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Generating synthetic mixed-type longitudinal electronic health
records for artificial intelligent applications
Jin Li1,2, Benjamin J. Cairns3, Jingsong Li1,4✉ and Tingting Zhu 2✉

The recent availability of electronic health records (EHRs) have provided enormous opportunities to develop artificial intelligence
(AI) algorithms. However, patient privacy has become a major concern that limits data sharing across hospital settings and
subsequently hinders the advances in AI. Synthetic data, which benefits from the development and proliferation of generative
models, has served as a promising substitute for real patient EHR data. However, the current generative models are limited as they
only generate single type of clinical data for a synthetic patient, i.e., either continuous-valued or discrete-valued. To mimic the
nature of clinical decision-making which encompasses various data types/sources, in this study, we propose a generative
adversarial network (GAN) entitled EHR-M-GAN that simultaneously synthesizes mixed-type timeseries EHR data. EHR-M-GAN is
capable of capturing the multidimensional, heterogeneous, and correlated temporal dynamics in patient trajectories. We have
validated EHR-M-GAN on three publicly-available intensive care unit databases with records from a total of 141,488 unique patients,
and performed privacy risk evaluation of the proposed model. EHR-M-GAN has demonstrated its superiority over state-of-the-art
benchmarks for synthesizing clinical timeseries with high fidelity, while addressing the limitations regarding data types and
dimensionality in the current generative models. Notably, prediction models for outcomes of intensive care performed significantly
better when training data was augmented with the addition of EHR-M-GAN-generated timeseries. EHR-M-GAN may have use in
developing AI algorithms in resource-limited settings, lowering the barrier for data acquisition while preserving patient privacy.
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INTRODUCTION
The past decade has witnessed ground-breaking advancements
been made in computational health, owing to the explosion of
medical data, such as electronic health records (EHRs)1–3. The
secondary uses of EHRs give rise to research in a wide range of
varieties, especially machine learning (ML)-based digital health
solutions for improving the delivery of care4–8. However, in
practice, the benefits of data-driven research are limited to
healthcare organizations (HCOs) who possess the data9,10. Due to
concerns about patient privacy, HCO stakeholders are reluctant to
share patient data11–13. Access to clinical data is often restricted, or
can be prohibitively expensive to obtain, meaning that ML in
biomedical research lags behind other areas in AI.
To accelerate the progress of developing AI methods in

medicine, one promising alternative is for the data holder to
create synthetic yet realistic data14,15. By avoiding “one-to-one”
mapping to the genuine data compared with data anonymization,
synthetic data offers a solution to circumvent the issue of privacy,
while the correlations in the original data distributions are
preserved for downstream AI applications. There have been
successes in the literature using synthetic data to improve AI
models where otherwise not possible due to limited availability of
resources16–18. For example, large-scale data sharing programs
have been demanded for advancing studies related to COVID-19,
such as in National COVID Cohort Collaborative (N3C)19, and
Clinical Practice Research Datalink (CPRD) database in the UK20.
Recent advances in generative adversarial networks (GANs)21

and their variants offer efficacious means to generate EHRs for a
wide range of clinical applications22–24. Over the past years, EHR
synthesizers have evolved from generating static patient

information to producing longitudinal EHR timeseries25–27. As
longitudinal EHRs contain patient trajectories for describing the
underlying health condition, synthesizing such EHR timeseries,
therefore, enables new clinical applications related to the status of
disease progression28, such as dynamic forecasting of risks,
predicting the onset of diseases, and survival analysis based on
the time-to-event data. However, existing studies focus on
synthesizing the longitudinal EHRs of a single data type25,26,29,
whereas the clinical decision-making in real practice includes a
variety of information sources in the form ofmixed-type timeseries.
For example, patient physiological signals and laboratory test
results are collected in the EHR as continuous-valued timeseries,
while the medication and diagnostic information are recorded as
discretized-valued data as binary indicators or categorical ICD
codes. Information provided in these mixed-type longitudinal
EHRs offer opportunities for more precise and complex clinical
analysis. Furthermore, the predictive power and robustness of the
ML models can be boosted by utilizing longitudinal EHR timeseries
with various types/sources.
Existing GANs are limited in simulating mixed-type EHRs due to

two reasons. Firstly, it is intrinsically difficult to model the
underlying joint distribution of mixed data type timeseries using
a single unified framework. Since GANs require the network
architectures of the generator and discriminator to be fully
differentiable30, its success is typically limited to generating real-
valued, continuous data while facing obstacles for directly
generating sequences of discrete tokens, such as ICD codes, that
also commonly appear in EHRs. Previous methods31,32 circumvent
this problem by learning representations from the original data
which further enables backpropagation in discrete settings, but
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there is still a lack of a generative approach for joint modeling of
the mixed-type timeseries with heterogeneous nature. Second,
although mixed-type clinical timeseries differ in syntax and
distributions, they are highly correlated and inform one another
of the underlying health of an individual33–35. It is therefore
important to capture the temporal correlations between them
when generating the synthetic EHR data. For example, the
medications (documented in the form of discrete data) prescribed
to patients are based on measurements of patients’ physiological
status (presented as continuous-valued signals). Concurrently, the
efficacy of the medical treatments, affect the patient’s physiolo-
gical condition directly. It is therefore critical to accurately capture
the temporal correlation between the mixed-type patient
trajectories simultaneously to improve clinical decision support.

To address the aforementioned limitations, for the first time, we
propose a GAN framework for simultaneously synthesizing mixed-
type longitudinal EHR data (denoted as EHR-M-GAN thereafter).
Specifically, we focus on generating timeseries in the critical care
setting, where the intensive care units (ICU) patients are
continuously and closely monitored (see Fig. 1a). Patient
trajectories with high-dimensionality and heterogeneous data
types (both continuous-valued and discrete-valued timeseries) are
generated while the underlying temporal dependencies are
captured. The main contributions of our work are as follows:

● A GAN model entitled EHR-M-GAN is proposed for simulta-
neously generating mixed-type multivariate EHR timeseries with
high fidelity, and overcoming the challenges when extending
GANs into the mixed-type data settings (see Fig. 1b). First, to

Fig. 1 Overall schematics. a Data extraction. Electronic health records (EHRs) data are routinely collected for patients in intensive care units
(ICUs). Intensively monitored vital signals and laboratory measurements are recorded as continuous-valued timeseries, while the presence or
absence of medical interventions is collected as discrete-valued timeseries during the ICU admission. These mixed-type EHR data are
correlated but distributed differently, and they change over time depending on the diagnoses provided by clinicians. b Network architecture.
EHR-M-GAN contains two key components—Dual-VAE and Coupled Recurrent Network (CRN). Step 1: Dual-VAE is first pretrained for mapping
heterogeneous data (xct ; x

d
t ) into shared latent representations (zct ; z

d
t ). Multiple objective loss constraints are used to bridge the domain/

distribution gap, including ELBO loss, matching loss, contrastive loss, and semantic loss (for EHR-M-GANcond only). Both encoders and
decoders in the Dual-VAE are implemented with LSTMs. The training process for Step 1 is indicated in the Dual-VAE pretrain path (dashed
purple line). Step 2: Then, a CRN is established as the generator based on the parallel bilateral LSTM block, which takes the random noise
vectors (υct ; υ

d
t ) as inputs (see the Coupled generation path). Step 3: The synthetic latent representations (ẑct ; ẑ

d
t ) provided by CRN are then

decoded into synthetic samples (x̂ct ; x̂
d
t ) using the pretrained decoder in Dual-VAE, which is indicated in the Decoding path (solid red line). Step

4: Finally, the adversarial loss is derived from the LSTM-based discriminators and backpropagated to update the network, which is indicated in
the Adversarial training path (dotted black line). c Evaluation pipeline. The pipeline includes metrics for evaluating the fidelity of both
continuous-valued and discrete-valued timeseries, and the correlations within the mixed-type data. Also, downstream task (in d) is performed
for evaluating the application of synthetic data in realistic clinical use case. Finally, membership inference attack and differential privacy are
used to evaluate our model’s privacy risk empirically. d Prediction example. Data within 24-hours prior to the patient’s endpoints in the ICU
(discharge or mortality) is extracted. Both the observation window and prediction window are fixed as 12 h. The classification task is to use
patients' continuous-valued physiological measurements within the observation window as input, to predict the forthcoming discrete-valued
medical intervention status in the prediction window. The four outcomes of the intervention status can be categorized as follows: Stay On: The
intervention begins with on and stays on within the prediction window; Onset: The intervention begins with off and is turned on within the
prediction window; Switch off: The intervention begins with on and is stopped within the prediction window; Stay Off: The intervention begins
with off and stays off within the prediction window.
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jointly model the underlying distributions of the heterogeneous
features, EHR-M-GAN first maps data from different observa-
tional spaces into a reversible, lower-dimensional, shared latent
space through a dual variational autoencoder (dual-VAE). Then,
to capture the correlated temporal dynamics of the mixed-type
data, a sequentially coupled generator that is built upon a
coupled recurrent network (CRN) is employed. In addition, a
conditional version of our model—EHR-M-GANcond—is also
implemented, which is capable of synthesizing condition-
specific EHR patient data, such as those result in ICU mortality
or hospital readmission. The code of our proposed work is
publicly available on GitHub.

● Evaluations are performed based on three publicly available ICU
datasets: MIMIC-III36, eICU37, and HiRID38 from a total of 141,488
patients. Standardized preprocessing pipelines are applied for
the three ICU datasets to provide generalizable machine
learning benchmarks. The code for the end-to-end preproces-
sing pipelines is also available on GitHub.

● Our EHR-M-GAN outperforms the state-of-the-art benchmarks
on a diverse spectrum of evaluation metrics. When compared to
real EHR data, both qualitative and quantitative metrics are used
to assess the representativeness of the mixed-type data and
their inter-dependencies. We further demonstrate the advan-
tages offered by EHR-M-GAN in augmenting clinical timeseries
for downstream tasks under various clinical scenarios.

● In the evaluation of privacy risks, we perform an empirical
analysis on EHR-M-GAN based on membership inference
attack39. We then further evaluate the performance of EHR-M-
GAN under the framework of differential privacy for its
application in downstream task40.

