagnostic information which otherwise is
impossible from the underlying imaging study or help improve
the diagnostic performance of the underlying imaging study. For
example, HeartFlow, LiverMultiScan and Cleerly labs coronary
analysis software enable the radiologist or the referring physician
to gain new diagnostic information that would not have been
possible with the underlying standard imaging study, and by
doing so, help avoid additional diagnostic procedures that are
invasive. HeartFlow and Cleerly labs coronary analysis help
quantify coronary obstruction, which otherwise require invasive
coronary angiography, whereas LiverMultiScan enables quantifica-
tion of liver pathology from MRI images without the need for liver
biopsy. Optellum LCP provides superior diagnostic performance
compared to standard risk prediction models, which has the
potential to reduce unnecessary biopsies and improve detection
of lung cancer, although there is no clinical evidence supporting
this. Therefore, these applications offer implicit value to the

patients and payers, which may have been a factor in CMS’s
decision to cover these applications as separately payable service.

A FRAMEWORK TO EVALUATE WHETHER TO REIMBURSE
RADIOLOGY AI ALGORITHMS SEPARATELY
A question that is central to the adoption of AI in radiology is who
should pay for AI. Payers have the unenviable task of balancing
the need to pay for innovative cost-increasing technologies such
as radiology AI applications, against the incremental budget
impact of doing so.
It is well known that prospective payment systems do not

effectively consider the additional costs associated with innovative
technologies41–45. Prospective payment systems use historical cost
data to determine payments for the service prospectively, without
adequately considering the changes to the cost structure that
innovative technologies may bring46. This frequently results in one
of the following two scenarios: providers either bear the economic
impact and therefore, lose money for each individual episode of
care involving the innovative technology, or do not adopt the
technology wary of the negative economic impact. Neither of
these scenarios bode well for innovative technologies. There is
empirical evidence that the introduction of a separate payment
for innovative technologies that are expected to increase the cost
of the relevant service positively influence adoption47.
Radiology AI applications are seeing an unprecedented pace of

growth, with 210 applications approved as of November 2022, a
steep increase from just six applications approved by end of
201748. These applications vary significantly in terms of the
incremental value they bring. Some applications help improve
consistency in reporting whereas others offer new diagnostic
information that human readers simply cannot deduce from

Table 3. Clinical utility and evidence basis for the three radiology applications considered by CMS for NTAP.

Technology Clinical utility Trial design Key clinical outcomes

ContaCT (Viz
LVO)

Earlier identification of large
vessel occlusion in patients with
stroke

Retrospective study comparing ContaCT
against standard reporting by neuro-
radiologists

Average notification times were 7.32minutes for
ContaCT and 58.72minutes for standard of care
(mean difference 51.40minutes; 95% confidence
intervals 36.32–58.72minutes)

Pre-post analysis of a prospectively-
maintained database from a large health
system comparing patient outcomes before
and after implementation of ContaCT

Post-ContaCT cohort had significantly better
clinical outcomes and level of disability
compared to the pre-ContaCT cohort, as
measured by a lower 5-day NIH Stroke Scores
(10.78 vs. 21.93; p= 0.02) and discharge modified
Rankin Scores (2.92 vs. 4.62; p= 0.03)

Rapid ASPECTS Automated calculation of Alberta
stroke programme early CT score
(ASPECTS) in patients with stroke

Three retrospective cohort studies and a
concurrent-read crossover study comparing
Rapid ASPECTS scoring and radiologist-
reported ASPECTS score against expert
consensus read

Rapid ASPECTS’ automated score had a higher
level of agreement with pre-defined consensus
than radiologists

Prospective study done in Egypt comparing
Rapid ASPECTS to standard care

Door-to-needle time for the standard care group
was 36.8 minutes for Rapid ASPECTS compared
to 52.3 minutes for standard care (p= 0.001)

Aidoc Briefcase
for PE

Earlier identification of patients
with pulmonary embolism

Retrospective study comparing the
performance of Aidoc Briefcase with
standard workflow

