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Physics-informed neural networks for modeling physiological
time series for cuffless blood pressure estimation
Kaan Sel 1, Amirmohammad Mohammadi 2, Roderic I. Pettigrew 3 and Roozbeh Jafari 1,2,3✉

The bold vision of AI-driven pervasive physiological monitoring, through the proliferation of off-the-shelf wearables that began a
decade ago, has created immense opportunities to extract actionable information for precision medicine. These AI algorithms
model input-output relationships of a system that, in many cases, exhibits complex nature and personalization requirements. A
particular example is cuffless blood pressure estimation using wearable bioimpedance. However, these algorithms need training
over significant amount of ground truth data. In the context of biomedical applications, collecting ground truth data, particularly at
the personalized level is challenging, burdensome, and in some cases infeasible. Our objective is to establish physics-informed
neural network (PINN) models for physiological time series data that would use minimal ground truth information to extract
complex cardiovascular information. We achieve this by building Taylor’s approximation for gradually changing known
cardiovascular relationships between input and output (e.g., sensor measurements to blood pressure) and incorporating this
approximation into our proposed neural network training. The effectiveness of the framework is demonstrated through a case
study: continuous cuffless BP estimation from time series bioimpedance data. We show that by using PINNs over the state-of-the-
art time series models tested on the same datasets, we retain high correlations (systolic: 0.90, diastolic: 0.89) and low error (systolic:
1.3 ± 7.6 mmHg, diastolic: 0.6 ± 6.4 mmHg) while reducing the amount of ground truth training data on average by a factor of 15.
This could be helpful in developing future AI algorithms to help interpret pervasive physiologic data using minimal amount of
training data.
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INTRODUCTION
AI algorithms provide unique opportunities for extracting complex
actionable information from wearable physiological time series
data for precision medicine1. These techniques, in particular
machine learning (ML) and deep learning (DL) approaches, model
the input-output relationships of the system, where in many cases,
this system exhibits a complex nature and personalized require-
ments, e.g., blood pressure (BP)2,3, cardiac output4, atrial fibrilla-
tion5, arterial characteristics6,7, hemoglobin levels8, stress9,
infection10,11 estimations using wearable sensor measurements.
It has been repeatedly noted that for many healthcare applica-
tions current ML- and DL-based modeling approaches require
significant amounts of ground truth training data comprising
subject-level information collected from a large number of
patients12–16. Collecting this ground truth data at individual levels
often requires the use of invasive or obtrusive medical-grade
measurement systems (e.g., arterial line or cuff-based sphygmo-
manometer for peripheral BP monitoring), and therefore is
challenging, burdensome, and in some cases infeasible. To
address this gap, we need to establish high-fidelity learning
models for time series data that rely on reduced amounts of
ground truth data.
For many engineering or biological systems, there exists a vast

body of domain knowledge that may be leveraged in training deep
neural networks (DNNs) to reduce the reliance on ground truth (i.e.,
labeled) data. A promising direction is the construction of physics-
informed neural networks (PINNs)17, where the neural networks are
trained to solve scientific problems leveraging underlying physics
laws structured by generalizable nonlinear partial differential

equations (PDEs). This is achieved by augmenting neural network
training with a unique loss function that includes these PDEs in
addition to the standard supervised loss. Therefore, during training,
PINN weights are optimized to minimize the loss function that
accounts for additional physical constraints. PINNs have proven to
be highly effective in solving many complex engineering problems
(e.g., fluid mechanics18, cyber-physical systems19, power systems20,
molecular biology21) with limited experimental data. However,
given the inter-subject variations in the cardiovascular system, the
relationships that connect wearable measurements to cardiovas-
cular parameters are not well-defined in the form of generalized
PDEs22,23. For example, using hand-crafted equations defined
between cardiovascular parameters and wearable time series data
is infeasible since; (i) the features of these wearable measurements
provide a proxy for physiological parameters that are not
generalizable, e.g., pulse transit time-based BP estimation requiring
frequent calibration due to its dependency on personalized arterial
properties that are not accessible with wearables24, (ii) these
equations fail to track and adapt to time-dependent changes in
cardiovascular dynamics e.g., increasing BP, with heart rate
increasing due to increased vagal tone or decreasing due to
increased sympathetic activity25–27. Therefore, there is an unmet
need to establish new ways to leverage PINNs for time series data
in cardiovascular applications.
In this work, we propose to establish PINNs for extracting

essential cardiovascular parameters (e.g., BP) from physiological
time series data with limited use of ground truth data. We achieve
this by building Taylor’s approximation for certain gradually
changing cardiovascular phenomena, e.g., establishing the rela-
tionship between physiological features extracted from
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Fig. 1 Physics-informed neural network (PINN). a The deep neural network (DNN) model uses input time series measurements (e.g.
bioimpedance, BioZ) to estimate continuous systolic, diastolic, and pulse pressure values. Taylor’s approximation is defined for physiological
features extracted from BioZ, and BP is used to guide neural network training. The parameters of the approximation are calculated with DNN
auto-differentiation of predictions with respect to input features. This approximation is compared with the DNN predictions to estimate values

for the physics-based loss function. b The definition of indexes for the sequential segmented input bioimpedance data, x
*
, having N sample

points per segment, and the extracted feature set, u
*
with three dimensions (i.e., number of features). c DNN architecture for PINN models. We

use convolutional neural network (CNN) layers extracting information from segmented BioZ, concatenate the output with the physiological
features extracted from each segment, and estimate BP, yNN . A conventional loss function, econventional , is calculated over a labeled set of size S,
based on the model output and true BP labels (ytrue). This value is used for conventional neural network optimization. For PINNs, we
additionally calculate the partial differentials of yNN with regards to the physiological input features and fit it into Taylor’s approximation
polynomial. This polynomial is constructed for each input segment from the dataset of size R and evaluated at the next consecutive segment.
We calculate mean squared error from the difference between Taylor approximations and the corresponding neural network predictions. This
new error function combined with the conventional error function are used to train the PINN models, based on α and β coefficients defined
for loss terms. We selected α and β to be 1 and 10, respectively, which initially results in a degree of magnitude higher loss values obtained
with conventional loss when compared to physics-based loss.
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bioimpedance sensor measurements and BP. This approximation
yields a Taylor approximation polynomial in the form of a PDE that
includes partial derivatives (i.e., gradients) of the output with
respect to the input. The values of these gradients are obtained
with auto-differentiation that is inherently available in neural
networks. We calculate a remainder term (i.e., residual or physics-
based loss) from the difference between Taylor’s approximation
and the neural network predictions and include it in the model loss
function. This enables the optimization of neural network weights
based on the total loss function resulting from the sum of the
standard loss and the residual. The Taylor polynomial can be used
to generate an approximation of the output for any input, without
the use of the corresponding true labels. Therefore, the physics-
based loss can be calculated for neural network predictions for all
inputs. This would lead to obtaining predictions that show minimal
deviation from the approximated Taylor polynomial.
The effectiveness of the framework is demonstrated through a

comprehensive case study on continuous cuffless BP estimation
from wearable time series bioimpedance data. BP is a significant
cardiovascular parameter frequently used by clinicians to assess
cardiac and circulatory health along with their associated risk
factors and disorders28–31. Conventional BP measurements –
yielding systolic (SBP), diastolic (DBP), and pulse pressure (PP)
values – are based on oscillometric cuff inflation/deflation which
causes discomfort, precluding frequent use32. Therefore, this case
study; (i) includes a cuffless wearable BP estimation scenario that
generates time series data, e.g., bioimpedance, (ii) targets a
problem with clinical importance, (iii) requires the acquisition of
ground truth data that is challenging to obtain, (iv) utilizes
complex cardiovascular dynamics driving the translation of
wearable bioimpedance into BP33–35. We focus on a single
wearable modality (e.g. bioimpedance) for our time series
measurements to ensure that the underlying physics remain
consistent for one modality (see Methods and Supplementary
Note 1 for additional details on bioimpedance). Supplementary
Note 2 provides a summary of the related work on cuffless BP
monitoring technologies that highlight the challenges in the
domain as well as our unique contributions.
Figure 1a shows a high-level representation of the proposed