RESULTS
Evaluation metrics
Evaluating GAN models is a notoriously challenging task.
Advantages and pitfalls of commonly used evaluation metrics
for GANs are discussed in ref. 41. In this work, a systematic
evaluation framework is adopted to assess the quality of synthetic
patient EHRs with respect to its fidelity, correlation, utility, and
privacy (see Table 1). We first individually assess the representa-
tiveness of the synthetic continuous-valued and discrete-valued
timeseries. This includes measuring the distance between under-
lying data distributions (such as Maximum mean discrepancy and
Dimension-wise probability), comparing the feature-level statistics
between the real and synthetic data (Patient trajectories), and
assessing the indistinguishability of the synthetic data to the true
data (i.e., Discriminative score). Secondly, we evaluate to which
extent our model can reconstruct the interdependency between
different features (Pearson pairwise correlations), and the temporal
dynamics in the patient trajectories (Autocorrelation function), by
using a set of qualitative and quantitative metrics. Thirdly, we
introduce data augmentation by incorporating synthesized EHR
timeseries under various settings, and quantitatively assess the
improvement provided by EHR-M-GAN in the Downstream tasks
for medical intervention prediction in the ICU (i.e., the utility of the
synthetic data). Lastly, we measure the attribute of patient privacy-
preserving of EHR-M-GAN under Membership inference attack. We
also evaluate the performance of the same downstream tasks
under Differential privacy guarantees (see Fig. 1c and Table 1 for
the evaluation pipeline).

Maximum mean discrepancy
To measure the similarity between the continuous-valued
synthetic data and the real data, maximum mean discrepancy
(MMD) is used. MMD can assess whether two sets of samples are
from the same distributions, and in our case, one from the true

data x and one from synthetic data x0 generated by GANs. To
calculate the statistics, a kernel function K : X ´ X 0 ! R is used to
quantify the similarity between the two distributions. In this study,
a sum of Gaussian kernel sets is adopted following the
implementations in ref. 42, which can be expressed as:

Kðx; x0Þ ¼
X
i

exp �kx� x0k2F
σ2
i

 !
(1)

where σi is the value of the i-th selected bandwidth for calculating
MMD. As in our study, the real and synthetic samples are
multivariate timeseries aligned along the fixed time axis (i.e., 24
data points per patient), we therefore handle these multivariate
timeseries as matrices and use the kernel function to calculate the
Frobenius norm ( �k kF ) between them25.
Finally, given samples xif gNi¼1 from real distributions, and

samples x0j
n oM

j¼1
from the synthetic distributions (with N and M

denoting the corresponding sample sizes), the estimation of MMD
can be defined as:

dMMD2 ¼ 1
nðn�1Þ

Pn
i¼1

Pn
j≠i

K xi ; xj
� �

� 2
mn

Pn
i¼1

Pm
j¼1

Kðxi; x0jÞ

þ 1
mðm�1Þ

Pm
i¼1

Pm
j≠i

Kðx0i ; x0jÞ
(2)

It can be inferred from the Eq. (2) that higher similarity between
the two distributions leads to the lower MMD value, with the
lower bound value zero indicating that the two distributions are
identical.
As indicated in Table 2, EHR-M-GAN outperforms the state-of-

the-art benchmarks among all three datasets in synthesizing
continuous-valued timeseries. The conditional version—EHR-M-
GANcond—further boosts the performance of the model by
leveraging the information of the condition-specific inputs.
Furthermore, as shown in the ablation study, EHR-M-GAN and
EHR-M-GANcond produce smaller MMD values when compared to
their variants. Using MIMIC-III as an example, compared with the
basic model GANVAE, by integrating the shared latent space
learning using dual-VAE under multiple loss constraints, the
performance of GANSL significantly improves (p-value <0.05;
Unpaired t-test with a significance level of 0.05 is used throughout
the paper unless specified otherwise). By further building the
sequentially coupled generator and exploiting the information
within mixed-type data, the MMD of EHR-M-GAN shows a nearly
24% improvement over GANVAE. When synthesizing mixed-type
timeseries using the unified network, the performance of
GANUnified for generating continuous-valued timeseries lags
behind the proposed EHR-M-GAN. It therefore can be inferred
that, compared with EHR-M-GAN which extracts useful hierarchical
representations for each data type using tailored encoding layers,
it is quite challenging for GANUnified to learn marginal distributions
from raw mixed-type timeseries with a unified architecture.

Dimension-wise probability
To evaluate the representativeness of the synthetic discrete-
valued timeseries, the dimension-wise probability test is
employed. To test the probability distributions between the real
and synthetic binary features, the Bernoulli success probability
p∈ [0, 1] is calculated for the discrete-valued timeseries, and is
visualized through scatterplot. As a sanity check, it investigates if
the probability of the medical intervention being active at the
given timestamps is matched between the real data (x-axis) and
synthetic data (y-axis). The correlation coefficients (CCs) and root-
mean-square errors (RMSEs) are also adopted43 based on the
Bernoulli success probabilities to quantitatively measure the
distribution divergence between real and synthetic data.
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As shown in Fig. 2 (see Supplementary Figs. 4 and 5 for results
on eICU and HiRID datasets), the optimal results are provided by
EHR-M-GAN and EHR-M-GANcond. The close-to-real probability
distributions that appear along the diagonal line indicate the
remarkable similarity between the real data and the synthetic data
provided by our models. The quantified CC and RMSE also
correspond with the visualization results, which are close to the
highest mark (EHR-M-GAN: RMSE = 0.0095, CC = 0.9973). Similar
to the results in MMD, the dimensional-wise distributions are
better captured when modules such as dual-VAE and sequentially
coupled generator are introduced in EHR-M-GAN. GANUnified suffers
from mode collapse (the generator fails to produce outputs with
sufficient diversity), and therefore shows poor performance
compared with other variants when synthesizing discrete-valued
timeseries. As the mixed-type features are treated as unimodal
input without differentiating their heterogeneous nature, no
marginal representations are explicitly learned.
Among all state-of-the-art benchmark models, DualAAE shows

the best result but is slightly sub-optimal when compared to EHR-
M-GAN. In contrast, both skewed distribution and low perfor-
mance scores are observed in medGAN, as it lacks the ability to
capture the temporal correlations within timeseries. SynTEG shows
improved performance over medGAN, as it is capable of
synthesizing discrete-valued features in EHRs with timestamps.
The non-GAN generative method PrivBayes also shows good
performance among all the benchmark synthesizers when
modeling the underlying probability distribution of the discrete-
valued EHR timeseries. On the other hand, despite the well-known
performance of SeqGAN in natural language generation, it is not
quite applicable in synthesizing sequential clinical EHRs. The result
of EHR-M-GAN shows its superiority in explicitly capturing each
dimension of the discrete-valued sequences. This indicates that
the proposed EHR-M-GAN mitigates the challenge of generating
discrete-valued features in traditional GANs by learning the shared
latent representations using dual-VAE.

Patient trajectories
We compare the distribution of patient trajectories per timepoint
between the real data and synthetic data generated by EHR-M-
GAN for the MIMIC-III dataset. Five commonly measured vital sign
and laboratory features—Oxygen Saturation, Systolic Blood Pres-
sure, Respiratory Rate, Heart Rate, Temperature, as well as two
medical intervention features—Mechanical Ventilation and Vaso-
pressor, are considered and compared as an exemplar in Fig. 3. It
can be inferred that the proposed model can accurately capture
the statistical distribution (mean and standard deviation) of both
continuous-valued and discrete-valued features. The temporal
dynamics are well-preserved in the synthetic timeseries. For
example, the variance of Oxygen Saturation gradually increases
towards the ICU endpoints in the real data, and is closely reflected
in the synthetic timeseries. Furthermore, EHR-M-GANcond shows
superior performance as it can generate correct trajectories with
specific patient conditions (see Supplementary Note 4).

Discriminative score
For both continuous-valued and discrete-valued data, the
discriminative score is measured as the accuracy of a discriminator
trained post-hoc to separate real from generated samples.
Synthetic data are generated with the same amount of the
hold-out test set from the original data, and are labeled as
synthetic and real correspondingly to train the binary classifier. In
this study, the classifier (critic) is implemented with a single-
layered Bi-directional Long Short-Term Memory (Bi-LSTM) model,
with its parameters randomly initialized (as opposed to critic built
upon representations from the trained generative model28). The
critic trained from the supervised learning task can be used to
characterize the temporal correlations across the patient EHR
timeseries.
As indicated from the results in Table 3, it appears that EHR-M-

GAN and EHR-M-GANcond can produce synthetic data that are less
distinguishable from real data than the benchmarked models.
Especially for EHR-M-GANcond, it achieves the optimal discrimina-
tive scores consistently against other benchmarks for both
continuous-valued and discrete-valued timeseries. For discrete-
valued data generation, EHR-M-GAN-generated samples achieve
the discriminative score of 0.813 on the MIMIC-III dataset, which
has a 4% statistically significant improvement over the best
performing benchmark (p < 0.05). The overall discriminative scores
produced by PrivBayes on three ICU databases are comparable
with the GAN models such as SynTEG and DualAAE. For
continuous-valued timeseries generation, the discriminative score
of TimeGAN on HiRID dataset outperforms the other models as
well as EHR-M-GAN, though not statistically significant
(p= 0.4374). By leveraging the additional information from the
conditional inputs, EHR-M-GANcond can provide significantly better
result than TimeGAN (p < 0.05).
The ablation study has proved the effectiveness of EHR-M-GAN

for generating high quality EHR timeseries. The shared latent
space representation learning in the dual-VAE (i.e., GANSL) have
shown remarkable success compared with GANVAE, which gen-
erates the latent embeddings based on separate VAEs. The
sequentially coupled generator further improves the model by
capturing the dynamics between mixed data types. Further
compared with GANUnified which models the mixed-type data in
a unified network, our proposed model enables effective learning
for the marginal distributions from each data type. In addition, as
shown in Supplementary Table 9, EHR-M-GAN can provide more
realistic synthetic samples than the dual-VAE module alone (see
Supplementary Note 3 for details).

Interdependency characteristics
In this section, we first employ Pearson pairwise correlation (PPC),
which ranges from −1 to 1, to evaluate how closely the synthetic
data can model the correlations between continuous-valued and
discrete-valued timeseries. Timestamps of the patient trajectories
are extracted with every 3 h interval in a total of 24 h ICU stay, to
explore the temporal dependencies within different variables. To
further quantitatively measure the difference between heatmaps
generated from real and synthetic samples, we calculate the mean
value of the absolute difference between the two PCC matrices

Table 2. Maximum mean discrepancy (MMD) of continuous-valued synthetic data.

