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Solving the explainable AI conundrum by bridging clinicians’
needs and developers’ goals
Nadine Bienefeld 1✉, Jens Michael Boss 2, Rahel Lüthy 3, Dominique Brodbeck3, Jan Azzati3, Mirco Blaser3, Jan Willms2 and
Emanuela Keller2

Explainable artificial intelligence (XAI) has emerged as a promising solution for addressing the implementation challenges of AI/ML
in healthcare. However, little is known about how developers and clinicians interpret XAI and what conflicting goals and
requirements they may have. This paper presents the findings of a longitudinal multi-method study involving 112 developers and
clinicians co-designing an XAI solution for a clinical decision support system. Our study identifies three key differences between
developer and clinician mental models of XAI, including opposing goals (model interpretability vs. clinical plausibility), different
sources of truth (data vs. patient), and the role of exploring new vs. exploiting old knowledge. Based on our findings, we propose
design solutions that can help address the XAI conundrum in healthcare, including the use of causal inference models, personalized
explanations, and ambidexterity between exploration and exploitation mindsets. Our study highlights the importance of
considering the perspectives of both developers and clinicians in the design of XAI systems and provides practical
recommendations for improving the effectiveness and usability of XAI in healthcare.
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Publications on artificial intelligence (AI) and machine learning
(ML) in medicine have quintupled in the last decade1,2. However,
implementation of these systems into clinical practice lags behind
due to a lack of trust and system explainability2,3. Solving the
explainability conundrum in AI/ML (XAI)4,5 is considered the
number one requirement for enabling trustful human-AI teaming
in medicine2,3,6; yet, current efforts consisting of complex
mathematical methodologies (e.g., ante-hoc or posthoc proce-
dures7) are unlikely to increase clinicians’ trust and practical
understanding8. Furthermore, it is still unclear if and how clinicians
and system developers interpret XAI (differently), and whether
designing such systems in healthcare is achievable or even
desirable4,5,8.
This study aims to answer these questions by exploring

clinicians’ and developers’ mental models of XAI. We questioned
112 clinicians (physicians and nurses) and developers (1 data
scientist, 1 senior product designer & visualization expert, and
2 senior software engineers) working in the Neuro Intensive Care
Unit (N-ICU) of a large University Hospital in Switzerland, as they
engaged in the co-design of the DCIP—an ML-based clinical
decision-support system (CDSS) to predict the onset of Delayed
Cerebral Ischemia in patients with aneurysmal subarachnoid
hemorrhage (aSAH) (see Methods). This approach gave rise to a
framework of different mental models of clinicians and developers
and five design recommendations that support the design of XAI
in acute care medicine9 (see Fig. 3).
During the one-year-long DCIP design process, we conducted a

survey, a focus group, and 11 interviews with N-ICU clinicians and
developers. The results were continuously fed back into the
design process improving the system over time10.
Survey results: To assess the user needs and intention to use the

DCIP at the beginning of the design process, we surveyed a total
of n= 95 clinicians (see Methods below & Supplementary

Methods for full survey instrument). The results of scenario-
based questions about how clinicians assessed the risk of DCI in a
patient with or without the use of the DCIP (Q1-3) are displayed in
Fig. 1. Clinicians’ preferences regarding alarm modalities (Q4) and
DCIP location (Q5) are displayed in the Supplementary Figs. 1, 2.
The means, standard deviations, and correlations between

validated questions about user acceptance11 (Q6-8) and
demographic variables are presented in the correlation matrix
in Table 1.
To test our hypothesis that DCIP performance and effort

expectancy predict clinicians’ willingness to use the DCIP beyond
gender, professional role, and experience, we conducted a two-
stage hierarchical regression analysis with the intention to use the
DCIP as the dependent variable. Assumptions of normality,
linearity, and homoscedasticity were satisfied; sample size and
collinearity statistics were within the accepted limits12,13. Gender,
professional role, and experience revealed no significant results (F
(3)= 0.53, p= 0.66; R2= 1.7%), accounting only for 1.7% of the
variance in intention to use the DCIP. Our predictor variables DCIP
performance and effort expectancy however, revealed a signifi-
cant change in R2 (F (2)= 8.55, p < 0.001), accounting for 15.8% of
the variation in intention to use the DCIP, thus confirming our
hypothesis.
Focus group results: The focus group revealed that the high-risk