framework demonstrated through the selected case study. The
input features for our models are extracted from non-invasive
bioimpedance sensors placed at the participants’ wrists or fingers
in a wearable form factor (see Supplementary Fig. 1). We
evaluated the accuracy of the PINN model predictions on different
datasets having N= 15 participants, who went through various BP
elevation maneuvers (e.g., hand gripper exercise, cold-pressor
test), achieving a wide range of pressure values (0.04–0.96
quantiles, systolic: 104–205 mmHg, diastolic: 51–136mmHg, pulse
pressure: 29–103 mmHg). See Supplementary Table 1 individual
BP ranges and categories defied by ACC/AHA guidelines36. The
proposed PINNs retain high accuracy (ME ± SDE, systolic:
1.3 ± 7.6 mmHg, diastolic: 0.6 ± 6.4 mmHg, pulse pressure:
2.2 ± 6.1 mmHg), while decreasing the required amount of ground
truth data, on average, by a factor of 15, based on the comparison
with the state-of-the-art time series regression models (see
Supplementary Tables 2–4). We provided an additional proof-of-
concept study to show that the optimized PINN models
demonstrate a consistent approximation of the input-output
relationship for varying amounts of training ground truth data.

RESULTS
Physics-informed neural network model for cuffless BP
estimation
A conventional deep neural network (DNN) is trained through
supervised learning – also known as inductive learning - where
model weights are optimized based on a loss function that uses a

labeled training dataset (i.e., the true output is known). PINN
models are transductive, meaning that in contrast to inductive
learning, the models make use of additional information present
in the unlabeled (i.e., the true output is unknown) input data37.
This information is integrated to the model through a modification
of the conventional loss function, Lconventional , which is originally
calculated using the model predictions and true output labels. In
contrast, the modified loss function includes an additional loss
term, Lphysics , as shown in Eq. (1).

Ltotal ¼ αLconventional þ βLphysics (1)

Here, Ltotal represents the modified model loss function due to
the addition of Lphysics to conventional supervised loss, and α and
β indicate the weights of each loss-functions. The weight
assignment is not a straightforward process18,38–40. We selected
α and β to be 1 and 10, respectively which initially results in a
degree of magnitude higher loss values obtained with Lconventional
compared to Lphysics with an example shown in Supplementary
Fig. 2. The initially higher values for the supervised loss ensure that
the model estimations are bounded by the true range of BP,
where eventually, as the supervised loss decreases, the model
weight optimization focuses on satisfying the physics-based
constraint. Note that an inaccurate definition of Lphysics may
degrade model accuracy as it may lead to misguided weight
optimization. We construct Lphysics based on Taylor’s approxima-
tion of the known physiological dynamics driving the translation
of bioimpedance to BP, e.g., hemodynamic relationships defined
between blood volume, arterial compliance, and BP33,41: let x

*
i :

fx1i ; ¼ ; xNi g be the N dimensional time series bioimpedance data
segmented based on the start and end of the i-th cardiac cycle
and sampled to have N points for each segment, u

*
i : fu1i ; ¼ ; uMi g

be the M dimensional vector corresponding to M features
calculated from x

*
i , and Θ denote the neural network weights

(Fig. 1b). The neural network generates an output, yNN based on x
*
,

u
*
, andΘ, such that yNN ¼ f NNðx*; u*;ΘÞ: Here, f NN is the

approximated function by the neural network. See Methods for
the formation of Taylor’s approximation polynomial, Piðx*; u*;ΘÞ,
and Lphysics that builds on this polynomial. The partial derivatives
defined within Lphysics; i.e., ∂f NN=∂ u

*
, represents the approximated

non-stationary relationship between physiological input features
and output BP. The evaluation of Lphysics across the complete
unsupervised input set enables neural network predictions to be
aware of the input-output relationships approximated with Taylor
polynomial. The use of limited supervised points allows the neural
network to obtain blood pressure predictions that satisfy the
physical constraint defined with Lphysics rather than arbitrary
values. To assess the effectiveness of the physics-integration in
DNN training, we create an identical DNN architecture, inputs (i.e.,
segmented bioimpedance waveforms and physiological features),
and training/testing data for both the proposed PINN and the
conventionally trained DNN. The only difference is the definition
of the loss functions for these models, i.e., the PINN includes the
additional loss term, Lphysics . Figure 1c shows the DNN model
architecture, that uses a combination of convolutional neural
networks (CNN) and dense layers to generate a prediction of the
reference ground truth information, such as BP (see Methods for
details of model architecture and hyperparameters).
The bioimpedance sensors placed along the peripheral (e.g.,

radial, digital) arteries capture quasi-periodic waveforms. We
defined three features (i.e., u

*
: fu1; u2; u3g) extracted at every

heartbeat window from pre-processed bioimpedance signals
based on their physiological relevance to hemodynamic features
that exhibit certain relationships with BP. With every heartbeat, a
pressure pulse propagates through the arteries causing an
expansion in artery volume and an increase in pressure. The
change in volume and pressure is based on the elastic wall
properties of the arteries. An increase in volume with pulse arrival
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causes a drop in the bioimpedance amplitude due to the blood’s
higher conductivity than surrounding tissue34. The first feature, u1,
corresponds to the level of amplitude change in the bioimpe-
dance waveform, providing a proxy to an increase in blood
volume34. Under varying BP, the arterial wall characteristics also
affect the blood pulse wave velocity (PWV). Higher PWV results in
the earlier arrival of the reflected pulse wave (e.g., due to arterial
tree branching of the radial artery to the digital arteries)42,43.
Hence, it causes an earlier secondary drop in bioimpedance
amplitude when the reflected pulse reaches the arterial site. The
second feature, u2, measures the inverse of the time difference
between these two impedance drops, e.g., caused by the arrivals
of the systolic and reflection waves, and gives an indirect proxy to
PWV and artery elasticity44,45. Lastly, the third feature, u3; is beat-
to-beat heart rate (HR), measured from the time difference
between the end and the beginning of the waveform.
The feature definitions are shown in Fig. 2. We share the details

of bioimpedance signal pre-processing and relationships regard-
ing arterial dynamics in the Methods section and Supplementary
Fig. 3. For each blood pressure parameter (SBP, DBP, and PP), we
trained a separate model with output prediction based on the
type of blood pressure provided as ground truth data during
supervised training.

Study design
We use three bioimpedance-BP datasets obtained as a part of
previous studies from our group: (i) graphene-HGCPT3; (ii) calfree-
HGCPT 46; (iii) ring-CPT 47. These datasets include bioimpedance
waveforms captured with a wearable form-factor sensor placed
along the participants’ wrist (i.e., radial) and finger (i.e., digital)
arteries (see Supplementary Fig. 1). For all datasets, the reference
BP values come from a medical-grade BP monitoring finger cuff
device, Finapres NOVA. The details of the datasets and human
subject participation are shared in the Methods section. We build
personalized models (i.e., models trained and tested on the data
from the same participant) for N ¼ 15 individuals (graphene-
HGCPT dataset: N ¼ 6, calfree-HGCPT dataset: N ¼ 5, ring-CPT
dataset: N ¼ 4). All three datasets include wide BP ranges,
reaching to hypertensive scale (i.e., systolic >140mmHg, and
diastolic >90 mmHg), due to the inclusion of BP elevation
maneuvers (e.g., hand gripper: HG, cold-pressor test: CPT) in the
standard protocol during data collection (Supplementary Table 1).