C-RNN-GAN R(C)GAN TimeGAN GANUnified GANVAE GANSL EHR-M-GAN EHR-M-GANcond

MIMIC-III 1.038 ± 0.013 0.971 ± 0.029 0.694 ± 0.025 0.893 ± 0.027 0.926 ± 0.038 0.745 ± 0.040 0.692 ± 0.034 0.604 ± 0.027

eICU 1.139 ± 0.023 1.106 ± 0.042 0.672 ± 0.038 0.850 ± 0.032 0.842 ± 0.029 0.670 ± 0.034 0.651 ± 0.026 0.540 ± 0.018

HiRID 0.982 ± 0.017 0.865 ± 0.020 0.470 ± 0.024 0.518 ± 0.030 0.532 ± 0.035 0.508 ± 0.028 0.428 ± 0.015 0.389 ± 0.024

Lower values of MMD indicate models that can better learn the distribution of the real data. Bolded values denote best scores.
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(μabs). We also adopted correlation accuracy (CorAcc)44, which
quantifies the similarity of two heatmaps within the range of 0 to
1. We discretize the correlation coefficients into 6 correlation
levels: strong negative ([− 1,− 0.5)), middle negative
([− 0.5,− 0.3)), low negative ([− 0.3,− 0.1)), no correlation
([− 0.1, 0.1)), low positive ([0.1, 0.3)), middle positive ([0.3, 0.5)),
and strong positive ([0.5, 1)). Then, CorAcc can be calculated as the
percentage of pairs where the real and synthetic data is assigned
to the same correlation level.
As observed (see Fig. 4), correlation trends over distinctive

features are closely reflected by the synthetic data, with the
quantitative measure CorAcc consistently exceed 0.8 on three
critical care databases. It is also worth noticing that EHR-M-GAN
can successfully recover temporal dependencies with a high
granularity from real patient trajectories. For example, synchro-
nized correlations across timestamps are observed between
Respiratory Rate and Heart Rate in the MIMIC-III dataset. Such
trends are preserved in synthetic data. This can be explained by
the common regulation of these two features by the autonomic
nervous system and their synchronized increase in cases of
physiological stress, such as hypoxemia. In summary, the
proposed EHR-M-GAN can reconstruct the temporal dynamics
and correlations between features in the real data, which is
valuable for downstream ML-based classification and prediction
applications.
Then, autocorrelation functions (ACF)45 and the corresponding

root-mean-square errors (RMSEs) are calculated to show how EHR-
M-GAN can capture the temporal correlations among the time-
series. ACF measures the relationship between the timeseries and
its lagged version. Supplementary Figs. 6–8 shows the ACF
calculated for selected continuous-valued and discrete-valued

variables (same as Pearson pairwise plot) on real and synthetic
timeseries. The time lags are specified as the hourly intervals up to
24 h before patients’ ICU endpoints (ICU discharge or death).
Additionally, RMSEs are calculated to quantitatively evaluate the
similarity between the corresponding two curves produced by real
data and synthetic data.
Similar patterns are presented between the ACF calculated for

real data and their synthetic counterparts, while the quantitative
statistics also correspond with the observation. Moreover, over-
lapping confidence intervals indicate that the synthetic data is
able to consistently capture the underlying temporal distributions
within the real timeseries. For variables such as Heart Rate, Oxygen
Saturation, and Systolic Blood Pressure, the positive ACF coefficients
rapidly decrease within the period of first few hours, followed by
the growing trends of negative temporal correlation. The lag with
the lowest correlation coefficient is identified at approximately
4 hours. Specifically, global peaks appear roughly at the 12-hour
ticks of Temperature for both real and synthetic data on three
critical databases. Meanwhile, the negative correlation strength-
ens as the time lag increase for Mechanical ventilation in the
original timeseries. Since these behaviors can be reproduced by
EHR-M-GAN, therefore they demonstrate that our model can
effectively capture the temporal characteristics in the original
timeseries.

Downstream tasks
As previously discussed, one of the most prominent goals for
GANs is to benefit the future downstream analyses in the real
clinical application. A relevant question in the ICU is whether
specialized medical treatments, such as therapeutic interventions

Fig. 2 Scatterplot of the dimension-wise probability test on MIMIC-III dataset. Dimension-wise probability calculates the Bernoulli success
probability of each dimension, i.e., the probability of the treatment being active at a particular time. The x-axis and y-axis represent dimension-
wise probability for the real data and synthetic data generated from different models, respectively. The same color indicates the same
treatment (but with varying timestamps). The optimal performance appears along the diagonal line. The corresponding CCs ([0, 1], the higher
the better) and RMSEs ( 0;þ1½ Þ, the lower the better) are also calculated to quantify the probability distribution similarities between the real
and synthetic EHRs timeseries. Dimension-wise probability plot for eICU and HiRID dataset can be found in Supplementary Note 4.

Fig. 3 Comparison of the distribution of values at each timepoint (mean and standard deviation) between real and synthetic patient
trajectory produced by EHR-M-GAN. Multivariate timeseries 24 h before patients' ICU endpoints are generated, including Heart Rate,
Respiratory Rate, Systolic Blood Pressure, Oxygen Saturation, Temperature, Mechanical Ventilation and Vasopressor. The mean value of the real/
synthetic feature at each timepoint is plotted by the solid/dotted line, with the shaded area indicating ±1 standard deviation. For Mechanical
Ventilation and Vasopressor, the y-axis indicates the probability distribution of such intervention being applied ("On'') at a given time. The
synthetic patient trajectories generated by EHR-M-GANcond under different conditions can be found in Supplementary Note 4.
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or organ support, are required for critically ill patients during the
admission. Accurate predictions on such tasks can help clinicians
to provide actionable, in-time interventions in the resource-
intensive ICU. Therefore in this section, clinical intervention
prediction tasks are implemented to evaluate the potential of
EHR-M-GAN and EHR-M-GANcond in synthesizing high-fidelity
synthetic data to further boost the performance of ML classifiers.
In line with prior work46–48, we establish LSTM-based classifiers to
predict the status of mechanical ventilation and vasopressors using
continuous-valued multivariate physiological signals as the pre-
dictors. A fixed duration of 12 h is used for both observation
window and prediction window (see Fig. 1). Four outcomes of
medical intervention status are defined as: Stay on, Onset, Switch
off, Stay off (detailed descriptions can be found in Fig. 1).
We partition the dataset as illustrated in Fig. 5a, and the

performance is assessed from two aspects (see Fig. 5b: (i)
Traditional approach: To explore whether the synthetic data can
represent the real data accurately, we compare Train on Real, Test
on Real (TRTR) with Train on Synthetic, Test on Real (TSTR), to show
whether the performance of a classifier trained on synthetic data
from EHR-M-GAN or EHR-M-GANcond can be generalized to real
data. In addition to the proposed models, synthetic data produced
by the baseline models are also used to train the downstream
classifiers for comparison. Other than a measurement of data
utility where the downstream task is to predict discrete-valued

medical intervention (described as outcomes in this scenario)
using continuous-valued physiological features (denoted as
predictors), TSTR can also be used to assess data synthesizers’
ability to capture the interdependencies between the mixed-type
features. (ii) Data augmentation approach: As data augmentation
is employed as a means of circumventing the issue caused by the
under-resourced EHR data, here we explore whether synthetic
data can be used to improve the existing ML algorithms through
data augmentation. Therefore, Train on Synthetic and Real, Test on
Real (TSRTR) is compared with TRTR to measure the improvement
of the classifier’s performance when trained on the augmented
data25,49. The augmentation ratio α or β is applied on sub-train
data A0

Tr or synthetic data B, in two different scenarios of TSRTR,
respectively. Details are explained as follows (also see Fig. 5b for
illustration).
Firstly, as the dearth of data potentially degrades the

performance of downstream classifiers, given that the real data
has a limited and fixed sample size, we investigate whether
adding synthetic EHR data provided by EHR-M-GAN and EHR-M-
GANcond can improve the training of downstream classifiers. Ratio
α indicates the portion of synthetic data (see Fig. 5b being used to
augment the real data to improve the quality and robustness of
the downstream classifiers. α is set to be 10%, 25%, and 50%,
representing the availability of synthetic samples provided for
augmentation.
Secondly, the acquisition of healthcare data is generally time-

consuming and expensive, therefore another overarching goal for
the generative model is to minimize the efforts in collecting data.
In this section, we investigate whether high-fidelity synthetic data
can offer a viable solution for boosting the downstream classifiers’
performance when the availability of real data is limited. This
allows us to understand if the sample size required for real data
collection can be reduced while maintaining sufficient predictive
power through the use of synthetic data. During the experiment,
the synthetic data B is given (to emulate the scenario where
synthetic datasets are available for a particular clinical research
purpose), which further is combined with limited real data
(collected during clinical trial), to train the downstream classifiers
(i.e., augment synthetic data with limited real data). Then by
implementing EHR-M-GAN or EHR-M-GANcond in TSRTR, we
investigate the proportion of the real data A0

Tr (ratio β) required
to maintain the same performance as in TRTR based on the entire
synthetic dataset B (see Fig. 5b).

Traditional approach. Table 4 compares the classification perfor-
mances of predicting forthcoming medical interventions in the
ICUs under the experimental setting of TRTR and TSTR. It is
expected that the optimal AUROCs are achieved by the classifiers
that are trained on real data. In comparison, the classifiers trained
on the synthetic data provided by proposed models can achieve
similar performances. More specifically, synthetic data generated
by EHR-M-GANcond demonstrates better generalizability when
compared with EHR-M-GAN in the downstream application, such
as the task of predicting mechanical ventilation on the HiRID
dataset.
Compared with the baseline models, the proposed EHR-M-GAN

shows improved performance in TSTR, as it can model the
distribution of mixed-type EHRs more accurately, while preserving
the temporal correlations in the heterogeneous timeseries through
the dependency learning components. The results indicate that
interdependency between the mixed-type EHRs is weakly captured
by GANVAE, as the two streams of inputs are trained in parallel and
separately. GANUnified attempts to capture the temporal correla-
tions of mixed-type EHRs through jointly modeling their underlying
distribution in a unified network. However, its unified architecture
limits the model’s capacity to learn the marginal distribution of
each data type, the resulted quality of the synthetic EHRs is
impaired and so is its performance in TSTR.