context and need for rapid decision-making did not allow for
extensive system interactivity or the use of advanced analytics
tools. As one attending stated: “When [the DCIP] gives me an
elevated risk score, I must be able to see within minutes if [the
results] make sense and whether I should order an emergency CT,
administer an electrocyte transfusion, etc. We don’t have much
time to waste by checking for more details. These [aSAH] patients,
they can change [get worse] really quickly”.
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DCIP system user interface prototype: Given clinicians’ generally
high willingness to use the DCIP and expressed need for XAI (see
survey results) coupled with the necessity for quick interpretations
of model results (see focus group results), we developed a high-
fidelity prototype of the DCIP user interface (UI) enabling a fast
overview of DCIP results (see Fig. 2A–D) and interactive features
requiring more time (see Fig. 2E, F).
Interview results: Our in-depth analysis of 117 pages of

transcribed text using Grounded Theory14 revealed three con-
ceptual themes (see Supplementary Fig. 3 for the data structure15

and Supplementary Table 1 for code descriptions and example
quotations): The first theme “Opposing Goals for XAI” illustrates the
contrast between developers’ and clinicians’ understanding of the
fundamental purpose of XAI. Developers believed that “[clinicians]
must be able to understand what the model is doing” and thus
aimed to increase the interpretability of the model. They tried to
achieve this, for example, by introducing Shapley values16 of static
and dynamic risk contributors to help explain the local logic of the
model at each point in time (see Fig. 2C, E, F). Clinicians, however,
found this information unhelpful in increasing their understanding
and trust in the system. When asked to make sense of the
information displayed on the DCIP prototype, one attending
physician stated: “Here [referring to Fig. 2B 1], is the overall risk
score of 0.8 and here [referring to Fig. 2C 2], I see what contributes

to the baseline risk. That makes sense. But this information over
here [referring to Shapley values of dynamic contributors, Fig. 2E],
I don’t need to know all this, I am not a mathematician. What I
need to know is do these results [referring to Fig. 2B 1] make
sense clinically […]. For instance, when I see that on November
30th [Fig. 2E 3], the risk for DCI was high, then I want to know what
we did that day; like did we do a CT scan, and did [the patient]
actually develop a DCI? Also, if I administered Mannitol [medica-
tion to lower intracranial pressure17], would the risk go down
then? These kinds of things I need to know to trust [the DCIP].”
Hence, for clinicians, XAI was related to a system’s ability to
demonstrate the plausibility of results within the clinical context.
To establish that context, clinicians accessed additional patient-
specific information (patient history, laboratory values, diagnostic
tests, imaging, etc.) from existing EHR systems in parallel to using
the DCIP. To facilitate such holistic patient assessments, future
designs should aim for a complete integration of systems (which
was not possible in our case due to a walled-garden design of the
existing EHR system18).
The second theme “Different Sources of Truth” revealed that

developers tended to rely on data as the most reliable source for
decision-making because “the model chose the most relevant
factors to make accurate predictions”. Clinicians, on the other
hand, regarded these data-driven predictions as “only one piece of

Fig. 1 Clinician assessment of the risk of DCI in a patient with or without the use of the DCIP. a–c Frequencies (in %) of multiple response
answers for survey Q 1–3. Responses from physicians are displayed in orange and from nurses in blue.

Table 1. Descriptive statistics and correlations between survey variables.

Variable M SD 1 2 3 4 5 6

1 Gender 0.37 0.48

2 Professional Role 0.38 0.49 0.17

3 Experience 16.17 11.45 −0.05 −0.56**

4 Performance expectancy 5.29 0.95 0.22* 0.19 −0.02 (0.86)

5 Effort expectancy 4.15 0.67 0.21* 0.27** −0.14 0.58** (0.81)

6 Intention to use 6.37 0.78 0.11 0.02 0.04 0.38** 0.35** (0.90)

N= 95; *p < 0.05, **p < 0.01, two-sided. Scale reliabilities (α) appear in parentheses along the diagonal. Gender: 0= female; 1=male. Professional Role:
0= nurse; 1= physician.
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the puzzle” focusing more on other patient-specific sources of
information. In particular, clinicians aimed to combine the data
from the DCIP with non-quantifiable pieces of information such as
physiological manifestations of neurological deficits (e.g., paralysis,
aphasia, decreasing consciousness). As one attending physician
explained, this important information could only be gathered via
examining their patients directly: “[The DCIP] cannot see, hear, or
touch the patient. For example, if [the patient] can’t move his arm
anymore, this can be really important. [The DCIP] can’t see any of
this [clinically relevant information gained from physical examina-
tions]. Another resident physician pointed to the importance of
this information by suggesting: “It would be great if we could
enter [information from the physical examination] here [referring
to Fig. 2F 4] so we could see how [the neurological deficits]
combine with all the other data in the system.”
The third theme “Exploration vs. Exploitation Mindset” raised a