Mean time-to-notification with Aidoc Briefcase
for PE was 3.9 minutes compared to 64.1 minutes
for standard workflow (mean difference
60.2 minutes; 95% percent confidence intervals
32.7–87.6 minutes)

Pre-post analysis from an unpublished
retrospective study comparing patient
outcomes before and after implementation
of Aidoc Briefcase for PE

Lower mean length of stay for PE-diagnosed
patients during the post-AI time period
compared to pre-AI implementation (5.97 vs. 8.77
days; mean difference 2.80 days; p < 0.05)

Pre-post analysis from an unpublished
retrospective study comparing patient
outcomes before and after implementation
of Aidoc Briefcase for PE

30- and 120-day all-cause mortality were
significantly reduced post-AI compared to the
pre-AI implementation period (8.1% vs 7.7%,
15.5% vs. 9.6% respectively, p < 0.05)
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studying the image. Applications also vary in terms of who
benefits from the AI application. Some AI applications improve the
efficiency of the reporting radiologist by automating measure-
ments, and others offer a societal value by helping improve
clinical outcomes or reducing the need for invasive and expensive
imaging studies. Therefore, whilst adoption of radiology AI
applications requires payers to consider paying for these AI
applications separately, not all AI applications are equal, and
therefore, not all AI applications may merit a payment separate
from that of the underlying imaging study. Additionally, paying
separately for radiology software applications has the potential
danger of providers overusing technology for economic reasons.
The 2002 decision by CMS to pay for computer-aided detection

(CAD) in mammography led to an exponential growth in the use
of CAD in mammography: while less than 5% of mammograms in
the Medicare population were interpreted using CAD in 2001, the
proportion ballooned to 74% by 200849. The increased use of CAD
had resulted in an incremental expenditure of $400 million per
year. Subsequent real-world studies showed that CAD did not
improve diagnostic performance of mammograms, which led CMS
to remove the additional payment for CAD in mammography and
bundle it into a single payment for mammography screening49–51.
Therefore, there is a pressing need for payers to have clear criteria
to determine which radiology AI applications must be separately
payable, and which would be bundled within the underlying
imaging study.

Table 4. Clinical utility and evidence basis for the five radiology applications covered by CMS through OPPS.

Technology Clinical utility Trial design Key clinical outcomes

HeartFlow Quantification of coronary
obstruction non-invasively and
reducing the need for invasive
coronary angiogram

PLATFORM, a prospective consecutive
cohort study of HeartFlow compared to
invasive coronary angiogram (ICA)

No difference in Major Adverse Cardiac
Events at 1 year. In patients planned for
ICA, mean costs lower for HeartFlow
($8,127 for HeartFlow vs. $12,145 usual
care). ICA was avoided in 60%. QOL scores
improved more in HeartFlow patients
than in usual care patients

FORECAST, RCT of 1,400 patients with stable
chest pain comparing HeartFlow vs. routine
care

There were 14% lower ICAs in the
HeartFlow arm vs. routine care (p= 0.02).
Total cost was lower (£1,605.50 in
HeartFlow group vs. £1,491.46 in the
routine care group)

LiverMultiScan Quantification of liver parameters
non-invasively and reducing the
need for liver biopsy

Multiple prospective studies comparing
LiverMultiScan with liver biopsy

Area under receiver operating curve
ranged between 0.80 and 0.89 for
diagnosis of non-alcoholic fatty liver
disease, non-alcoholic steatohepatitis and
cirrhosis

Two prospective observational studies
evaluating the prognostic value of
LiverMultiScan parameters on the risk of
liver associated clinical complications and
death

LiverMultiScan parameters strongly
predict clinical outcomes in patients with
chronic liver disease

Optellum Lung
Cancer Prediction
(LCP)

Improved prediction of lung
cancer risk

Prospective specimen collection with
retrospective blinded evaluation study for
validating the Optellum LCP model

Compared with traditional risk prediction
models, Optellum LCP model was
associated with improved accuracy
(overall net reclassifications ranged from
0.30 to 0.58)