PINN model training, testing and performance evaluation
The proposed implementation of PINNs provides unique oppor-
tunities to train with minimal ground truth data for accurate time

series translation. In contrast, traditional state-of-the-art ML and
DNN models built for time series regression require training on
large amounts of labeled data to offer acceptable performance.
We assess the PINN performance against the CNN having the
same neural network architecture for estimating SBP, DBP, and PP
with minimally labeled data. The minimal training criterion is
defined as neural network training with a set of labeled training
instances, with each instance in the set randomly selected from
the uniformly distributed and segmented BP values (see Figs. 3a,
b, and c, and Methods section for details of the train and test split
criteria). The training labels covering different BP levels allow the
PINNs to learn the Taylor polynomial approximating the complex
input-output distribution across the complete dataset. Supple-
mentary Tables 5–13 show the percent of training instances for
each participant under the minimal training criterion.
Figures 3b, 4b, and 5b show an example of beat-to-beat SBP,

DBP, and PP estimations with PINN and conventional CNN trained
with less than ~10% of the labeled data and tested on the
remaining ~90% (Supplementary Figs 4–6 show PINN and CNN
estimations of SBP, DBP, and PP for all participants). Under the
same training constraint, we observe that PINNs show superior
performance against conventionally trained CNNs in capturing
localized changes in blood pressure yielding a higher correlation
with lower absolute errors. Supplementary Tables 5–13 show PINN
and CNN performances based on the mean error (ME), the
standard deviation of the error (SDE), root-mean-squared error
(RMSE), and Pearson’s correlation coefficient values in estimating
SBP, DBP, and PP, respectively, for all participant from three
datasets. PINNs, on average, improve the conventional model by
47%, 35%, and 39% for SBP, DBP, and PP, respectively (based on
RMSE values averaged over all participants). Supplementary Tables
14–16 provide the results achieved with the PINNs presented
based on the AAMI standard for BP devices48, where PINNs
demonstrate a performance within the Grade A classification set
by the standard, for all three datasets.
We conduct Bland-Altman and Pearson’s correlation analyses

on the estimated vs. true SBP, DBP, and PP values for PINN and
conventionally trained CNN models. The analyses results are
shared in Figs. 3c, d, 4c, d, and 5c, d, respectively (Bland-Altman,
ME (SD) in mmHg, SBP, with PINN: 1.3 (7.6), with CNN: 1.8 (14.4);
DBP, with PINN: 0.6 (6.4), with CNN: 0.5 (10.1); PP, with PINN: 2.2
(6.1), with CNN: 2.4 (10.9), Pearson’s analysis, correlation coeffi-
cient, r, SBP, with PINN: 0.90, with CNN: 0.73; DBP, with PINN: 0.89,
with CNN: 0.77; PP, with PINN: 0.89, with CNN: 0.72). PINNs
achieve, on average, 32%, 23%, and 69% percent higher
correlation for SBP, DBP, and PP, respectively when compared to
the conventional CNNs trained with the same amount of labeled
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Fig. 2 Bioimpedance beat feature definitions. a The change in (inverted) bioimpedance signal amplitude, �ΔZ (top), and its time derivative
∂ð�ΔZÞ=∂t (bottom) are shown. Dashed black line shows the -ΔZ waveform downsampled to 30 Hz for neural network training. The peak and
zero-crossing points in the derivative signal are used to mark the start and end of each cardiac cycle. �ΔZ increases with the arrival of the
blood pressure pulse wave at the artery due to an increase in the artery volume. b Characteristic points on a single cardiac cycle
bioimpedance beat. The amplitude change, u1, provides a proxy for the amount of arterial expansion. The second feature, u2, corresponds to
the inverse of the relative time difference between the forward traveling (i.e., systolic) wave and reflection wave giving an estimate of the
pulse wave velocity (PWV). The third feature, u3 gives beat-to-beat heart rate.
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data (per-subject results averaged over all participants, Pearson’s
correlation r, SBP/DBP/PP, with PINN: 0.81/0.76/0.66, with CNN:
0.61/0.62/0.39).
We provide an additional comparison of the performance

obtained with proposed PINNs with three state-of-the-art time
series classical regression models: AdaBoost regressor49, Rocket
regressor50, Random Forest regressor51, and four state-of-the-art
time series deep learning models52,53: Long-short-term Memory
(LSTM)54, CNN+Bi-GRU+Attention55, Residual Network
(ResNet)53,56, Transformer57. The classical regression models are
trained with; (i) minimal training criterion, (ii) 4-fold cross-
validation (~ 75% labeled data is used in training), (iii) 8-fold
cross-validation (~ 88% labeled data is used in training). All deep
learning models are trained with the minimal training criterion,
where 20% of the training instances are used for validation
purposes, such that the training weights that yield the lowest
validation loss are used for obtaining BP estimations. The results of
this analysis are shared in Supplementary Tables 2–4, showing
that compared to the state-of-the-art time series machine learning
and deep learning models, PINNs retain low RMSE and high
correlations with limited training data (see Methods section for
the details regarding the models). On average across all datasets,
the RMSE and correlation for PINNs are 7.1 mmHg and 0.82 for SBP
and 5.7 mmHg and 0.76 for DBP, respectively, outperforming all
other models; the classical regression models obtain RMSE and
correlation values ranging from 8.9–10.8 mmHg, 0.57–0.62 for SBP
and from 6.6–8.1 mmHg, 0.57–0.64 for DBP, respectively, and the
deep learning models obtain RSME and correlation values ranging
from 11.8–16.5 mmHg, 0.09–0.59 for SBP and from
8.4–12.4 mmHg, 0.17–0.64 for DBP, respectively. For classical
machine learning models, we observe that, as the number of
data points increases (e.g. 8-folds vs. 4-folds, and 4-folds vs.

minimal training), per-subject correlations fluctuate rather than
improve. We believe that this is due to the underlying complexity
of the input-BP relationship, where the high number of training
instances may cause the classical models to refrain from making
liberal predictions that is necessary to track changes in BP - and
hence lead to poor correlations – while achieving better estimates
of the general trend in BP – and hence lead to improved RMSE. For
deep learning models, we observe similar performances obtained
with CNNs, LSTMs, and Transformers, whereas CNN+Bi-GRU
+Attention and ResNet models provided BP estimations with
significantly higher RMSEs and poor correlations with limited
training data. We believe that the significantly poorer perfor-
mances with these two models when trained with limited training
data are due to their high complexity incorporating either very
deep CNN layers or a combination of multiple deep and complex
neural network architectures.

Interpretation of Taylor polynomial parameters
The neural network learning obtains function f that approximates
the complex relationship between input and output. Due to the
presence of a physics-based loss in the loss function, after network
optimization, this function has a minimal difference with the
evaluations of approximated Taylor polynomial, P. This polynomial
is constructed with the use of features extracted from input times
series measurements that are physiologically relevant to BP, e.g.,
u1 feature and peripheral blood volume change. Therefore, the
parameters of P relate these features into complex cardiovascular
parameters based on the underlying physiological mechanism. In
addition, when this underlying physiological mechanism remains
the same (e.g., different iterations of the cold-pressor test), these
parameters are expected to demonstrate comparable behavior.
However, if the input features have low correlation with the proxy

c d

True SBP (mmHg)

Predicted SBP (mmHg)

b

Beat time (s)

SBP (mmHg)

Difference in true and predicted SBP (mmHg)

Average of true and predicted SBP (mmHg)

a

SBP (mmHg)