fundamental question regarding the use and benefits of ML-based
systems per se. On the part of developers, the major benefits and
fundamental purpose of ML was to discover “unknown patterns in
the data to learn something new” (i.e., exploring new knowledge).
Clinicians, on the other hand, indicated that they would trust the

system only if it relied on “established knowledge gained from
clinical studies and evidence-based medicine” (i.e., exploiting old
knowledge). These opposing mindsets became apparent through-
out the design process, for instance when it came to deciding
which biomarkers should be included in the model right up to the
question of trusting the system. As one resident physician
observed: “When I see here [referring to Fig. 2C 2] BNI grade
equals 5, Hunt & Hess is 4 that makes sense because the
relationship with DCI is well established [in evidence-based-
medicine]. But when I see here [referring to Fig. 2F 4] it’s pink
because the white blood cells are high, then it makes me wonder,
can this be correct? I don’t know about this relationship [between
leukocyte number and DCI], so maybe it could just be a random
correlation.” Another attending physician reflected on this same
issue: “If a certain biomarker pops up again and again, like here
[referring to Fig. 2E 5] but there is no evidence in the literature on
this biomarker [i.e., Creatinine] concerning DCI, it is hard to trust
[the DCIP]. But what if the machine was indeed correct? Then we
would discover a new biomarker and the potential for learning
would be huge”.

Fig. 2 Screenshot of the DCIP system user interface prototype. The DCIP user interface aims to facilitate clinicians’ understanding of the ML
model’s predictions with minimal time and effort. The header menu (A) displays information about the selected patient. In the overview frame
(B), the current combined DCI risk score (0.8) is displayed, based on dynamic (0.72) and static (0.91) contributors (pink vs. blue hues indicating
higher vs. lower risk). The static contributor view (C) displays Shapley values of static contributors assessed at the time of patient admission,
including reference values for cohort-level evidence based on clinical norms such as the Barrow Neurological Institute Grading Scale (BNI),
Hunt & Hess Grade, Modified Fisher Grade (MFS), Fisher Grade, and World Federation of Neurological Surgeons Grade (WFNS). The horizontal
bar chart displays how the values below/above 0.5 decrease or increase the DCI risk score (in order of importance) The DCI probability frame
(D) displays periods of high risk for DCI as colored areas under the curve, allowing clinicians to probe exact numeric values at each point in
time. The solid line represents the combined risk fluctuating over time and the dashed line indicates the constant static probability (0.9). The
Dynamic Contributors frame (E) displays a heatmap of Shapley values of dynamic contributors over time. Each heatmap lane shows how
much a given signal (e.g., mOsm = Serum osmolality) contributes to the DCI risk at a given point in time (hover) and can be added (double-
click) as an additional timeline displaying raw values below (F). Additional timelines can be added on demand to provide context for feature-
level explanations (e.g., Heart Rate [bpm], intracranial pressure [mmHg], pupil reaction time). All timelines are in synch and can be zoomed/
panned as desired. Individual points in time can be probed to reveal exact numeric values across all charts. For context information outside of
the DCIP, clinicians can access the target patient’s complete health records (via the separate Electronic Health Record [EHR] system). Numbers
1–5 highlight the specific features referred to by interviewees when searching for model explanations (see Interview results).
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Based on these insights and to better bridge the gap between
clinicians’ and developers’ differing mental models about XAI, we
defined the following framework together with five recommenda-
tions to improve the design of XAI in future ML-based prediction
systems in healthcare (see Fig. 3).
The goal of this multi-method study was to explore how