Retrospective study to compare the risk
prediction of Optellum LCP with standard
risk prediction model

The area under the curve for Optellum
LCP was 89.6% compared with 86.8% for
the standard risk prediction model
(p ≤ 0.005)

MRCP+ Improved diagnosis of biliary
obstruction

Prospective study to determine accuracy,
scan/rescan repeatability, and cross-scanner
reproducibility of MRCP+ , conducted in 40
subjects and two 3-D printed
‘phantom’ models

MRCP+ showed high accuracy (95% limits
of agreement [LoA] (–1.1 to 1.0 mm),
repeatability (LoA –0.4 to 0.4 mm),
reproducibility across scanners (LoA –1.1
to 0.5 mm), and high inter- and intra-
observer agreement based on the
phantom models. MRCP+ detected biliary
strictures and dilatations in the phantom
with 76.6% and 85.9% sensitivity
respectively and 100% specificity for both.

Cleerly labs coronary
analysis

Improved coronary phenotyping Retrospective studies comparing Cleerly
labs quantitative coronary analysis with
various current standards

Cleerly labs coronary analysis had high
agreement (AUCs >0.80) with expert
consensus read and quantitative coronary
angiography, and higher diagnostic
performance than myocardial perfusion
imaging (AUCs 0.88–0.92 vs. 0.66–0.81)

Retrospective study to evaluate
interobserver variability in quantifying
coronary plaque on coronary computed
tomographic angiography, with Cleerly labs
coronary analysis as reference standard

There was significant interobserver
variability and high discordance with
Cleerly labs coronary analysis when
quantifying plaque composition
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To our knowledge, payers have not developed such criteria
specific for radiology applications yet. Instead, payers rely upon
criteria of the underlying existing reimbursement pathways such
as the NTAP in the US and MedTech funding mandate in England,
which are meant for legacy technologies, and may not consider
the nuances of cutting-edge technologies such as AI. Republic of
Korea is the only advanced healthcare system to have considered
developing such criteria, where the Health Insurance Review and
Assessment (HIRA) service published a research paper in 2018 that
discusses the circumstances when radiology AI applications must
be reimbursed separately. The paper suggests that radiology AI
applications that provide new diagnostic information such as the
ability to predict prognosis or serve as new imaging biomarkers
may merit separate reimbursement provided they have evidence
on clinical effectiveness or cost-effectiveness. The paper is non-
binding and has not turned into firm policy action yet52.
In developing criteria to determine which radiology AI

applications to pay for, we believe there are two aspects that
payers must consider. The first is the nature of benefit that the
applications bring. As discussed before, radiology AI applications
are heterogeneous in their nature and offer a broad range of
benefits. They also vary in who they benefit. Therefore, the nature
of the benefits as well as the stakeholders who benefit from the
applications must be considered when determining who will pay
for the application. The second key aspect is the availability of
evidence to support the existence of the benefit. It is reasonable
for payers to expect evidence that radiology applications aiming
to improve diagnostic performance of an imaging study, for
example, also bring direct or indirect evidence that the improved
diagnostic performance will lead to an improvement in clinical
outcomes with sufficient certainty.
Based on these two aspects, we propose a framework to

determine the reimbursability for radiology AI applications that
payers as well as technology developers might find useful (Fig. 1).
The first dimension, represented in the X-axis in the framework,
classifies the benefit the radiology application brings, into whether
it improves provider efficiency or convenience, or whether it
improves the diagnostic performance or provides new diagnostic
information that is otherwise not possible from the relevant

imaging study. The second dimension, represented in the Y-axis,
considers whether the AI application has evidence supporting the
improvement of clinical and/or economic outcomes.
Applications such as automatic measurement algorithms that