Count Training set Testing set

PINN CNN

True BP PINN BP CNN BP

Fig. 3 Beat-to-beat SBP estimation. a Histogram for the training and testing set instances for varying SBP values used in PINN model training
for a single individual (SID 15). For each 1mmHg increase in SBP, we randomly select 1 data point for supervised model training, whereas all
other points are used in model testing. b Beat-to-beat SBP estimation (SID 15) based on PINN (shown in green) and reference conventional
CNN (shown in orange) models trained with the same number of instances and corresponding true SBP (shown in dashed black). PINN shows
a more precise fit to the reference SBP. c Bland-Altman analysis with data analyzed for a total of N= 15 subjects for PINN (green, ME:
1.3 mmHg, SD: 7.7 mmHg) and conventional CNN (orange, ME: 1.8 mmHg, SD: 14.4 mmHg) models. d Pearson’s correlation analysis with data
analyzed for a total of N= 15 subjects for PINN (green, correlation coefficient r: 0.90) and conventional CNN (orange, correlation coefficient r:
0.73) models.
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hemodynamic parameter (e.g., caused by noise in measurements
due to motion artifacts), the association between the parameters
of P and the underlying physiological mechanism may become
convoluted. Nevertheless, even in this case, PINNs retain high
accuracies since the Taylor polynomials still provide a representa-
tion of non-trivial input-output mapping that guides the model
predictions.
For a proof-of-concept, we select a participant (SID15) whose

first input feature shows high correlations with SBP (absolute
value of Pearson’s correlation coefficient 0.9, see Fig. 6a, b) and
conducted a post-analysis of the PINN trained over minimally
provided SBP labels (e.g. 65 out of 878 ground truth labels used
for training). Partial differentials (i.e., gradients) calculated with
auto-differentiation are defined for SBP predictions and input
features, u

*
. We split the testing dataset into different subsets and

trials representing different CPT and recovery sessions and plotted
the partial differential value distribution across varying SBP.
Through this analysis, we aim to assess; (i) the general behavior
of the gradient-output distribution, (ii) the changes in this
distribution for different sessions, and (iii) the consistency of this
distribution across multiple iterations of the same type of session.
Figure 6 shows the results of this analysis, plotted separately for all
three features in u

*
. The gradient for the first feature measures a

relative change in blood pressure with a change in u1, which
provides a proxy for arterial volume change in the peripheral
arteries (e.g., digital, radial)34. The sympathetic stimulation caused
by an external stressor (e.g., during CPT) leads to an increase in
SBP58,59. Meanwhile, the peripheral arteries may observe vaso-
constriction (i.e., narrowing of blood vessels by small muscles in
their walls)60,61. Therefore, a negative gradient between BP and
peripheral artery volume may be observed. We observe that u1

decreases with increasing yNN , where the corresponding gradient,

∂yNN=∂u
1 has a consistent negative amplitude in agreement with

the feature behavior (Fig. 6a–c top subplots). This negative
amplitude can be associated with the vessel vasoconstriction due
to CPT. The change in volume/pressure is also a factor of the
arterial characteristics – e.g., artery compliance, that exhibit a non-
linear pressure dependent relationship2,62,63. We observe the
magnitude of the gradient increases with increasing SBP, which
can be associated with the underlying arterial wall compliance
characteristics that drive the volume-pressure relationships (See
Methods section and Supplementary Fig. 3).
The second-feature gradient (i.e., ∂yNN=∂u

2 ) is related to the
non-linear relationship between PWV and SBP (See Methods and
Supplementary Fig. 3). This hemodynamic parameter is conven-
tionally calculated based on measurements across proximal and
distal points along the arterial tree64,65. The physical separation of
two measurement sites enables to capture of the time delay for
the arrival of the BP pulse wave, i.e., pulse transit time (PTT), where
PWV is d=PTT , with d being the distance between distal and
proximal sensors. In our case, u2, only provides a proxy to
PWV44,45, given that there is only a single-channel bioimpedance
measurement used in extracting u2. We observe that this feature
shows sudden changes in a short time frame for higher levels of
SBP, dominating the changes at lower SBP levels. Therefore, the
corresponding gradient result in having high magnitudes at lower
SBP levels achieved during recovery sessions (green triangles in
Fig. 6c subplots), and values closer to zero at higher SBP levels
achieved during CPT (yellow circles in Fig. 6c subplots). Never-
theless, the decrease in magnitude with increasing SBP can be
associated with the non-linear SBP-PWV relationship (see Methods
and Supplementary Fig. 3).
The third feature, u3, measures beat-to-beat HR, where its

relationship with BP exhibits dynamic nature, affected by various

c d

True PP (mmHg)

Predicted DBP (mmHg)

b

Beat time (s)

DBP (mmHg)

Difference in true and predicted DBP (mmHg)

Average of true and predicted DBP (mmHg)

a

DBP (mmHg)

Count Training set Testing set

PINN CNN

True BP PINN BP CNN BP

Fig. 4 Beat-to-beat DBP estimation. a Histogram for the training and testing set instances for varying DBP values used in PINN model
training for a single individual (SID 15). For each 1mmHg increase in DBP, we randomly select 1 data point for supervised model training,
whereas all other points are used in model testing. b Beat-to-beat DBP estimation (SID 15) based on PINN (shown in green) and reference
conventional CNN (shown in orange) models trained with the same number of instances and corresponding true DBP (shown in dashed
black). PINN shows a more precise fit to the reference DBP. c Bland-Altman analysis with data analyzed for a total of N= 15 subjects for PINN
(green, ME: 0.6 mmHg, SD: 6.4 mmHg) and conventional CNN (orange, ME: 0.5 mmHg, SD: 10.1 mmHg) models. d Pearson’s correlation analysis
with data analyzed for a total of N= 15 subjects for PINN (green, correlation coefficient r: 0.89) and conventional CNN (orange, correlation
coefficient r: 0.77) models.
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physiological feedback mechanisms (e.g., vagal activity, baror-
eceptor reflex)25,26. It has been previously shown that during the
CPT, HR may show an initial increase (e.g., increased sympathetic
activity) followed by a decrease (e.g., increased vagal tone) with
increasing SBP. We observe a similar pattern in the feature
distribution against SBP as shown in Fig. 6b (see mean trend line
in red color). The gradient for the third feature, i.e., rate of change
in SBP with changing beat-to-beat heart rate, shows positive
amplitudes for lower ranges of SBP and negative amplitudes for
higher ranges of SBP in agreement with the mean trend in the
feature distribution. This change in polarity may be explained by
the increased vagal tone dominating the sympathetic activity with
increasing SBP during the CPT25–27. To further assess the
consistency of the parameters establishing the Taylor polynomial
across different amounts of information provided to the neural
network, an additional analysis is provided. The purpose of this
analysis is to demonstrate that the optimized PINN models obtain
a consistent approximation of the input-output relationships
defined by the Taylor polynomial under varying ground truth data
used in model training. To assess this, we train a total of 137
separate models, with each model corresponding to a different
number of training instances and data coming from a single
individual (SID15): we create a set of initial training points, with
each point randomly picked from BP data sorted and segmented
into bins, where each bin has 0.5 mmHg steps. This results in 125,
77, and 69 training points for SBP, DBP, and PP, respectively. We
start from a single training point and gradually increased the
number of training points with two randomly picked points from
the aforementioned training sets (e.g., this resulted in 63 models
for SBP, labeled training instances: one to 125).
Figure 7a, b and Supplementary Fig. 7a, b show the testing error

for PINN and conventional CNN models based on RMSE and
Pearson’s correlation coefficient, as the number of labeled training

instances grows for SBP, DBP, and PP, respectively. We observe
that the PINN models retain consistently high performance (less
than 10mmHg RMSE and 0.85 correlation) when trained for more
than ten labeled data points. Figure 7c–e, show the distribution of
the gradients, ∂yNN=∂ u

*
, with respect to yNN , respectively, where

the distributions are grouped based on the number of labeled
instances used for training. We observe that ∂yNN=∂u

1 and
∂yNN=∂u

3 show a consistent distribution (less than 0.10 standard
deviation in the discovered trend calculated within the group)
with as low as fewer than 40 labeled training instances. Whereas
the second gradient, ∂yNN=∂u

2 , demonstrates a higher deviation
in discovered trend due to the highly varying distribution of the
second feature, u2, that exhibit sudden changes during high SBP
values. The results of this analysis demonstrate the potential of
using a limited number of discrete ground truth data points to
train the neural networks that produce robust predictions for the
remaining majority of input (e.g., more than N= 800 samples)
based on the unique integration of Taylor polynomial to the
model training. Details of this analysis is shared in the Methods
section.