Table 3. Discriminative score of synthetic data.

Method MIMIC-III eICU HiRID

Continuous-
valued
synthetic
data

C-RNN-
GAN

0.825 ± 0.013 0.876 ± 0.010 0.774 ± 0.022

R(C)GAN 0.833 ± 0.028 0.850 ± 0.021 0.742 ± 0.016

TimeGAN 0.763 ± 0.018 0.790 ± 0.013 0.716 ± 0.024

GANUnified 0.809 ± 0.023 0.863 ± 0.027 0.749 ± 0.014

GANVAE 0.842 ± 0.020 0.871 ± 0.014 0.802 ± 0.017

GANSL 0.786 ± 0.016 0.813 ± 0.023 0.752 ± 0.021

EHR-M-
GAN

0.746 ± 0.018 0.776 ± 0.015 0.724 ± 0.015

EHR-M-
GANcond

0.729 ± 0.025 0.745 ± 0.017 0.693 ± 0.012

Discrete-
valued
synthetic
data

medGAN 0.903 ± 0.027 0.915 ± 0.034 0.896 ± 0.021

seqGAN 0.937 ± 0.025 0.924 ± 0.023 0.913 ± 0.027

SynTEG 0.879 ± 0.021 0.902 ± 0.030 0.878 ± 0.025

DualAAE 0.847 ± 0.029 0.860 ± 0.033 0.829 ± 0.024

PrivBayes 0.859 ± 0.036 0.883 ± 0.034 0.832 ± 0.017

GANUnified 0.890 ± 0.022 0.907 ± 0.026 0.849 ± 0.015

GANVAE 0.862 ± 0.024 0.881 ± 0.029 0.824 ± 0.018

GANSL 0.829 ± 0.032 0.844 ± 0.028 0.816 ± 0.025

EHR-M-
GAN

0.813 ± 0.026 0.831 ± 0.024 0.802 ± 0.020

EHR-M-
GANcond

0.784 ± 0.024 0.803 ± 0.022 0.778 ± 0.019

A discriminative model is trained post hoc to discriminate between
synthetic samples and real samples. The accuracy from the discriminative
classifier is used as the discriminative score, where the lower value
indicates better performance. The result is bounded by 0.5 when the
classifier cannot distinguish between two distributions. Bolded values
denote best scores.
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Fig. 4 Pearson pairwise correlation (PPC) between continuous-valued and discrete-valued timeseries. The plots contrast the PPC
calculated within the real data (left column) and the synthetic data generated by EHR-M-GAN (right column). Besides the visual inspection, the
similarity between two heatmaps are quantified by CorAcc and μabs. These metrics indicate how well the synthetic data reconstruct the
correlations observed in the real patient trajectories. As shown in this figure, SpO2, SBP, RR, HR, Temp represents Oxygen Saturation, Systolic
Blood Pressure, Respiratory Rate, Heart Rate, Temperature, respectively. And Vent. and Vaso. corresponds to Vasopressor and Mechanical Ventilation.
PPC is calculated every 3 h over the total 24 h of ICU stay (ticks of the timestamps are omitted).
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Data augmentation approach (with ratio α). The results in Table 5
demonstrate that classifiers boosted by EHR-M-GAN can consis-
tently outperform TRTR (see Table 4) at the augmentation ratio of
50%. In comparison, only 25% of augmentation ratio is needed to
achieve improved results for EHR-M-GANcond. For example, the
classifier trained on MIMIC-III to predict the status of Vasopressor
with augmentation ratio α set as 50%, significantly increase the
AUROC by 6% when compared to the classifier trained using only
the real data (p < 0.05). Our experiment results have demonstrated
that the proposed models can be used for data augmentation to

overcome the issue of data scarcity and subsequently improve the
classifiers’ performance.

Data augmentation approach (with ratio β). On the other hand,
as shown in Table 6, by augmenting with the synthetic data
provided by EHR-M-GAN, only approximately 50% of the real data
is required to keep the classification AUROCs on par with, or even
significantly better than fully exploiting the real data under TRTR.
For EHR-M-GANcond, the ratio needed for real data to maintain the
comparable predictive power is further reduced to 25%, which

Fig. 5 Downstream intervention prediction experimental setup. a Data splitting. During training stage, the real data is split into two sets
with 70% training data A and 30% test data A0. The test data A0 is further split into sub-train data A0Tr and sub-test data A0Te with equal size.
Then, the synthetic data B, with size equal to the sub-train data A0Tr , is synthesized by EHR-M-GAN (or EHR-M-GANcond) trained on the real
training data A. b Data augmentation scenarios. Subsequent experiments are trained on set A0Tr , or B, or A

0
Tr ∪ B and then tested on A0

Te. In
traditional approach, results based on Train on Real, Test on Real (TRTR) and Train on Synthetic, Test on Real (TSTR) are compared to assess the
generalizability of the synthetic data. In data augmentation approach, i.e., Train on Synthetic and Real, Test on Real (TSRTR), we either augment
real data A0Tr with α (augmentation ratio, 0 to 50%) of the synthetic samples B, or augment synthetic samples B with β (0 to 50%) of the real
data A0Tr .

Table 4. Downstream task evaluation.

Dataset Treatments Real data GANUnified GANVAE GANSL EHR-M-GAN EHR-M-GANcond

MIMIC-III Vent. 0.894 ± 0.016 0.724 ± 0.015 0.701 ± 0.018 0.728 ± 0.010 0.740 ± 0.009 0.823 ± 0.020

Vaso. 0.841 ± 0.009 0.694 ± 0.012 0.651 ± 0.015 0.679 ± 0.009 0.725 ± 0.015 0.810 ± 0.019

eICU Vent. 0.868 ± 0.015 0.697 ± 0.014 0.702 ± 0.009 0.718 ± 0.012 0.745 ± 0.008 0.795 ± 0.015

Vaso. 0.813 ± 0.018 0.648 ± 0.011 0.657 ± 0.012 0.665 ± 0.014 0.706 ± 0.014 0.748 ± 0.017

HiRID Vent. 0.867 ± 0.012 0.765 ± 0.014 0.747 ± 0.013 0.803 ± 0.008 0.825 ± 0.019 0.856 ± 0.033

Vaso. 0.878 ± 0.010 0.754 ± 0.018 0.752 ± 0.020 0.779 ± 0.013 0.814 ± 0.015 0.844 ± 0.018

Downstream tasks are evaluated under the training scenarios of Train on Real, Test on Real (TRTR) and Train on Synthetic, Test on Real (TSTR). Prediction of two
outcomes of interest – intervention by Mechanical ventilation (Vent.) and Vasopressors (Vaso.) are selected as exemplary tasks. Macro-AUROC is used to score the
performance of the LSTM-based classifiers on the multi-class prediction tasks (labeled as Stay on, Onset, Switch off, Stay off). Bolded values denote best scores.

Table 5. Downstream task evaluation with data augmentation ratio α.

Dataset Treatments EHR-M-GAN EHR-M-GANcond

α= 10% α= 25% α= 50% α= 10% α= 25% α= 50%

MIMIC-III Vent. 0.828 ± 0.013 0.877 ± 0.014 0.912 ± 0.015 (↑) 0.845 ± 0.022 0.896 ± 0.013 (↑) 0.923 ± 0.018 (↑)

Vaso. 0.816 ± 0.015 0.834 ± 0.023 0.859 ± 0.013 (↑) 0.848 ± 0.012 (↑) 0.876 ± 0.017 (↑) 0.896 ± 0.015 (↑)

eICU Vent. 0.858 ± 0.008 0.862 ± 0.012 0.873 ± 0.014 (↑) 0.865 ± 0.009 0.879 ± 0.014 (↑) 0.883 ± 0.016 (↑)

Vaso. 0.798 ± 0.015 0.805 ± 0.020 0.821 ± 0.028 (↑) 0.813 ± 0.016 (↑) 0.834 ± 0.019 (↑) 0.839 ± 0.014 (↑)

HiRID Vent. 0.871 ± 0.025 (↑) 0.882 ± 0.021 (↑) 0.913 ± 0.019 (↑) 0.894 ± 0.015 (↑) 0.906 ± 0.018 (↑) 0.923 ± 0.021 (↑)

Vaso. 0.850 ± 0.016 0.874 ± 0.022 0.894 ± 0.018 (↑) 0.883 ± 0.017 (↑) 0.908 ± 0.024 (↑) 0.913 ± 0.019 (↑)

Downstream tasks are evaluated under the training scenarios of Train on Synthetic and Real, Test on Real (TSRTR). All data from sub-train data A0
Tr concated with α

of the synthetic data B (augmentation ratio α = 10%, 25% or 50%) is used as the training set. The upper arrow (↑) indicates that the AUROC value under TSRTR
is higher than TRTR in Table 4 for the corresponding task, while the bold arrow (↑) indicates that the value is significantly improved using t-test (p≤0.05).
Bolded values denote best scores.
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equivalently indicates a 75% reduction of sample size required in
real data collection. Overall, results presented in Table 6
demonstrate that by exploiting only a limited ratio of the real
data, EHR-M-GAN and EHR-M-GANcond can robustly maintain the
level of prediction performance, therefore alleviating the necessity
for acquiring clinical data at scale.

Privacy risk evaluation
Patient privacy is a major concern with regards to sharing
electronic health records in any means. Generative models can
overcome the explicit one-to-one mapping towards the under-
lying original data in contrast to data anonymization. However,
GAN could potentially raise privacy concerns of information
leakage if they simply “memorize” the training data, or synthesize
samples nearly identical to the real samples (often due to mode
collapse). In that case, sensitive medical information (e.g. national
insurance number) belonging to a specific patient used in training
GANs can be retrieved during the generative stage, thus posing
challenges for preserving privacy in downstream applications.

In this section, we first quantify the vulnerability of EHR-M-GAN
to adversary’s membership inference attacks, also known as
presence disclosure50,51. The threat model is implemented under
the membership inference for GANs in the black-box settings50.
The attacker is assumed to possess complete knowledge of all the
patient records set P, where a subset from P further is used to train
GANs. During the experiment, the number of samples in the
subset for training EHR-M-GAN are varied to investigate the
impact of the availability of training data on the success of the
attacker (see Fig. 6a). By observing the synthetic patient records
from EHR-M-GAN, the adversary’s goal is to determine whether a
single known record x in the patient record set P is from the data
used in training EHR-M-GAN. If EHR-M-GAN simply “memorizes”
the training data and can only generate synthetic samples (nearly)
identical to the real samples, it would be straightforward for the
adversary to identify samples that are used as training data.
Determined by whether the attacker can correctly infer a given
record is in or not in GAN’s training, the accuracy and recall can be
calculated.
As shown in Fig. 6a, when 90% of the training data is used for

developing EHR-M-GAN, the attacker had a recall of 0.533 and

Table 6. Downstream task evaluation with data augmentation ratio β.