clinicians and developers interpret XAI (differently) and how the
implementation of ML in healthcare can be facilitated by
designing XAI solutions that consider the specific needs of each
target group. For developers, increasing model interpretability is
important to assess the reliability of the model and to eliminate
bias19,20. For clinicians, on the other hand—although they were
positive about using the DCIP and agreed with developers about
the importance of XAI at the beginning of the study—when
interacting with the DCIP prototype, established XAI solutions
such as Shapely values of model contributors were unhelpful.
Instead, they were looking for the clinical plausibility of model
results. They did this by connecting model outputs with patient-
specific context information gathered from EHR systems and by
observing the manifestations of clinical symptoms in their
patients. Recommendations for the design of future systems
include the integration of information gained from physical
examinations (e.g., via the Glasgow Coma Scale for Neurocritical
Care21 or other clinical norms specific to each domain) as well as
to find intuitive ways to visualize the complex pathophysiological
interactions between different model contributors (e.g., patient
avatars22).
Another point relates to increased system interactivity. For

instance, it would be helpful for clinicians to receive cohort-level
evidence from clustered patient data (e.g., to compare one patient
to another within the same age group) or to probe the system via
hypothetical/counterfactual questions. Such interactive designs
have been proposed before (e.g., via WHAT-IF analyses23,24) and
would likely address clinicians’ need for clinical plausibility. In our
case, however, the usefulness of this approach was limited since
probing the system with counterfactual questions and making
changes (e.g., lowering creatine to improve kidney function),
could misguide clinicians to wrongly assume that the therewith-
associated reduction in the DCI risk score equals a reduction of the
actual risk of a DCI occurring, which is not the case as our model
was trained on input-target correlations only25. Moreover, in the

fast-moving and high-risk context of the N-ICU, clinicians had very
limited time for such interactions.
Finally, our findings regarding the exploration-exploitation

mindset relate to the well-established literature on this binary
concept in organizational learning and innovation management.
There, the goal is to embrace ambidexterity, i.e., to switch
between exploration and exploitation behaviors depending on
the situational requirements26. A similar approach could help
resolve the XAI conundrum in healthcare. Currently, developers’
and clinicians’ opposing mindsets and the associated differences
regarding the goals and requirements of XAI hinder the successful
implementation of ML in clinical settings. Like others before27, the
developers in our study aimed to design the system to explore
new knowledge, hence the need for increased model interpret-
ability. Clinicians, on the other hand, entertained more of an
exploitation mindset in that they were searching to confirm
established knowledge in the context of time-sensitive decision-
making. If the results seemed clinically plausible (i.e., in line with
established knowledge), trust could be established without
understanding how the model came to this conclusion. Besides,
humans’ tendency to confirm rather than disconfirm prior
knowledge is well-established in behavioral research and is often
useful, especially in high-risk contexts such as medicine28.
Nevertheless, this tendency also bears the risk of confirmation
bias29 and the probability of missing out on the major benefits of
ML, i.e., gaining new insights from big data and increased
decision-making speed2. This conundrum was illustrated also in a
recent study by Henry and colleagues30: Alerts for early warning of
sepsis had to be purposefully delayed until clinical symptoms
appeared in patients because clinicians trusted the system only
then. To resolve this conundrum, we recommend designing XAI
systems that meet both goals: the ability to explore new
knowledge e.g., for research purposes, and to exploit existing
knowledge in high-risk and time-critical contexts where model
results must be validated quickly against established clinical
standards4,30,31. Teaching clinicians how to switch between
exploration and exploitation mindsets can help them adapt
system interactions depending on different use cases and levels of
expertise.
The major limitation of this study is that it relies on data from a

single hospital and a single ML system. While access to a broader

Fig. 3 Framework of XAI mental model differences and recommendations how to reduce the differences (see textbox). ML Developers’
mental models (left) relate to model interpretability, a data-centered assessment, and an exploration mindset. Clinician’s mental models (right)
aim for clinical plausibility, a patient-centered assessment, and an exploitation mindset.
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sample of ICU clinicians was not possible amid the COVID-19
pandemic, this study benefitted from the unique opportunity of
gathering rich multi-method and longitudinal data from a fairly
large sample of clinicians and developers as they co-developed
the system in a real clinical context. Today, as ML in healthcare
bears great potential but faces significant implementation
hurdles9, this study shows ways to overcome them. Future studies
on XAI in healthcare should consider the proposed design
recommendations regarding the combination of model interpret-
ability and clinical plausibility, increased system interactivity, and
the importance of causal ML approaches allowing for hypothe-
tical/counterfactual queries23,25,32. Furthermore, by reducing the
differences between the mental models of developers and
clinicians and adopting an ambidextrous mindset of exploration
and exploitation, the design and application of XAI in healthcare
can hopefully be improved for the benefit of all.