solely improve the efficiency or convenience of the radiologist or
the healthcare provider (represented in the two left quadrants in
Fig. 1), generally may not require or merit additional payment
since the nature of the benefit itself is self-evidence to providers
and is a sufficiently robust incentive for the providers to use the
application. Even if there is supportive evidence for these
applications, the evidence would likely be of an economic nature,
and not show clinical benefits. Such economic benefit would also
accrue to providers, and therefore, such applications may not
warrant separate payment irrespective of the evidence basis.
However, there may be some exceptions to this. For example, an
AI application that checks images for abnormalities as they are
acquired may help improve provider efficiency, but in addition,
may also have a large impact on patients by ensuring the right
imaging protocol is used, and thereby, reducing the need for
repeat imaging studies. Similarly, in countries such as the United
Kingdom, where healthcare capacity can be a constraint, an AI
application that reduces scan time or reporting time may help not
just the provider, but also have broader benefits to patients and
the society by reducing waiting times for imaging studies. In such
circumstances, payers may decide to incentivise the adoption of AI
applications improving efficiency by paying for them separately.
Conversely, applications that improve diagnostic performance

of the underlying imaging study or provide new diagnostic
information that is otherwise impossible to obtain with the
underlying imaging study merit consideration for additional
payment (represented in the two right quadrants in Fig. 1).
Optellum’s Lung Cancer Prediction application, for example, which
improves the diagnostic performance of pulmonary CT studies by
providing a more accurate risk-prediction score, and HeartFlow
software, which calculates coronary flow parameters from CT
coronary angiography studies that otherwise require invasive
coronary angiography, may fit into these quadrants. Providers
require an economic incentive to adopt such AI applications as
they increase the total cost of care, and since the benefits, in the
form of potential improvement in patient outcomes or reduction
in downstream costs, do not accrue to the providers, but to the
broader society. In fact, radiology AI applications that reduce the
need for additional investigations may reduce provider revenues.
It is apparent that payers must be obliged to pay for these
applications, especially if they also have evidence supporting the
existence of clinical and/or economic benefit (represented in the
top right quadrant in Fig. 1).
Whilst no doubt manufacturers must aim to develop such

evidence, we need to recognise that developing such evidence for
diagnostics may be challenging sometimes. Radiology AI applica-
tions do not have the strong intellectual property benefits that
pharmaceuticals enjoy. Additionally, developing long-term evi-
dence on clinical outcomes may be challenging for some
diagnostic applications if this requires patients to be followed
through diagnosis, treatment, and subsequent clinical out-
comes53. In such circumstances, where applications offer a clear
clinical utility in terms of improvement in the clinical decision-
making, but there are real challenges developing direct evidence
that the improvement in clinical decision-making results in
improved clinical outcomes, payers may have to consider paying
for the applications despite the limitations in evidence. For
example, it would be unreasonable to expect each breast cancer
detection application to come to the market with direct evidence
that the improved detection also improves survival, since this
evidence would take years to develop. In this case, denying
reimbursement because of the lack of direct evidence on clinical
outcomes would not only delay or deny access to a transforma-
tional technology, but also be unnecessary since it may be readily
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apparent from literature that detecting cancer at a sooner stage or
cancer at a smaller size is directly correlated with improved
survival rates and health outcomes. Similarly, the benefits of an AI
application that helps characterise liver tissue from magnetic
resonance images with a comparable degree of diagnostic
performance against the gold-standard liver biopsy are readily
apparent without having to conduct a clinical study to prove that
the AI application helps reduce healthcare costs or avoid adverse
events associated with biopsy. Hence, we argue that for
applications that improve diagnostic performance or those that
provide new transformational diagnostic information, payers must
consider separate payment even without supporting clinical
evidence if the anticipated clinical and/or economic benefits are
meaningful and are readily apparent (represented in the bottom
right quadrant in Fig. 1).
We recognise that the framework proposed is conceptual, and