Dataset Treatments EHR-M-GAN EHR-M-GANcond

β= 10% β= 25% β= 50% β= 10% β= 25% β= 50%

MIMIC-III Vent. 0.757 ± 0.016 0.824 ± 0.010 0.885 ± 0.009 0.847 ± 0.017 0.903 ± 0.014 (↑) 0.915 ± 0.009 (↑)

Vaso. 0.786 ± 0.019 0.810 ± 0.020 0.849 ± 0.017 (↑) 0.823 ± 0.014 0.851 ± 0.019 (↑) 0.873 ± 0.017 (↑)

eICU Vent. 0.761 ± 0.011 0.822 ± 0.012 0.870 ± 0.019 (↑) 0.816 ± 0.016 0.845 ± 0.018 0.872 ± 0.020 (↑)

Vaso. 0.742 ± 0.014 0.797 ± 0.013 0.846 ± 0.018 (↑) 0.785 ± 0.022 0.819 ± 0.021 (↑) 0.834 ± 0.013 (↑)

HiRID Vent. 0.856 ± 0.012 0.879 ± 0.019 (↑) 0.895 ± 0.021 (↑) 0.874 ± 0.016 (↑) 0.896 ± 0.018 (↑) 0.904 ± 0.012 (↑)

Vaso. 0.826 ± 0.024 0.859 ± 0.013 0.893 ± 0.018 (↑) 0.865 ± 0.025 0.897 ± 0.021 (↑) 0.914 ± 0.018 (↑)

Downstream tasks are evaluated under the training scenarios of Train on Synthetic and Real, Test on Real (TSRTR). All data from synthetic data B concated with β
of the sub-train data A0

Tr (augmentation ratio β = 10%, 25% or 50%) is used as the training set. The upper arrow (↑) indicates that the AUROC value under TSRTR
is higher than TRTR in Table 4 for the corresponding task, while the bold arrow (↑) indicates that the value is significantly improved using t-test (p≤0.05).
Bolded values denote best scores.

Fig. 6 Privacy risk evaluation of EHR-M-GAN on MIMIC-III dataset. a Membership inference attack. Membership inference attack against
EHR-M-GAN vs. the percentage of the training data. Accuracy and recall are used to evaluate the success rate of such attacks. Lower accuracy
or recall indicates less privacy information disclosed by the attacker from the generative model (0.5 can be seen as the random guess baseline
where strong privacy guarantees are provided by GANs). Recall indicates the ratio of samples that are successfully claimed by the attacker
among all the real data that are used in training GAN models. Error bars represent the standard error. b Differential privacy. Performance of
medical intervention prediction tasks, under various differential privacy (DP) budgets, measured by Macro-AUROC.
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accuracy of 0.527 to recover which training data are considered.
This is eminently close to flipping a coin with random guess (i.e.,
0.5), indicating EHR-M-GAN is sufficiently robust against the
membership inference attack. In other words, patient samples
used in EHR-M-GAN’s training are not recoverable by the threat
model. On the other hand, as the percentage of the training data
reduces, both accuracy and recall for membership inference
attacks rise. An accuracy of 0.624 and recall of 0.732 are reached
with 20% of training data. This offers a guideline for future
application in developing GANs that incorporating more training
data can make the generator less susceptible to such attack. This is
also consistent with the conclusion derived from the experiment
on membership inference attacks in the prior research52.
The concept differential privacy (DP)53, which is a rigorous

mathematical definition of privacy, has emerged to be the
prevailing notion in the context of statistically analyzing data
privacy. The (ϵ, δ)-differential privacy is guaranteed for model M, if
given any pair of adjacent datasets D and D0 (differing on a single
patient record), it holds: P½MðDÞ 2 S� � eϵP M D0ð Þ 2 S½ � þ δ. In
our case,Mð�Þ is the GAN model trained based on D or D0, and S is
the subset of any possible outcomes of the generative process. By
perturbing the underlying data distribution, DP bounds the
maximum variations of the algorithm when any single individual
is included or excluded from the dataset. In practice, recent works
on developing differentially private deep learning models have
benefited from differential private stochastic gradient descent
(DP-SGD) algorithm. DP-SGD operates DP by gradient clipping and
noise adding during SGD, thereby ensuring that the impact of
single record in the training dataset on algorithm parameters is
limited within DP’s extend. In this section, (ϵ, δ)-differential privacy
is implemented in EHR-M-GAN using TensorFlow Privacy. We then
perform the same downstream tasks on medical intervention
prediction using synthetic data generated from DP-guaranteed
EHR-M-GAN, and compare its performance with TSTR (as shown in
Table 4).
Figure 6b shows the TSTR performance of EHR-M-GAN under

differential privacy guarantee with varying budgets ϵ (δ fixed at
≤0.001). The value ϵ determines how strict the privacy is, where
the smaller value indicates a stronger privacy restriction. As
suggested in Fig. 6b, the performance of the downstream tasks
operated based on the synthetic data generated by EHR-M-GAN
improves as the DP budget relaxes (ϵ increases). We observe that
the AUROC of DP-bounded EHR-M-GAN can maintain at an
acceptable level even under strict privacy setting. For example, the
AUROC for predicting the treatment of Vasopressor can maintain
at 0.714 (AUROC = 0.725 under TRTR) even when the ϵ decrease to
4, which is an empirically reasonable value for implementing DP in
practice54. Future work that focuses on privacy-preserving GAN
under DP-guarantee is expected, where the fidelity of the
synthetic data can be restored without compromising its privacy.

DISCUSSION
In this study, we propose a generative adversarial network entitled
EHR-M-GAN, aiming at mitigating the challenge of synthesizing
longitudinal EHR with mixed data types. A comprehensive list of
evaluation metrics is introduced for the systematic assessment, in
terms of the fidelity, correlation, utility, and privacy of the
synthesis model. First, both EHR-M-GAN and its conditional
version, EHR-M-GANcond, demonstrate consistent improvements
against the state-of-the-art benchmark GANs in synthesizing
timeseries data with high-fidelity. This indicates that the distribu-
tional characteristics of the EHR timeseries can be well-preserved
in the synthetic data provided by EHR-M-GAN, therefore ensuring
its usability during clinical data sharing. Second, as opposed to
previous models which were confined to synthesizing only one
specific type of data, EHR-M-GAN can produce mixed-type
timeseries and successfully capture the temporal dynamics and

correlation between features. By accurately reconstructing the
interdependencies and complex clinical relationships between
features, downstream studies such as association analysis and
outcome prediction can be supported. Notably, the proposed
models also outperform the GAN variants that allow mixed-type
inputs in the ablation study, indicating that the components in
EHR-M-GAN are effective in synthesizing mixed-type timeseries
with high fidelity, while successfully reconstructing the inter-
dependencies between them. Then, during downstream task
evaluation, given the prediction of medical interventions in fast-
paced critical care environments as an exemplar, the results
demonstrate the broad applicability of our model in developing
ML algorithm-based decision support tools by data augmentation.
Lastly, the generative capability of the proposed model avoids the
“one-to-one” mapping to the original data, and enables the
collaborative uses and sharing of EHRs by creating realistic novel
samples. The assessment of privacy risks further demonstrates the
synthetic data provided by EHR-M-GAN can preserve the sensitive
information in patient records while maintaining an acceptable
level of data utility.
The results in our study have several notable implications with

respect to the synthesis of EHR data. First, as the proposed model
can be used to provide synthetic longitudinal EHRs for various
data types while preserving their underlying correlations, it is now
feasible to use the synthesized data to improve the performance
of ML models for downstream applications such as the prediction
of next intervention, or understanding the disease dynamics and
patient phenotyping, based on both the continuous and discrete
components of EHR timeseries55,56. Second, the experimental
results indicate that the quality of the synthetic EHR data can be
improved by the integration of mixed-type information, in
contrast to the benchmarks that utilize single-type data for
learning. This also enables us to mimic how information is
presented in clinical practices. Furthermore, we can generate
condition/outcome-specific patient trajectories along with corre-
sponding interventions, to facilitate clinical prediction and
decision-making. Third, though facing the privacy-utility tradeoffs,
the synthetic EHRs data provided by the proposed model leads to
negligible privacy risks under the membership inference attacks.
This paves the way for a series of applications in clinical research,
including but not limited to, enabling the development of ML
models by accessing the synthetic data, overcoming the paucity of
medical data and improving the robustness of ML algorithms
through data augmentation.
Due to the heterogeneous nature of EHR data, besides the ICU

setting in our empirical evaluation, there are needs for synthesiz-
ing mixed-type EHR timeseries in various clinical scenarios. For
example, patients’ encounters in hospitals are documented as
structured EHRs recorded in the temporal order. Each visit is
typically associated with the corresponding medical events
presented in the form of discrete-valued ICD codes27, and
continuous-valued measurements. These mixed-type EHR time-
series capture a patient’s health status and better align with
clinical decision-making process than those using the single-type
data alone. Therefore, developing GANs targeting mixed-type
EHRs generation have the potential to pave the way for complex
deep-learning systems that are capable of integrating information
from various sources. However, it is worth noting that the
validation of our proposed model is based on critical care settings
with limited feature dimensions, can only serve as a proof of
concept. When extending the proposed model to other clinical
settings, such as synthesizing ICD codes with hundreds or
thousands of feature dimensions27, the scalability and utility of
our proposed model when dealing with the enlarged, sparse
feature space needs further investigation.
There are limitations in the current work. First, data curation