METHODS
In this multi-method study from October 2020 until December
2021, the research team conducted (1) an online survey with
n= 95 ICU physicians and nurses, (2) a focus group with n= 3
clinicians and n= 3 developers, and (3) n= 11 interviews with
clinicians and developers whom all participated in the co-design
process of the DCIP. The study was approved by the Local Ethics
Committee at ETH Zürich (No. EK 2019-N-190). Informed consent
including the possibility to opt out of the study at any point and
with no personal ramifications was obtained from all participants
before data collection (in writing and/or by explicit agreement).

Setting
This study was conducted at the N-ICU, University Hospital Zurich,
a 12-bed ICU, treating about 1200 patients per year, mostly with
severe ischemic and hemorrhagic stroke including aSAH, brain
tumors, and epilepsy.

System description
The DCIP system was based on a classifier trained to predict
whether a specific patient will develop a DCI event during the
subsequent 48 h. The development dataset consisted of 60
different factors including the patient’s medical history (age,
gender, presence of diabetes, hypertension, cardiovascular
disease), clinical presentation (GCS, Hydrocephalus, SAH severity
scores such as Hunt & Hess, WFNS, BNI, MFS), as well as 30
different laboratory results, and 15 blood gas analysis (BGA)
results. The laboratory and BGA values were measured regularly
over the entire course of the patient’s stay in the ICU.
Behind the scenes, the DCIP system consisted of a static and a

dynamic ML model, the former considering the parameters known
at the time of patient admission to the ICU and the latter focusing
on laboratory and blood gas analysis results, thus constantly
adapting to a patient’s condition over time. For model training,
time-dependent patient data were aligned using the initial DCI
event as an anchor to capture the dynamics leading to DCI onset
(c.f., Megjhani et al., 202033). The output scores of the static and
dynamic models were finally combined via a voting step (i.e., the
final score is the average of the individual sub-models).
The different models were developed and cross-validated using

data from 143 aSAH patients (48% with DCI event) treated in the
neurosurgical intensive care unit of the University Hospital Zurich
between 2016 and 2020. The software library “Scikit-Learn” 1.1.1
for Python 3.9.12 was used for modeling. To reduce the
dimensionality of the data, a feature select step was integrated
into the model training process using feature importance as a
metric to select the 10 most important features for each model.
Evaluation (nested cross-validation covering feature selection and
hyperparameter tuning) of different tree ensembles showed that

Extremely Randomized Trees34 performed best in the dataset. The
training pipeline of the static model selected age, hydrocephalus,
BNI, H&H, MFS, Fisher Scale, WFNS, cardiovascular disease,
diabetes, and hypertension as features. The training pipeline of
the dynamic model selected C-reactive protein, Creatine kinase,
Creatinine, Interleukin-6, Leukocytes, Lymphocytes ratio, Middle
corpuscular volume, Serum osmolality, and Neutrophils ratio. In
the ROC analysis, the final voting model showed an AUC of
0.747 ± 0.094, while the dynamic and static models had an AUC of
0.729 ± 0.083 and 0.679+ 0.131, respectively35.

Interface description
Based on the DCIP system, an interactive high-fidelity UI prototype
was designed (see Fig. 2). The interface reproduces the DCIP
system’s inputs (static & dynamic contributors) and outputs
(probabilities) with pink vs. blue hues indicating a worsening or
improvement of the situation. All charts update in real time, with
time flowing from right to left. The top section (DCI Probability)
visualizes all outputs of the system: on the right, the current
combined risk (0.8) is displayed as a numeric value as well as a
small bar visualization. The bar serves as a pink alarm indicator
when the probability exceeds a certain threshold (e.g., 0.7).
Analogously, colored areas under the curve on the left emphasize
times of high risk. Static (0.91/ dashed line) and dynamic (0.72)
probabilities are visualized separately to increase explainability of
the combined risk score. The lower sections, for model explain-
ability, visualize all inputs of the system: Shapley values16 “Static
Contributors” are displayed as a waterfall plot (horizontal bar chart
on the right), and “Dynamic Contributors” are visualized as a
heatmap on the left. While each heatmap lane shows how a given
signal contributes to the DCI risk, each signal’s raw values can be
displayed as a timeline. Signals that are not direct contributors,
but may still provide further explanation, can be added on
demand. All visualizations are highly interactive: Timelines can be
zoomed/panned as desired, and individual points in time can be
probed to reveal exact numeric values across all charts.