Model performance under out-of-distribution and inter-
subject evaluation strategies
We tested the PINNs against the state-of-the-art models for two
additional evaluation strategies. The first evaluation strategy
assesses the models’ ability to perform predictions with testing
data samples that have no previous examples in the training
dataset. To establish such evaluation paradigm, we compose the
training set using the samples at lower and higher BP ranges,
while the remaining BP range is used for testing the model (see
Supplementary Note 3). The results of this evaluation strategy for
all five models (i.e., PINN, CNN, AdaBoost regressor, Rocket
regressor, and Random Forest regressor) are provided in

c d

True PP (mmHg)

Predicted PP (mmHg)

b

Beat time (s)

PP (mmHg)

Difference in true and predicted PP (mmHg)

Average of true and predicted PP (mmHg)

a

PP (mmHg)

Count Training set Testing set True BP PINN BP CNN BP

PINN CNN

Fig. 5 Beat-to-beat PP estimation. a Histogram for the training and testing set instances for varying PP values used in PINN model training
for a single individual (SID 15). For each 1mmHg increase in SBP, we randomly select 1 data for supervised model training, whereas all other
points are used in model testing. b. Beat-to-beat PP estimation (SID 15) based on PINN (shown in green) and reference conventional CNN
(shown in orange) models trained with the same number of instances and corresponding true PP (shown in dashed black). PINN shows a more
precise fit to the reference PP. c Bland-Altman analysis with data analyzed for a total of N= 15 subjects for PINN (green, ME: 2.2 mmHg, SD:
6.1 mmHg) and conventional CNN (orange, ME: 2.4 mmHg, SD: 10.9 mmHg) models. d Pearson’s correlation analysis with data analyzed for a
total of N= 15 subjects for PINN (green, correlation coefficient r: 0.89) and conventional CNN (orange, correlation coefficient r: 0.72) models.
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Supplementary Table 17, based on values averaged over all
participants (N= 15). We observed that PINNs overperform all
other learning models, achieving −1.3 ± 7.0 mmHg and
−0.7 ± 5.8 mmHg estimation accuracies, corresponding to 1.5
and 1.4 times lower standard deviation of errors than the best
performance obtained with the state-of-the-art-models, for SBP
and DBP respectively. The higher performance with PINN is due to
the physics-based constrained on the model predictions based on
the approximated input-output relationships.
For the second evaluation strategy, we assessed the models’

ability to perform predictions in inter-subject settings (e.g., leave-
one-subject-out training), where we trained the models based on

the data from all subjects except one (N= 14), and tested on the
excluded subject (N= 1), with four-point calibration (see Supple-
mentary Note 3). Supplementary Figs 8–9 show the Bland-Altman
and Pearson’s correlation analyses results for SBP and DPB,
respectively for CNNs and the state-of-the-art models directly
compared to PINNs. Supplementary Table 18 provides the
estimation accuracies averaged over all participants for each
model. The results indicate a significant performance improve-
ment with PINNs against the state-of-the-art models, achieving
0.2 ± 12.1 mmHg and 1.6 ± 8.7 mmHg estimation accuracies (1.3
and 1.1 times lower standard deviation of errors compared to the
best performance obtained with the state-of-the-art-models), for
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Fig. 6 Parameters of the Taylor’s approximation of BP using physiological input features. The analysis results are obtained from the PINN

model trained on a single individual’s SBP data (SID15). a Beat-to-beat values for the bioimpedance input features (left y-axis), u
*
: fu1; u2, u3},

and SBP (right y-axis) plotted against the time for each segmented beat. b Scattered plots of the features, u1,u2; and u3 against the
corresponding SBP predictions obtained with the neural network, yNN . Red and gray lines show the mean and ± standard deviation of the
feature values for varying SBP. The colors show the values of the gradients for each point, i.e., ∂yNN=∂u

1, ∂yNN=∂u
2 , and ∂yNN=∂u

3 calculated by

auto-differentiation of PINN model output, yNN , with respect to each dimension of u
*
. For example, the consistent blue tones for the top plot

refers to a consistent negative value for the gradient term ∂yNN=∂u
1, in agreement with the distribution of the u1 feature values showing a

decrease for increasing yNN predictions. c Scattered plots of the gradient values ∂yNN=∂u
1, ∂yNN=∂u

2, and ∂yNN=∂u
3 for varying yNN . Colors

represent the specific BP elevation maneuver for each data point, such that: yellow points correspond to the values obtained during cold-
pressor test (CPT); green points correspond to the values obtained during the recovery session. The solid lines represent the trend line for
each CPT or recovery session iteration, calculated from the average value for each integer SBP value. The observation for u1 feature values
showing a strong negative correlation with SBP agrees with the negative value for the ∂yNN=∂u

1. The increase in magnitude for the gradient
with increasing SBP can be associated with the volume-pressure dynamics driven by the arterial wall compliance. Subplots a and b for u2

show sudden changes for high SBP values and sustained changes for the remaining times. The gradient for this feature therefore shows
amplified response for certain values of SBP, as shown in subplots b and c. The gradient for the third feature, i.e., rate of change in SBP with
changing beat-to-beat heart rate, shows positive values for lower ranges of SBP and negative values for higher ranges of SBP. This change in
polarity may be explained due to increased vagal tone dominating over the sympathetic activity with increasing SBP during the CPT.
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SBP and DBP, respectively. In these evaluation strategies the
training and testing datasets are separated based on specific BP
ranges or individuals. Therefore, the train and test datasets
present no risk of leakage or overlap. Results show the superiority
of PINNs for providing predictions in both out-of-distribution and
inter-subject settings.

Model performance based on higher order Taylor’s
approximation used in physics-based loss function
To assess the relationship between estimation accuracy and the
degree of the Taylor’s approximation polynomial, we conducted
an analysis where we trained all PINN models with Taylor’s
approximation based on second-order polynomials. The results of
this analysis are shared in Supplementary Tables 19–21 for SBP,

DBP, and PP to provide comparison with base PINN model. We
observed that the accuracy improvements are marginal with the
use of a second-order Taylor’s approximation polynomial (result-
ing in 1.02 times lower RMSE and 1.01 times higher correlation, on
average, for all BP types) compared to the first-order
approximation.

Ablation study on physiological features used in Taylor’s
approximation
In order to validate the importance of physiological features in the
success of physics-based loss function for the proposed PINNs, we
performed an ablation study on the, physiological features. For
this analysis, we replaced the three physiological features with the
first three dimensions of the flatten-layer outputs during the

# of training instances # of training instances 

RMSE in SBP estimation (mmHg) Correlation
PINN models
CNN models

a b

(SBPpred in mmHg)

: 0.10 : 0.08

#: 1 to 9 #: 31 to 59 #: 61 to 89 #: 91 to 123#: 11 to 29

: 0.05 : 0.04

: 0.23 : 0.20 : 0.16 : 0.07

: 0.13 : 0.07 : 0.04 : 0.03

#: 1 to 9 #: 31 to 59 #: 61 to 89 #: 91 to 123#: 11 to 29

#: 1 to 9 #: 31 to 59 #: 61 to 89 #: 91 to 123#: 11 to 29

: 0.04

: 0.09

: 0.11

c

d

e

Fig. 7 PINN model behavior under increasing number of training instances. a, b Root-mean-squared error (RMSE) and Pearson’s correlation
coefficient in estimating SBP for PINN (green) and conventional CNN (orange) models trained over varying amounts of labeled instances. We
observed that the PINN models retain consistently high performance (less than 10mmHg RMSE and 0.85 correlation) when trained for more
than ten labeled data points. c–e The distribution of the gradients, ∂yNN=∂u

1, ∂yNN=∂u
2, and ∂yNN=∂u

3 , respectively, calculated as a part of the
Taylor polynomial approximated for each model and grouped based on the number of labeled instances (see subplot titles) used in model
training. Gray lines show the individual model trends, whereas solid and dashed colored lines represent the mean trend and standard
deviation among all models for the given range of training instances, respectively. The subplot legends (i.e., SDavg) show standard deviation of
the gradient values calculated across the group for each SBP and averaged across all points of SBP. A decrease in SDavg is observed among the
models trained over higher number of instances, in agreement with the obtained prediction performances. We observe that ∂yNN=∂u