strategies on clinical timeseries, including truncating, smoothing
and imputation, are applied before the EHR timeseries are used for
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the training of generative models. As during the data preproces-
sing, we first extract the timeseries with a fixed duration (i.e., 24 h
before the ICU clinical endpoints), and then hourly aggregate
patients’ physiological and intervention signals based on their
mean statistics, followed by completing the missing value in the
timeseries through the “Simple Imputation” approach57. Although
these preprocessing steps are commonly used in clinical research
under the critical care settings46, the proposed model cannot
model the irregular time intervals between signals nor missing
values within the timeseries. However, dealing with irregularity of
the timestamps when synthesizing clinical events in EHRs could
be useful for predicting outcomes that are time-aware in the
downstream tasks27. Modeling such time intervals could be non-
trivial as the determinative perspectives sometimes go beyond the
scope of inferring patients physiological status such as resource
allocations within hospitals. Also, synthesizing timeseries while
incorporating the missing values could also be beneficial in the
real-world application scenarios. As ML models are sometimes
sensitive to the data missingness, imputing the incomplete data in
EHRs using generative approaches could improve the perfor-
mance of ML models, and has become an area of active
research58. Furthermore, as evaluations are performed based on
clinical timeseries with a fixed length, no comparisons are made
between the model’s scalability when dealing with timeseries with
varying lengths. Recent studies have found the quality of the
synthetic longitudinal data degenerates over time, also called as
the “drift problem”28. Such problems when dealing with long
sequences should be recognized and mitigated with techniques
such as conditional fuzzing and regularization methods28, in both
the generation and evaluation steps.
The evaluation of GANs is still a challenging task. Recent

findings have suggested that systematical assessment for EHR
synthesizers is critical before their applications in different use
cases59. In this study, a comprehensive evaluation list is provided
with regards to the fidelity, correlation, utility and privacy of the
synthesis models. It is also worth noting that evaluation metrics
should be properly chosen and implemented based on the
purpose of the task, otherwise may lead to biased results. For
example, recent findings28 have reported that the traditional
implementation of the discriminative score which trains the critic
using the randomly initialized parameters, though widely used29,
may lead to unreliable results. Improvement has been made to
this evaluation metric for a more robust assessment, where the
parameters of the trained generative model can be used for the
critic’s initialization.
Finally, the conditional aspect of our model is currently limited

as it can not generate patient-specific EHRs conditioning on
information at a more granular level. Even though the proposed
conditional GANs can synthesize a subgroup of patients with
target outcomes or statuses that clinicians specify, it is still limited
in incorporating personalized information during the conditional
generation. Future work for developing GANs in healthcare data
can be extended to patient-level EHRs generation, such as
synthesizing counterfactual information of a target patient for
treatment effect estimation60,61. Ultimately, by constructing the
“synthetic twin” of patients using GANs, the synthesis tool can
become more generalizable for precision medicine and support
the clinical decision making in delivering personalized healthcare.
Synthetic data provides an alternative to sharing real patient

data while preserving patient privacy. Results in our study
demonstrate that the proposed EHR-M-GAN and EHR-M-GANcond

can generate realistic longitudinal EHR timeseries with mixed data
types. By providing synthetic EHR data better mimicking the
nature of clinical decision-making, the proposed model can
therefore enable faster development in AI-driven clinical tools
with increased robustness and adaptability. In addition to the
improved performance against the existing state-of-the-art bench-
mark models, augmentation provided by synthetic data during

training boosts the predictive performance in downstream clinical
tasks. EHR-M-GAN can help eliminate the barriers to data
acquisition for healthcare studies, therefore overcoming the
challenges posed by the paucity of medical data available for
research use. Despite the novelty of this study in filling the
research gap for synthesizing longitudinal EHRs in mixed-type
settings, we acknowledge that there is still a gap between the real
EHRs data and its synthetic counterparts produced by current
generative methods. Therefore developing advanced EHR synthe-
sizers especially in mixed-type settings still requires active
research in the future study.

METHODS
Dataset description
The following three publicly accessible ICU datasets with de-
identified EHR data are used for evaluating the performance of
EHR-M-GAN in generating the longitudinal data:

● MIMIC-III (Medical Information Mart for Intensive Care)36—a
freely accessible database that comprises EHR data associated
with approximately 60,000 ICU admitted patients and 312
million observations to Beth Israel Deaconess Medical Center.

● eICU (eICU Collaborative Research Database)37—a multi-
center critical care database containing data for over
200,000 admissions and 827 million observations to ICUs
from 208 hospitals located throughout the United States.

● HiRID (High time-resolution ICU dataset)38—a high-resolution
ICU dataset relating to more than 3 billion observations from
almost 34,000 ICU patient admissions, monitored at the
Department of Intensive Care Medicine, Bern University
Hospital, Switzerland.

All these critical care databases include vital sign measure-
ments, laboratory tests, treatment information, survival records,
and other routinely collected data from hospital EHR systems.
From these clinical observations, we featurize the patient
trajectories as the combination of continuous-valued physiological
timeseries (such as heart rate, oxygen saturation, and measure-
ments from blood gas tests) and discrete-valued medical
intervention timeseries (such as the usage of therapeutic devices
or intravenous medications). Temporal trajectories 24 h prior to
patients’ ICU endpoints (discharge or death) are extracted for
the three critical care databases. Data are preprocessed following
an open-source framework—MIMIC-Extract46, where the patients’
physiological and intervention signals are hourly aggregated for
denser representations. Details on data curation, including the
cohort selection criteria, full list of features, and imputation
method, are explained in Supplementary Note 2. Overall, the
summarizing statistics of the finalized cohorts for three databases
are shown in Table 7.

Problem formulation
The longitudinal patient EHR dataset is denoted as
D ¼ fðxi;1:Ti Þg

N
i¼1, with each record (e.g., individual patient) being

indexed by i∈ {1, 2, . . . N}. Here we consider the i-th instance tuple
xi;1:T i ¼ fxCi;1:T i ; x

D
i;1:Tig consists of two components (i.e., two types

of data). Let xCi;1:Ti 2 RjJj denote the ∣J∣-dimensional continuous-
valued timeseries, such as physiological signals from real-time
bedside monitors. And xDi;1:Ti 2 ZjK j denotes the ∣K∣-dimensional
discrete-valued timeseries, such as life-support interventions with
the categorical value indicate its status (presence or absence).

Challenges in mixed-type timeseries generation
There are two main challenges when synthesizing mixed-type EHR
timeseries. First, GANs have serious limitations on the type of data
they can model30. Specifically, as GANs require generators and
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discriminators to be both fully differentiable, generating discrete-
valued timeseries using traditional GANs architectures would raise
problems during backpropagation as no direct gradient can be
provided31,32. Therefore, it is intrinsically difficult to model the
underlying joint distribution of mixed data type timeseries using a
single unified framework. Second, as the mixed-type timeseries
are correlated (such as correlations between ICU patients’
physiological signals and treatment status in the critical care
setting), it is therefore important to model the interdependencies
among heterogeneous types of timeseries.

Intuition behind EHR-M-GAN
First, to jointly model the distribution of continuous-valued and
discrete-valued timeseries using GANs, we build the generative
model based on the latent space encoded by VAE networks.
Instead of directly synthesizing discrete-valued timeseries that
deactivate the backpropagation in GANs, the generator first
synthesizes latent representations that allow the direct gradient in
the network, therefore satisfying the prerequisite for GANs
architecture to be fully differentiable. The synthetic latent
representations for both types of data can be further decoded
into raw timeseries using the decoders in VAEs.
Even though the aforementioned network architectures enable

the joint modeling of mixed-type data distribution, it still lacks the
capability of capturing the inter-dependencies in heterogeneous
data. In order to address the second issue, we devised dual-VAE
module for pretraining step and sequentially coupled generator
module for generation step. The dual-VAE incorporates multiple
loss constraints, which were previously adopted in domains such
as self-supervised learning (SSL), timeseries representation learn-
ing, and domain adaptation, to extract useful hierarchical
representations from heterogeneous but correlated data types.
The sequentially coupled generator module replaces the traditional
LSTM cell with the bilateral LSTM (BLSTM) cell we propose, where
the “communication” of the two types of information are
introduced into the networks. Therefore, the temporal dynamics
between the mixed-type data can be preserved during the
iteration.

Network architecture
As illustrated above, EHR-M-GAN can be factorized into two key
components (see Fig. 1b): (1) a dual-VAE framework for learning

the shared latent space representations; (2) an RNN-based
sequentially coupled generator and its corresponding sequence
discriminators.
As shown in Fig. 1b, during the pretrain stage, both continuous-

valued and discrete-valued temporal trajectories are first jointly
mapped into a shared latent space using the dual-VAE component
(Step 1). Then, the sequentially coupled generator in EHR-M-GAN
produces the synthetic latent representations (Step 2), which
further can be recovered into features in the observational space
by the pretrained decoders in the dual-VAE (Step 3). Finally, the
adversarial loss is provided based on discriminative results and
backpropagated to update the network (Step 4). The following
sections discuss them in turn.

Dual-VAE pretraining for shared latent space representations
One premise of successfully training EHR-M-GAN to generate
reversible latent codes is to meet the assumption that for the
same patient indexed with i, both xCi;1:Ti and xDi;1:Ti can be encoded

into the same latent space HS � RjSj, where ∣S∣ denotes its spatial
dimension. For the sake of simplicity, the subscripts i are omitted
throughout most of the paper. To achieve this, we propose to use
a dual-VAE framework, which exploits two VAE networks to
encode both continuous and discrete multivariate timeseries into
dense representations within HS based on multiple constraints.
Supplementary Fig. 2 diagrams the details of the proposed dual-

VAE framework for learning the shared latent representations. We
start with training two encoders, i.e., EncC : ϕT ´XC ! ϕT ´HS and
EncD: ϕT ´XD ! ϕT ´HS , with the embedding functions:

zC1:T ¼ EncCðxC1:T Þ zD1:T ¼ EncDðxD1:T Þ (3)

After passing data from XC and XD through two encoders, a
pair of embedding vectors ðzC1:T ; zD1:T Þ in the shared latent space
HS can be obtained. Then the decoders for both domains DecC :
ψT ´HS ! ψT ´XC and DecD : ψT ´HS ! ψT ´XD further reconstruct
features based on the latent embeddings using mapping
functions that operate in the opposite direction:

~xC1:T ¼ DecCðzC1:T Þ ~xD1:T ¼ DecDðzD1:T Þ (4)

Also, to incentivize dual-VAE to better bridge the gap between
domains of mixed-type timeseries, we enforce a weight-sharing

Table 7. Summary of the cohorts after preprocessing on three critical care databases.