payers would need to consider several important issues before
determining their payment policies for radiology AI applications.
Payers would have to define what constitutes a meaningful
benefit – as opposed to just a statistically significant improvement
– and what the minimum level of evidence is to support the
existence of such a benefit. Valuing healthcare interventions can
be complex, and radiology AI applications are no different. Cost-
offsets may be easy to quantify, but the value of earlier or more
accurate diagnosis may be much harder to value. Furthermore,
improving diagnosis may increase total healthcare costs by
increasing downstream spend on additional investigations or
treatments, and therefore, payers may have to consider not just
the value, but also potential budget impact. The value of an AI
application may differ substantially between healthcare systems,
and therefore, payers will have to evaluate radiology AI
applications within the context of their own healthcare systems
and determine whether and how to pay for these applications. For
example, in a healthcare system with poor access to specialist
radiologists, a radiology AI application may help improve
diagnostic accuracy and clinical outcomes, whereas in a health-
care system with good access to specialist radiologists the same
application may help improve efficiency of the reporting
radiologist more than diagnostic accuracy. Payers also need to
consider several ethical aspects when determining their payment
policies for AI applications such as the perspective they must take
when evaluating applications, willingness-to-pay thresholds and
whether to consider paying more for applications aimed at
diagnosing rare conditions.
Most of these issues we have highlighted above are not

necessarily unique for radiology AI applications: these issues have
applied historically to other healthcare technologies such as
pharmaceuticals. However, payers must also recognise that the
frameworks and evidence standards applicable for pharmaceu-
ticals cannot be directly transposed for radiology AI applications,
since there are multiple differences between them. AI applications
are iterative in nature and evolve over time. Therefore, a single
large trial may become irrelevant by the time the results are
available. Randomised controlled trials may be the gold-standard
for interventions such as pharmaceuticals, but for diagnostics,
payers must recognise that high quality real-world studies play a
key role in generating robust evidence that is otherwise difficult or
impossible to study54.
Reimbursement coverage policies are critical determinants of

adoption, and therefore, have a large impact on product
development decisions55. It is paramount for payers to develop
clear criteria for determining coverage of radiology AI applications
and apply this consistently when making decisions. Additionally,
payers and technology developers must engage in early discus-
sions on evidence requirements based on target product profiles
to ensure development of the right evidence. In healthcare
systems where existing processes allow only healthcare providers
or medical associations to initiate reimbursement requests, payers

must consider modifying these processes to allow technology
manufacturers to make direct reimbursement requests.

CONCLUSION
Imaging AI applications are expected to transform radiology.
However, widespread adoption of these applications requires
providers to have the motivation and incentives to adopt. For
some radiology AI applications, the benefits of the application
such as improved efficiency or lower costs themselves may
sufficiently serve as the incentive for providers to adopt. For
others, especially those that increase costs or reduce revenue for
the provider, the economics may serve as barriers to adoption,
and therefore, payers using prospective payment systems must
consider reimbursing the AI technology separate from the cost of
the underlying imaging studies to optimise health outcomes and
societal value.
In such circumstances, it is important for payers to develop a

clear set of criteria to decide which AI applications should be paid
for separately. The framework we have proposed may help serve
as a guide for payers aiming to establish such criteria as well as
technology vendors developing radiology AI applications. As a
rule of thumb, we propose that radiology AI applications that
improve diagnostic performance of the imaging study or provide
new diagnostic information that did not hitherto exist, must be
reimbursed separately provided they have evidence supporting
that this improved diagnostic performance leads to improved
outcomes from a societal standpoint. Additionally, we argue that
payers must consider separate payment for radiology AI applica-
tions that improve diagnostic performance substantially or
provide transformational new diagnostic information even with-
out supporting clinical evidence if the anticipated clinical and/or
economic benefits are large, and reasonably certain.
Considering the unique nature of radiology AI applications,

payers must also consider defining evidence standards that are
acceptable, recognising that high quality non-randomized studies
may offer robust real-world evidence where randomized con-
trolled trials are difficult or impossible to conduct. Payers must
consider streamlining processes to allow technology manufac-
turers to make direct reimbursement requests. Finally, since
reimbursement can be a critical determinant of adoption, payers
and technology developers must engage in early and direct
discussions on evidence requirements based on target product
profiles to ensure development of the right evidence.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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