1 and
∂yNN=∂u

3 show a consistent distribution (less than 0.10 standard deviation in the discovered trend calculated within the group) with as low as
fewer than 40 labeled training instances. Whereas the second gradient, ∂yNN=∂u

2 , demonstrates a higher deviation in constructed trend due
to the complex behavior of the second feature, u2, that exhibit sudden changes during high levels of SBP (see Fig. 6a-b middle subplots).
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formation of Taylor’s approximation used in the calculation of the
physics-based loss function for PINNs. This means, as a part of the
physics-based loss, we calculated the partial derivatives of output
with respect to the first three dimensions of the flatten layer
output, and used the changes in these flatten layer outputs to
obtain the Taylor’s approximation of the next cycle output. The
results of this analysis are shared in the last two columns of
Supplementary Tables 19–21 for SBP, DBP and PP. We observe
that replacing the physiological features with arbitrary features
causes instability in model weight optimization, where for certain
participants, the weights in models did not converge, and the for
the remaining models, estimation accuracy degraded significantly
(resulting in 1.9, 2.0, and 3.2 times higher RMSE and 1.4, 1.5, 1.8
times lower correlation, on average, for SBP, DBP, and PP,
respectively). The results indicate the importance of selecting
physiologically relevant features for the formation of Taylor’s
approximation.

DISCUSSIONS
Our contributions in this paper are summarized as follows: (i) we
present a use of PINNs to extract actionable information from time
series data for precision medicine with minimal use of ground
truth information. Although the PINNs have already been
introduced, conventionally they require well-defined generalized
partial differential equations (PDEs). We propose to obtain PDEs at
a personalized level by utilizing Taylor’s approximations for the
gradually changing known cardiovascular relationships between
input and output and integrating it into neural network training.
This leads to robust predictions with training on minimal ground
truth data. (ii) Our proposed technique adds interpretability to the
network by establishing relationships with underlying cardiovas-
cular dynamics. We show that the parameters of Taylor’s
approximation remain consistent across iterations of varying BP
elevation maneuvers (e.g., CPT) and show associations with known
cardiovascular dynamics. (iii) We demonstrate the effectiveness of
proposed PINNs through a comprehensive case study on
continuous BP estimation with wearables. We test our models
across different bioimpedance-BP datasets, including a total of
N= 15 participants, with various kinds of sensors (see Supple-
mentary Fig. 1) covering wide ranges of SBP, DBP, and PP. We
show that PINN models retain high estimation accuracies for all
individuals while decreasing the required amounts of ground
truth data used in training, on average, by a factor of 15 (see
Supplementary Tables 2–4). In addition, we compare the PINN
performance against various state-of-the-art neural network
models including a neural network model of the same architec-
ture with PINNs trained over the same amounts of labeled data,
where PINNs obtain significantly higher performance (see
Supplementary Tables 2–16). One limitation of the study is the
limited number of participants included in the analyses. An
analysis over a larger number of individuals will have the potential
to adequately represent performance variations due to inter-
individual variability.
It is important to note that the relationships between the

physiological features and BP are non-linear. However, between
consecutive cardiac cycles, we can assume that the gradients of
BP with respect to the physiological features are not evolving fast
given that the underlying cardiovascular characteristics are slowly
varying. Our physics-based loss includes Taylor polynomials
defined for consecutive beats, and therefore the use of first-
order terms in this polynomial should yield a reasonable
approximation. We provide an analysis comparing the effects of
adding second-order terms to the first-order Taylor’s approxima-
tion polynomial on BP estimation accuracies in Supplementary
Tables 19–21, where we see a marginal improvement as expected.
One opportunity that can be explored in the future is to construct
Taylor approximation based on cardiac cycle pairs with higher

temporal gaps (e.g., non-consecutive beats with 1 min separation).
In this case, a higher-order Taylor polynomial would be more
effective in achieving accurate approximation for the non-linear
relationship between the physiological features and BP.
The Taylor polynomial calculated with PINNs offers an

approximation of the input-output dynamics based on the
boundary conditions provided with limited ground truth data.
The use of Taylor polynomial approximation over hand-crafted
equations (e.g., linear regression models for PTT and BP66) for
building PINNs address several important challenges, such as; (i)
infeasibility of defining static equations that work under differing
physiological contexts (e.g., exercise, stress, recovery, rest)67, (ii)
inability to represent and mimic complex cardiovascular dynamics
as it is challenging to estimate the underlying parameters for
personalization. We tested our framework on datasets obtained as
a part of three previous studies. These studies focus on the various
implementations of bioimpedance sensors for high-fidelity
capture of the physiological signals and quantify the effectiveness
of their approaches through a validation study involving BP; the
studies corresponding to graphene-HGCPT3 and calfree-HGCPT46

datasets involve features extracted from multi-channel bioimpe-
dance waveforms used for BP estimations, while the study
corresponding to the ring-CPT47 dataset involves features
extracted from a single-channel bioimpedance waveform used
for BP estimations. All these datasets leverage AdaBoost regressor
for the BP estimation task. To provide a fair comparison between
the advancements of our proposed techniques against the
previous work as well as the state-of-the-art machine learning
models (AdaBoost regressor, Rocket regressor, Random Forrest
regressor), we evaluated all models under same evaluation
strategies.
The framework presented in this paper demonstrates a unique

way to advance AI algorithms for wearable time series analysis
with reduced dependency on the labeled training data. This is
achieved based on the proposed implementation of PINNs that
approximate input output relationships of the cardiovascular
system without the need to define a closed form equation. It is
important to note that, multiple challenges exist for the cuffless BP
estimation framework, where there is limited evidence on the
accuracy for most commercially available cuffless BP technolo-
gies68–70. Major challenges include the generation of accurate
models that require minimal calibration to work for a myriad of
individuals in unconstrained environments. Conventionally, this
required model training over an exhaustive amount of labeled
data. We show the higher performance of PINNs against
conventional models in obtaining inter-subject BP estimations
when only four subject-specific calibration points (first, last, min.,
and max. BP points) are used for model calibration. This analysis
has two limitations: (1) The inter-subject models still require
calibration points to be provided by end-users; and (2) although
these four points can be acquired with a regular cuff, in a real-
world scenario identifying the min. and max. points is not feasible.
Implementation of a more realistic evaluation scenario can
provide useful insights for the utility of the proposed technique
for real-world deployment. This paper improves the data-intensive
requirements of AI algorithms during model training and may
motivate other researcher groups with limited access to ground
truth information to apply proposed techniques to their frame-
work in estimating hidden important physiological parameters
from wearable sensor measurements. This work does not focus on
the type of deep learning architecture that is adopted for PINN. In
future work, different deep learning architectures can be tested
with the addition of the proposed physics-based loss to assess the
importance of the architecture to the PINN performance.
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METHODS
Definitions of Taylor’s polynomial, physics-based and
conventional loss functions used in PINN model design
Using the feature vector u

*
, we define a polynomial with Taylor’s

approximation around i-th segment as shown in Eq. (2).