Number of
patients

Number of ICU
admissions

Dimension of continuous-
valued variables

Dimension of discrete-
valued variables

Conditional labels Counts

MIMIC-III 28,344 28,344 78 20 ICU mortality 1870 (6.59%)

Hospital mortality 911 (3.21%)

30-day readmission 1122 (3.95%)

No 30-day
readmission

24,441
(86.22%)

eICU 99,015 99,015 55 19 ICU mortality 4500 (4.54%)

Hospital mortality 3291 (3.32%)

Hospital discharge 91,224
(92.13%)

HiRID 14,129 14,129 50 39 ICU mortality 1266 (8.96%)

ICU discharge 12,963
(91.74%)

Number of patients and ICU admissions, as well as the dimensions of continuous-valued and discrete-valued variables, are provided for each dataset. Temporal
trajectories 24 h prior to patients’ ICU endpoints are extracted for the three critical care databases. Note that only the first ICU admission is selected for each
patient. The dimension of the continuous- and discrete-valued data are provided. The conditional labels for training EHR-M-GANcond and the corresponding
counts for each class are also listed.
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constraint62,63 within specific layers of both the encoders pairs and
the decoders pairs (See Supplementary Note 1 for details).
In the following subsections, we define multiple loss constraints

for the optimization of dual-VAE, including ELBO loss, matching
loss, contrastive loss, as well as semantic loss for EHR-M-GANcond.
Among these losses, ELBO loss ensures that the mixed-type
timeseries can be successfully reconstructed after being encoded
into latent representations. The matching loss ensures that
heterogeneous types of features from a single patient share
contexts during representation learning (instance-wise). The goal
of contrastive loss is to ensure that patients with similar trajectories
stay close to each other in the latent space (population-wise). And
semantic loss used in EHR-M-GANcond encourages patients with
the same conditional labels (e.g., outcomes) to share similar latent
representations. Intuitions and descriptions behind the objectives
are discussed in turn.

Evidence lower bound (ELBO). We first incorporate the standard
VAE loss, with the optimization objective as the evidence lower
bound (ELBO). VAE holds the assumption of spherical Gaussian
prior for the distribution of latent embeddings, where features can
then be reconstructed by sampling from that space. The re-
parameterization tricks enable differentiable stochastic sampling
and network optimization. For encoder and decoder in the dual-
VAE for domain d 2 fC;Dg, the objective function is defined as:

LELBO
d ¼ �EqϕðzjxÞ½log pψðxjzÞ�

þ βKLDKLðqϕðzjxÞkpψðzÞÞ
(5)

where z � EncðxÞ≜ qϕðzjxÞ; ~x � DecðzÞ≜ pψðxjzÞ, and DKL is the
Kullback–Leibler divergence. The first term in Eq. (5) is the
expected log-likelihood term that penalizes the deviations in
reconstructing the inputs, while the second term of KL-divergence
is the regularization imposed over the latent distribution from its
Gaussian prior (normally chosen to be Nð0; IÞ). βKL is the
hyperparameter for balancing the weights between two terms.

Matching loss. Typically, representations derived from the same
patient are assumed to capture the shared context. Therefore,
embedding vectors ðzCi;1:Ti ; z

D
i;1:Ti Þ projected from the same patient

i, are supposed to be positioned closely in the shared latent space
(see Supplementary Fig. 2). Therefore, in this study, we borrow the
concept of matching loss from domain alignment in DA, which
enables efficient representation learning crossing domains/mod-
alities64. In this study, the matching loss ensures that low-
dimensional latent space can be shared between heterogeneous
features. Hence, the pairwise matching loss is incorporated to
motivate the encoders to minimize the distance within the
corresponding representation pairs. In the low-dimensional
Euclidean space, we optimize the network by using the following
objective:

LMatch ¼ Ez�pz ½
X
t2T

jjzCt � zDt jj
2� (6)

The pairwise matching loss achieve its optimal when the distance
proxy LMatch becomes zero.

Contrastive loss. On the flip side, pairwise reconstruction error
(i.e., intra-correlations within one instance) measured by matching
loss neglects the commonalities present across patients (inter-
correlations of data)65. In order to guarantee sufficient bound for
representation learning, we incorporate contrastive loss as another
distance metric to capture the inter-correlations among the
population.
Contrastive learning is a concept that has recently been

popularized in self-supervised learning (SSL)66, which aims to
capture intrinsic patterns from input data without human
annotations. In this study, we instantiate the contrastive loss via

NT-Xent, which is proposed by Chen et al. in their work SimCLR67.
The core of contrastive learning is to encourage networks to
attract positive pairs closer and repulse negative pairs apart in the
latent space. In this study, we adapt the corresponding auxiliary
tasks for calculating contrastive loss to the scenario of learning
representations from mixed-type timeseries. The objective of the
task is to determine whether a set of representations transformed
from the observational space belong to the same patient. And this
leads to the corresponding positive pairs (true) and negative pairs
(false).
For patient data of N records, we can obtain N pairs of latent

representations from the encoders in dual-VAE. For patient
indexed with i, hC

i and hD
i denotes the embeddings derived from

the continuous-valued and discrete-valued observational space,
respectively. Due to the symmetric architecture of dual-VAE, here
we use d and d0 to represent one of each different domain, i.e.,
d; d0 2 fC;Dg and d ≠ d0. Therefore, the positive pairs for patient i
can be referred as ðid; id0 Þ, while the other 2(N− 1) samples are
regarded as negative pairs. Then the contrastive loss for a positive
pair ðid; id0 Þ is defined as:

LContra
id ;id

0 ¼ � log
exp sim hid ;hid

0
� �

=τ
� �

P2N
idd

0 ¼1 1½idd0≠id � exp sim hid ;hidd
0

� �
=τ

� � (7)

where sim ðu; vÞ ¼ uTv=kukkvk denotes the cosine similarity
between two vectors. τ > 0 denotes a temperature hyperpara-
meter. 1½n≠m� 2 f0; 1g is an indicator evaluating to 1 iff n ≠m. And
idd

0 2 f1; 2; :::; 2Ng represents the index of latent embeddings
from both data types. The final contrastive loss is computed across
the total number of jid � id

0 j ¼ N positive pairs for both ðid; id0 Þ
and ðid0 ; idÞ, and is defined as:

LContra ¼ 1
2N

XN
id¼1

XN
id
0 ¼1

½LContra
id ;id

0 þ LContra
id
0
;id

� (8)

Semantic loss. In EHR-M-GANcond, semantic loss is imposed to
better align patients with same labels (conditions) into the same
latent space clusters. For example, if the label of severe clinical
deterioration in the ICU is given for conditional data generation,
the corresponding synthetic continuous-valued timeseries (e.g.,
severely deranged vital signs) is supposed to be strongly
associated with the discrete-valued timeseries (e.g., intensive
medical interventions) under the same label. For both domains,
additional linear classifiers are trained to classify the latent
embeddings based on their corresponding conditions in the
observational space. We implement logistic regression as the
linear classifiers and calculate the cross entropy as the semantic
losses for both domains. For d 2 fC;Dg, given the latent
embedding vector zd and the conditional information vector y:

LClass
d ¼ Ezd2HSCE f dlinearðzdÞ; y

� �
(9)

where f dlinear denotes the linear classifier for the corresponding
domain. And CE ¼ �

P
jyj logðbyjÞ; ðj ¼ 1; 2; :::; jLjÞ denotes the

cross entropy loss, where ŷj is the output of the linear classifier,
and yj is the ground truth label for class j in condition vector y.
In summary, to train the dual-VAE for learning the shared latent

space representation, the total objective function for d 2 fC;Dg is:
Ld ¼ β0LELBO

d þ β1LMatch þ β2LContra (10)

Under the conditional learning scenario of EHR-M-GANcond, the
total loss becomes:

Ld ¼ β0LELBO
d þ β1LMatch þ β2LContra þ β3LClass

d (11)

where β0, β1, β2, and β3 are scalar loss weights used to balance the
loss terms.
To validate the effectiveness of multiple losses and the weight-

sharing constraint in the proposed dual-VAE network, we perform
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the corresponding ablation study using MIMIC-III dataset as an
example. The results can be found in Supplementary Note 3. As
shown in Supplementary Table 7, all the components in the
proposed dual-VAE network contribute to the improvement of
EHR-M-GAN’s performance when generating mixed-type
timeseries data.

Sequentially coupled generator based on CRN
We propose the sequentially coupled generator for generating
latent representations for mixed-type timeseries, which is built
based on the network architecture of coupled recurrent network
(CRN). Specifically, a CRN exploits bilateral long short-term
memory (BLSTM) cells as its recurrent layer to preserve the
temporal dependencies between the continuous and discrete-
valued sequences. The network architecture of bilateral-LSTM we
proposed can extract and transmit the correlations between the
mixed-type timeseries, as opposed to vanilla-LSTM which has only
one recursive connection. In the following section, we first discuss
the structure of BLSTM in detail as its essential recurrent layer of
CRN, and then build the sequentially coupled generator based
on CRN.

Bilateral long short-term memory. As the traditional LSTM only
considers temporal dynamics from single-type timeseries,
therefore is incapable to extract and transmit temporal
correlation from heterogeneous features. Therefore, we pro-
pose the bilateral-LSTM cell with two network connections to
characterize the correlations between two types of data. Given
d; d0 2 fC;Dg, υdt and hd

t denotes the input vector (i.e., the
random noise during GANs’ training) and hidden state vector
for domain d at time step t, respectively. An additional set of
weights for introducing hidden states representations hd0

t from
domain d0 is included when updating the input gate idt , forget
gate fdt , output gate od

t , and cell memory ~cdt . The state transition
functions for BLSTM are:

idt ¼ σ Widυυdt þW
idhd

0hd0

t�1 þWidhdh
d
t�1 þ bid

� �

fdt ¼ σ Wfdυυdt þW
fdhd

0hd0

t�1 þWfdhdh
d
t�1 þ bfd

� �

od
t ¼ σ Wodυυdt þW

odhd
0hd0

t�1 þWodhdh
d
t�1 þ bod

� �

~cdt ¼ tanh Wcdυυdt þW
cdhd

0hd0

t�1 þWcdhdh
d
t�1 þ bcd

� �
cdt ¼ fdt � cdt�1 þ idt � ~cdt
hd
t ¼ od

t � tanh cdt
� �

(12)

As indicated by Eq. (12), the proposed BLSTM network
overcomes the limitation of vanilla-LSTM network on modeling
the correlation between the mixed-type timeseries by establishing
the supplemental recursive connection. The new connection
facilitates the model to intrinsically decide how much information
it should pass through the gates from its counterpart. A diagram
of the BLSTM cell in contrast to vanilla-LSTM cell can be found in
the Supplementary Fig. 3.