Data collection
The following types of data were collected:
Survey: 95 clinicians from the N-ICU participated in the online

survey at the start of the design process (the response rate was
high at 88.79%). To set the stage, clinicians received a video-based
online instruction explaining the general purpose of the DCIP and
how the system will be integrated as a plug-and-play application
into the already existing ICU cockpit dashboard35. Participants
were then presented with a patient scenario depicting an aSAH
patient with ambiguous symptoms of an upcoming DCI, followed
by scenario-based questions about (Q1) which actions they would
take to assess the risk of DCI in the described patient without the
assistance of the DCIP; (Q2) actions they would take to assess the
risk of a DCI in this patient with the assistance of the DCIP; and
(Q3) which factors would help them establish trust in the DCIP.
Clinicians were also asked user experience (UX)-related questions
such as alarm modalities (Q4) and their preference regarding the
location of the DCIP (Q5) (see Supplementary Figs. 1, 2). The third
part of the survey consisted of previously validated questions
based on the Unified Theory of Technology Acceptance (UTATU)11

including performance expectancy (Q6), effort expectancy (Q7),
and intention to use (Q8) the DCIP (Likert scale 1 = strongly
disagree and 7 = strongly agree). Demographic variables included
gender, professional role (nurses vs. physicians), and experience in
years. The full survey instrument is provided in the Supplementary
Method section.
Focus group: To specify the requirements analysis for the DCIP

regarding XAI, we conducted a 90min focus group with three
developers and three clinicians online. The focus group protocol
included questions about what XAI signified in the context of the
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DCIP and what kind of information was needed to increase
explainability in the DCIP; which clinical tasks and practices
preceded/proceeded interactions with the DCIP, and which special
circumstances (time, risk) influenced the need for more (or fewer)
model explanations.
Interviews: We conducted 11 interviews in total. First, we

conducted four in-depth interviews exploring clinicians’ and
developers’ mental models of XAI in the context of the DCIP in
general (without interactions with the DCIP prototype). Second,
we used the think-aloud method36 by asking seven clinicians to
comment out loud on how they interpreted the various XAI
features displayed on the DCIP prototype screen (see Fig. 2).
Interviews lasted 46min on average, were held online, and
recorded via the Zoom video conferencing platform37. In line with
Grounded Theory methodology, participants were purposefully
selected to represent different levels of expertise. Data saturation
was reached at the end of data collection when new interviews
failed to generate new insights regarding the themes of interest14.

Data analysis
Quantitative data from the survey were analyzed using descriptive
statistics and linear regression modeling in IBM SPSS version 23.
Audio and video recordings from the focus group and interviews
were transcribed ad-verbatim and anonymized. Transcripts were
methodically analyzed in a three-step procedure using Grounded
Theory14 and the well-established Gioia methodology to ensure
qualitative rigor in inductive research15. This approach is ideal for
exploring new phenomena and building theory from rich
qualitative data. Qualitative results are reported as per the
standard published by the Academy of Medicine38. Two social
scientists trained in qualitative research methodology analyzed
the data iteratively and inductively by open-coding the complete
set of materials from the transcribed text. To better illustrate the
linkages between interview statements and the specific XAI
features referred to by clinicians during DCIP prototype interac-
tions, the data from interview transcripts were analyzed in line
with the data from video files (i.e., coding while watching the
respective video files). After agreeing on a coding scheme that
best captured the diversity of the material, the transcripts and
codes were analyzed again to identify second-order categories.
First-order concepts included codes such as “Patient physiology is
important” or “Data tells you only part of the story”. First-order
codes were combined into second-order categories such as “The
patient tells the truth”. Ultimately, second-order categories were
merged hierarchically into three aggregate themes that best
summarize the theoretical contribution (surprises and novelty) in
the data: (1) “Opposing Goals for XAI”, (2) “Different Sources of
Truth”, and (3) “Exploration vs. Exploitation Mindset” (see
Supplementary Material Fig. 3 for the Gioia15 data structure and
Table 1 for a complete list of codes, their definition and example
statements).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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library “Scikit-Learn” 1.1.1 for Python 3.9.12 was used.
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