Piðx*; u*;ΘÞ ¼ f NNðx*i; u
*

i ;ΘÞ þ
XM

k¼1

∂f NN
∂uk

j
i�th segment

ðuk � uki Þ (2)

Piðx*; u*;ΘÞ represents this Taylor polynomial approximated
based on i-th segment. ∂f NN=∂uk

��
i�th segment is calculated with

neural network auto-differentiation for the i-th segment. The
output of this polynomial can be evaluated for any given x

*
; u
*
pair

and neural network weights. Note that the bioimpedance and
blood pressure data are sequential, e.g., i-th and (i+1)-th
segments represent consecutive beats. We leverage this sequen-
tial nature of our data by evaluating Taylor polynomials
approximated around i-th segment for input values at (i+1)-th
segment, i.e., Piðx*iþ1; u

*
iþ1;ΘÞ. Next, we calculate a residual

resulting from the difference between the neural network
prediction and the Taylor polynomial evaluated at the (i+1)-th
segment as shown in Eq. (3).

f NN x
*

iþ1; u
*

iþ1;Θ
� �

¼ Pi x
*

iþ1; u
*
iþ1;Θ

� �
þ hi x

*
iþ1; u

*
iþ1;Θ

� �
; (3)

Here, hi x
*
iþ1; u

*
iþ1;Θ

� �
denotes this residual value evaluated at

(i+1)-th segment using Taylor’s approximation around i-th
segment, such that,

lim
x
*
iþ1 ! x

*
i;

u
*
iþ1 ! u

*
i

hiðx*iþ1; u
*

iþ1;ΘÞ ¼ 0
(4)

The value of h represents a physics-based loss for the neural
network. Given that h is calculated unsupervised (i.e., labels of
output are not used), we can calculate h for any given input
sequence. We evaluate the value of h for all consecutive input
segments and use the mean squared sum of this evaluation for
the physics-based loss function, as shown in Eq. (5).

Lphysics ¼ 1
ðR� 1Þ

XR�1

i¼1
hi x

*
iþ1; u

*
iþ1;Θ

� �� �2
(5)

where R is the total number of segments. The conventional loss
function, however, only uses the labeled training points, as shown
in Eq. (6).

Lconventional ¼ 1
S

XS

i¼1

ðyNNð z
*
i ; x
*

i;ΘÞ � ytrueð z
*
i ; x
*
iÞÞ

2
(6)

where S is the number of labeled data instances.

Neural network design, hyperparameter selections, and
model training
We use identical model architecture, input-output structure, and
layer hyperparameters for PINN and conventional CNN models for
fair analysis. We define two separate model inputs, x

*
and u

*
,

representing the zero-padded, down-sampled (sampling rate of
30 Hz) and segmented bioimpedance beats, and the features (i.e.,
three physiological features extracted from bioimpedance),
respectively. The down-sampling to 30 Hz allows the convolu-
tional neural networks to focus on the morphology of the signal
and extract more generalized patterns as opposed to focusing on
the high-resolution sequential nature of the time series data that
contains redundant information due to high sampling. The
segmented bioimpedance beat, x

*
, is connected to a two-layer

1D-CNN network (first layer number of filters: 32, kernel size: 5,
activation: ‘RELU’, second layer number of filters: 64, kernel size: 3,

activation: ‘RELU’), with a max-pooling (pool size: 3, strides: 1) is
applied to its output, followed by flattening. We then use a
concatenation layer to combine flattened CNN outputs with u

*
.

The concatenated layer was then connected to a series of fully
connected network (FCN) layers (layer-1 number of neurons: 60,
activation: ‘RELU’; layer-2 number of neurons: 1) providing the
model estimations.

Study description and human participation
Three datasets are used in model training and evaluation:
graphene-HGCPT3, calfree-HGCPT46, ring-CPT47. Each dataset
contains the raw time series measurements obtained with a
wearable-form factor bioimpedance sensor, and the correspond-
ing reference BP values acquired from a medical-grade finger cuff
(Finapres NOVA). All the experiments with the human participants
were performed under the approval of the Institutional Review
Board of the Texas A&M University (IRB no. IRB2017–0086D and
IRB2017-0335D), where all participants provided written informed
consent to take part in the experiments. The graphene-HGCPT
dataset involves N= 6 participants (1/5 female/male, age range/
median: 21-31/25) that were asked to go through multiple
sessions of a BP elevation routine involving HG exercise followed
directly by CPT and recovery. The participants wore bioimpedance
sensors that used graphene e-tattoos placed at the participants’
wrists along the radial artery. The calfree-HGCPT dataset involves
N= 5 participants (all male, age range/median: 20-25/23) that
were asked to go through multiple sessions of the HG and CPT
protocols. The participants wore a silver electrode-based wrist-
band at different positions. We use data collected at POS1
corresponding to the placement of electrodes aligned with the
participants’ radial arteries. Ring-CPT dataset involves N= 4
participants (all male, age: range/median 19-26/21) that were
asked to go through multiple sessions of CPT and recovery. The
bioimpedance data was collected with a ring-worn bioimpedance
sensor placed at the participants’ ring fingers. The overall
evaluation takes place over 16,479 samples (after post-processing),
covering a wide range of BP values (0.04–0.96 quantiles, systolic:
104–205mmHg, diastolic: 51–136mmHg, pulse pressure:
29–103 mmHg). See Supplementary Table 1 for BP range and
categorizations.

Bioimpedance signal pre-processing and feature extraction
Bioimpedance modality measures deep tissue characteristics of
the human body: tissue and cell compositions and their transient
behavior due to physio-mechanical activities (e.g., blood flow,
respiration, body fluid shifts, body fat-muscle composition
changes) based on a very small, high-frequency non-invasive
electrical signal injected between two contact points. The induced
voltage signal obtained at additional pairs of contacts changes
with the tissue composition changes and their electrical proper-
ties. When bioimpedance sensors are placed along the arteries,
the acquired signal changes quasi-periodically with the change in
the artery volume due to the arrival of the BP pulse wave at each
heartbeat cycle. We use simultaneously acquired and synchro-
nized bioimpedance and blood pressure (Finapres NOVA) data
stream in each dataset. We segmented the data into beat-to-beat
intervals based on automatically detected fiducial points. In order
to isolate the blood volumetric changes that are quasiperiodic
with heart rate from the raw bioimpedance time series data
stream, we applied a second-order low-pass Butterworth filter
with a 6 Hz cutoff frequency to the raw bioimpedance waveform.
This digital filter mitigates the out-of-band noise while still
allowing us to measure extreme heart rates. Next, we find the
consecutive maximum slope points of the systolic wave based on
the peak amplitude locations of the first inverted signal derivative.
We ensure that the peak detection algorithm is selecting the most
prominent peaks that are corresponding to the maximum slope
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points in the original signal with a plausible periodicity that is
around the heart rate. After marking the maximum slope points,
each zero-crossing point prior to the maximum slope point in the
first derivative signal marks the location of the start of the cardiac
cycle as well as the end of the previous cardiac cycle. This
algorithm has been used and validated based on our previous
work71,72. For the ring-CPT and calfree-HGCPT datasets, we use the
delta bioimpedance waveform (i.e., ΔZ : change in bioimpedance
in the order of 50–100mΩ, through the removal of baseline
impedance – Z0 – in the order of 20–100Ω.) normalized by Z0, and
ΔZ with no normalization of the graphene-HGCPT dataset due to
the unavailability of Z0 baseline value.
We extract nine fiducial points from each beat-to-beat

bioimpedance waveform that is sampled at 250 Hz (providing
4ms time resolution), as shown in Fig. 2 to calculate physiological
features, uð1Þ , uð2Þ, and uð3Þ , where uð1Þ ¼ ΔZð ÞA � ΔZð ÞC ,
uð2Þ ¼ 1= tF � tBð Þ, and uð3Þ is 60= tJ � tAð Þ, i.e. heart rate, with
ΔZð Þi and ti being the delta bioimpedance amplitude and time
instance of the i-th fiducial point (i.e., i 2 fA; B; ¼ ; Jg). We apply a
three-beat moving average with one-beat overlap to the
segmented bioimpedance waveforms and calculated physiologi-
cal features and blood pressure values (i.e., systolic, diastolic, and
pulse pressure). Prior to training of the model, we normalize (zero
mean and unity standard deviation) all model inputs and outputs
based on the complete dataset. Due to varying ranges of feature
values, to avoid bias towards a specific feature during model
optimizations, normalization is applied individually to each feature
based on the data from all participants. Prior to the statistical
analyses, the model output values are converted back to mmHg
units based on the initial mean and standard deviation values
used in normalization.