Coupled recurrent network. The architecture of CRN consists of
three layers: the input layers, the recurrent layers, and the fully
connected layers. First, the random noise vectors υdt and υd

0

t for two
domains, which are sampled from uniform distributions (i.e.,
υdt ; υ

d0
t 2 Uð0; 1Þ), are separately fed into the input layers. Then the

recurrent layersfrec, which are built based on two streams of BLSTM,
one for each data type, are used to recursively iterate hidden
states from both branches. Finally, the fully connected layersf dconn
and f d

0

conn produce the generated latent vectors ẑdt and ẑd
0

t for the

decoding stage in dual-VAE. At time step t, CRN can be formulated
as:

ðhd
t ;h

d0

t Þ ¼ f recððυdt ; υd
0

t Þ; ðhd
t�1;h

d0

t�1ÞÞ
ẑdt ¼ f dconnðhd

t Þ
ẑd

0

t ¼ f d
0

connðhd0

t Þ

(13)

In summary, heterogeneous timeseries that exhibits mutual
influence on each other are integrated into CRN to model their
interdependencies. By exploiting the BLSTM cell as its recurrent
layer, two streams of the inputs in the generator are encouraged
to “communicate” with each other. CRN is therefore capable of
exploiting the interplay between mixed-type data that correlates
over time.

Joint training and optimization
The overall architecture of EHR-M-GAN is shown in Fig. 1. In this
section, we give a detailed description of the entire network’s
structure and the optimization objective of the model. The
steps for the training and optimization of EHR-M-GAN are as
follows:

● The pretraining of dual-VAE: First, a dual-VAE network which
consists of a pair of encoders (EncC; EncD) and decoders
(DecC;DecD) is pretrained with both continuous and discrete
data. Based on multiple objective constraints in Eq. (10), a
shared latent space is learnt using dual-VAE, where the gap
between the embedding representations ðzC1:T ; zD1:T Þ from both
domains is minimized.

● The generation of latent representations based on CRN: Then,
during the joint training stage, the sequentially coupled
generator which is built based on CRN, takes the random
noise vector ðẑC1:T ; ẑ

D
1:T Þ as inputs and iterating across the

timesteps t ∈ {1, 2, . . . , T} by the internal transition functions.
Therefore, the synthetic latent embedding representations
ðẑC1:T ; ẑ

D
1:T Þ for both continuous and discrete data can be

obtained.
● The decoding for the mixed-type timeseries: Next, the generated

latent embeddings ðẑC1:T ; ẑ
D
1:T Þ are further fed into the

pretrained decoders (DecC;DecD) and decoded into the
corresponding synthetic patient trajectories ðx̂C1:T ; x̂

D
1:TÞ in the

observational space.
● The adversarial loss update based on the discriminators: Finally,

the adversarial loss can be calculated from the LSTM network-
based discriminators DC and DD by distinguishing between
the real samples and synthetic timeseries for both data types.

The mathematical expression for the min-max objectives in
EHR-M-GAN is provided as follows:

min
G

max
D

VEHR�M�GAN ¼ Ex�px ½logD
CðxCÞ þ logDDðxDÞ�

þEυ�pυ ½logð1� DCðx̂CÞÞ þ logð1� DDðx̂DÞÞ�
(14)

Conditional version of EHR-M-GAN
For the conditional extension of EHR-M-GANcond, the auxiliary
label information is first used during the pretraining step of dual-
VAE. Both the encoders and decoders condition on the auxiliary
(one-hot) labels from L, to make the model better adapted to
particular contexts. In dual-VAE, the additional semantic loss is also
incorporated during the optimization for the shared latent space
as in Eq. (11). Meanwhile, the same conditional labels are also
applied in the sequentially coupled generator and discriminators,
where the classes are fed as additional inputs through concatena-
tion, as in the original CGAN architecture proposed by Mirza
et al.68.
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The t-SNE visualization of the latent embeddings induced from
dual-VAE can be found in Supplementary Note 4, which indicates
that the conditional information carried into EHR-M-GANcond can
be beneficial when synthesizing patient trajectories under specific
medical conditions. Overall, the adversarial loss for EHR-M-
GANcond can be denoted as follows:

min
G

max
D

VEHR�M�GANcond ¼ Ey;x�py;x ½logD
CðxCjyÞ þ logDDðxDjyÞ�

þEy�py;υ�pυ ½logð1� DCðx̂CjyÞÞ þ logð1� DDðx̂DjyÞÞ�

(15)

The pseudocodes for dual-VAE and EHR-M-GAN are provided in
the Supplementary Note 1.

Baseline models
We compare the performance of EHR-M-GAN with eight state-of-
the-art generative methods in literature. However, as these
benchmarks typically face challenges when modeling mixed-
type EHR timeseries and can only synthesize single-type EHRs, we
draw the comparison between EHR-M-GAN and the benchmark
models using the corresponding partial component of our
synthetic results, i.e., either the continuous-valued part or the
discrete-valued part. For continuous-valued timeseries generation,
benchmark GAN models include C-RNN-GAN69, R(C)GAN25, and
TimeGAN29. For discrete-valued timeseries generation, classic
medGAN32, seqGAN31, and two recently proposed work—
SynTEG27 and DualAAE26 are used for comparison. Apart from
these GAN-based models, we also incorporate PrivBayes70 to
synthesize discrete-valued timeseries, which falls in the class of
non-GAN generative approaches using a Bayesian framework17. As
the original paper of PrivBayes focuses on data anonymization
using differential privacy, we therefore implemented its ‘Non-
Private’ version for a fair comparison with other baselines (see
Section 4.1 Non-Private Methods in ref. 70). For medGAN and
PrivBayes, we feed the flattened temporal sequence as the input
since the models cannot produce timeseries data.
We further perform the ablation study to investigate whether

our introduced novel components in the proposed model have
advantages over its variants that also model mixed-type EHRs.
First, we compare EHR-M-GAN with a variant that jointly models
the mixed-type data using a single unified VAE network (denoted
as GANUnified). Second, we test the variant that encodes the mixed-
type inputs separately with two independent VAE networks
(denoted as GANVAE). Then, we assess the effectiveness of the
proposed sequentially coupled generator component in our model
by implementing GANSL. Lastly, as the dual-VAE module alone can
also be used for generating EHR timeseries, it serves as a non-
GAN-based benchmark in the ablation study (see Supplementary
Note 3). The architectures of different variants of EHR-M-GAN in

the ablation study are detailed as follows (also see Fig. 7 for
illustration):

● GANUnified: It contains a unified VAE module and two separate
GANs. The continuous-valued and discrete-valued timeseries
is concatenated together, via normalization and one-hot
encoding, as input to the encoder in the unified VAE network.
The decoder receives the concatenation of the generated
latent vectors as the input, and then decodes it into synthetic
timeseries with the corresponding data types using the
separate fully connected layers. Each component in the
architecture of GANUnified (unified encoder and decoder,
separate generators and discriminators) is implemented with
LSTMs, which are the same as EHR-M-GAN.

● GANVAE: It is composed of a pair of VAE networks and GANs
(one for each type of inputs). The continuous-valued time-
series and discrete-valued timeseries from the same patients
are separately fed into the corresponding paths in GANVAE,
and then run in parallel. The synthetic outputs of each data
type are then combined as the final results. It maintains the
basic structure of EHR-M-GAN but lacks the latent space
sharing with dual-VAE and the sequentially coupled generator
in the original EHR-M-GAN.

● GANSL: In addition to GANVAE, it learns the shared latent space
representations through dual-VAE by adding the correspond-
ing loss functions in EHR-M-GAN, including ELBO loss,
Matching loss and Contrastive loss. This model lacks the
sequentially coupled generator.

● EHR-M-GAN: In addition to GANSL, it incorporates the
sequentially coupled generator for the learning the correlated
temporal dynamics in timeseries of different data types. This is
the proposed full model.

● EHR-M-GANcond: This version is implemented on the basis of
conditional GAN68, where the conditional inputs are fed into
EHR-M-GAN to generate patients under specific labels.

For training EHR-M-GANcond, auxiliary information from the
patient status is used as conditional input. These conditional
inputs are selected since synthesizing EHR information of patient
subgroups with potential outcomes would be valuable for
clinicians in their decision-making process. Other conditional
labels (such as patient demographics in the categorized format)
can also be used in the proposed conditional synthesizer for other
research purposes. For MIMIC-III dataset, the classes are (1) ICU
mortality: patient died within the ICU; (2) Hospital mortality: patient
discharged alive from the ICU, and died within the hospital; (3) 30-
day readmission: patient discharged alive from the hospital, and
readmitted to the hospital within 30 days; (4) No 30-day
readmission: patient discharged alive from the hospital, and had
no readmission record to the hospital within 30 days. For eICU and

Fig. 7 The network architectures in the ablation study. Three variants of EHR-M-GAN are implemented in the ablation study. Compared with
the full model of EHR-M-GAN, a GANUnified learns the joint representations of heterogeneous types of data in a unified network; b GANVAE
maintains the basic architecture of EHR-M-GAN, but ignore the dependency learning (i.e., separate networks for two streams of inputs are
trained in parallel); c GANSL constructs the shared latent space using the dual-VAE module but omit the sequentially coupled generator for
learning the temporal correlations in the mixed-type timeseries.
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HiRID datasets, the corresponding labels are also extracted based
on the availability of the patient outcomes (see Table 7).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All datasets are freely accessible. The MIMIC-III dataset (Version: 1.4) can be accessed
at https://physionet.org/content/mimiciii/1.4/. The eICU-CRD database (Version: 2.0)
can be accessed at https://physionet.org/content/eicu-crd/2.0/. The HiRID dataset
(Version: 1.1.1) can be accessed at https://physionet.org/content/hirid/1.1.1/.

CODE AVAILABILITY
Algorithms are developed using Python, with the deep learning networks
implemented with Tensorflow. Code for preprocessing three ICU datasets can be
found at https://github.com/jli0117/preprocessing_physionet. Code for proposed
EHR-M-GAN model can be found at https://github.com/jli0117/ehrMGAN.
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