Model training with minimally labeled data
We designed a unique criterion to train neural network models
with minimum labeled data and tested them over the complete
BP range. To achieve this, we divided each participant’s data into K
segments, with K being the output BP range (i.e., corresponding to
1mmHg increment between each consecutive segment), and
randomly selected one output label from each segment to be
included in the supervised training set. For example, in a dataset
with 1000 samples and ranging systolic pressure of
120–160mmHg (K= 40), the train set includes only 40 samples
(4% of the dataset for supervised training), while the test set
includes 960 samples (96% of the dataset used for testing). The
PINNs and conventional CNNs were trained with minimal labeled
data. To provide a fair comparison between the two models, we
terminated the model training when the supervised training losses
reached 0.01, where for PINNs the physics-based loss values are
not included. Additionally, we observe that beyond a certain
point, the conventional neural networks tend to overfit the
training data, as shown in Supplementary Figs 10–12, further
increasing the testing error, while the PINN model is prevented
from overfitting due to the physics loss in the objective function.

Train and test of BP estimation with state-of-the-art time
series classical regression models
We tested three time series regression models: AdaBoost
regressor49, Rocket regressor50, Random Forest regressor51. The
models are retrieved from publicly available Python (version 3.9)
libraries: for AdaBoost regressor, scikit-learn (https://scikit-
learn.org/)73, for Rocket and Random Forest regressors, sktime
(https://github.com/sktime/sktime/)74. To run AdaBoost and Ran-
dom Forest regressors, we extracted in total 16 features from
inverted bioimpedance waveforms (eight out of 16: time-based,
remainder eight out of 16: amplitude-based), based on a total of
nine fiducial points extracted from the bioimpedance waveform
(see Fig. 2). AdaBoost regressors used ensemble of Decision Tree

regressors with maximum depth of 15, and number of estimators
of 100. Supplementary Fig. 13 shows the effect of different
hyperparameters on the AdaBoost performance, demonstrated
over an example case – SBP estimation with 4-fold cross-
validation. Random Forest regressors used an ensemble of
Decision Tree regressors built on random intervals, with minimum
interval width of three, and number of estimators of 100. For
Rocket regressor, the raw segmented bioimpedance waveforms
concatenated with extracted features were provided as inputs
with the number of kernels selected as 100. For each model, three
training criteria were tested: (i) minimal training criterion, (ii) 4-fold
cross-validation, (iii) 8-fold cross validation. For K-fold cross-
validation analyses, the dataset is divided into K-sets of equal
length, where K-1 sets are used for training, and the remaining set
is used for testing. In addition, to achieve fair comparison, we
included the training instances resultant from minimal training
criterion, as described earlier, in the training sets defined based on
K-fold cross-validation.

Train and test of BP estimation with state-of-the-art time deep
learning
We tested four additional time series deep learning models for
benchmarking: long-short-term memory (LSTM)54, CNN+Bi-GRU
+Attention55, ResNet53,56, and Transformer57. We followed the
methodologies provided by each corresponding paper while
building the deep learning architectures. The bidirectional LSTM
model includes one-layer 1-D CNN network (number of filters: 32,
kernel size: 5, activation: ‘RELU’), followed by three-layer LSTM
(hidden units: 64, 64, 32), and two-layer FCN (first layer number of
neurons: 128, activation: ‘RELU’, second layer number of neurons:
1, activation: linear). The 3 physiological features are concatenated
with the output of the third LSTM layer and then passed through
the FCN layers. The CNN+Bi-GRU+Attention model architecture
comprises three convolution modules (number of CNN layers in
each module: 2, 2, 3). Each CNN layer has kernel size of 3,
activation function of ‘RELU’, and padding of ‘SAME’‘. Each CNN
layer is followed by a batch normalization layer. After each module
a max-pooling layer (pool size: 3) is added. The number of filters
scales up by a factor of 2 (from 64 to 256) as it passes through
each module. Next, a bidirectional gated recurrent unit (Bi-GRU,
number of hidden nodes: 64 for forward and backward layers) and
an attention mechanism that generates a context vector through
computing a weighted sum of the time steps on the output of Bi-
GRU are added. The attention mechanism output is concatenated
with the three physiological features, followed by two-layer FCN
(first layer number of neurons: 128, activation: ‘RELU’, second layer
number of neurons: 1, activation: linear). The ResNet model
consists of a one-layer 1-D CNN network (number of filters: 16,
kernel size: 5, activation: ‘RELU’) followed by four sets of residual
blocks with varying number of filters (16, 32, 64, 128). Each set is
composed of four residual blocks, with each block having a two-
layer 1-D CNN network (kernel size: 3 for both layers, first
activation: ‘RELU’, second activation: ‘NONE’), followed by an
element-wise addition operation with a skip connection (a 1-D
CNN layer, kernel size: 1, same number of filters as the residual
block). After the residual blocks, a Global Average Pooling layer is
used to reduce the dimensions of the output tensor. Then a dense
layer is added (number of neurons: 128, activation: ‘RELU’), and the
three physiological features are concatenated to the output of this
layer. Finally, a two-layer FCN (first layer number of neurons: 32,
activation: ‘RELU’, second layer number of neurons: 1, activation:
linear), is used to generate the BP estimation. The Transformer
model uses the encoder, with N= 2 identical transformer layers
processing the input through self-attention mechanisms and FCN.
Each layer has 4 parallel attention heads. The dropout rate is set to
0.1. The output of the transformer module is concatenated with
the three physiological input features, followed by two-layer FCN
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(first layer number of neurons: 64, activation: ‘RELU’, second layer
number of neurons: 1, activation: linear).

Model training with varying numbers of labeled training
instances
To compare model performance under a growing number of
labeled training instances, we created an initial training set. This
set was generated based on the minimal training criterion where
the labeled data is split into k bins with k ¼ BPrange ´ 2, where
BPrange is the difference between the maximum and minimum BP
values calculated separately for SBP, DBP, and PP. This divides the
dataset into different bins with bin widths equaling 0.5 mmHg. We
then randomly select one point from each bin resulting in k total
of labeled data points for the initial training set. We train k/2
different models for each BP output for PINN and CNN, where
each model received varying numbers of labeled training points,
(an increment of two in the number of labeled training points for
consecutive models). For example, the first model is trained with
one labeled training instance, the second model is trained with
three, and the N-th model is trained with 1+ N × 2 labeled
training instances. For each model, we measure the performance
against the reference BP using the test set corresponding to the
ground truth BP values that are not included in the training.

Hemodynamic relationships
Systolic and diastolic blood pressure values correspond to the
maximum and minimum pressure points in the artery. During
systole, the heart ejects blood into the aorta, which then travels
through the arterial tree. Pulse pressure is the difference between
systolic and diastolic blood pressure. The changes in PP and SBP
are proportional to volumetric changes based on the arterial wall
characteristics defined by compliance75, where the parameters for
the equation changes per individual (see Supplementary Fig. 3).
The blood pressure pulse wave velocity (PWV) is also related to

the arterial wall characteristics and its response to changing
pressure. The relationship for PWV is defined as: PWV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Eh=Dρ
p

76,
where D is the diameter of the radial artery, h is the wall thickness of
the radial artery, ρ is the average density of human blood, and E is
the elastic modulus of the artery wall that has a positive correlation
with blood pressure77.
HR and BP do not necessarily increase at the same rate due to

different underlying CV control mechanisms. The relationship
between HR and PP during CPT is shown to have varying
correlations25,26. For certain individuals, reciprocal changes in
cardiac autonomic regulation induce a sustained increase in HR
with an increase in BP, while for others, CPT induces a decrease in
HR after an initial increase, likely due to the co-activation of the
vagal and sympathetic outflow at the heart level (see Supple-
mentary Fig. 3d).

Performance metrics
To assess the trained model performance on a test dataset, we
calculate per-subject and group mean error (ME), the standard
deviation of the error (SDE), root-mean-squared error (RMSE),
along with confidence intervals and Pearson’s correlation coeffi-
cients, based on true and estimated blood pressure values.
Additionally, we report the results according to the AAMI standard
for BP devices48.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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