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Perspectives on validation of clinical predictive algorithms
Anne A. H. de Hond 1,2,3✉, Vaibhavi B. Shah 2, Ilse M. J. Kant4, Ben Van Calster 3,5, Ewout W. Steyerberg 1,3 and
Tina Hernandez-Boussard 2,6,7

The generalizability of predictive algorithms is of key relevance to application in clinical practice. We provide an overview of three
types of generalizability, based on existing literature: temporal, geographical, and domain generalizability. These generalizability
types are linked to their associated goals, methodology, and stakeholders.
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Machine learning has led to a surge in the development of clinical
predictive algorithms. The generalizability of these algorithms
often goes untested1, leaving the community in the dark on their
accuracy and safety when applied to a specific medical setting. We
need clear objectives with respect to generalizability that align
with the intended use. Journals, funding organizations, and
regulatory bodies provide some guidance on generalizability
requirements for clinical predictive algorithms, but a clear
definition is often lacking. For example, it is considered best
practice to ‘Describe the generalizability of the model including
the performance of the model on validation and testing datasets2’.
We consider this recommendation too vague. It is not clear what
type of generalizability is referred to and whether it is sufficient for
the intended use of the algorithm (see Supplementary Table 1 for
more examples and suggestions for improvement). This commen-
tary aims to provide clarity on different objectives related to
generalizability via an overview of three main types of general-
izability summarized from the literature with their associated
goals, methodology, and stakeholders.
We performed a scoping review to identify different types of

generalizability (see Supplementary Methods and Supplementary
Table 2). In the context of clinical prediction models or predictive
algorithms, generalizability refers to an algorithm’s ability to
perform adequately across different settings3. Setting is defined
by the clinical context of included patients, time, and place.
Algorithm performance can then be assessed along various axes,
including discrimination3, calibration4, and measures for clinical
usefulness, such as Net Benefit5. We extracted three distinct types
of generalizability. Examples of published validation use cases for
each generalizability type can be found in Supplementary Table 3.
A key distinction should be made between internal and external

validation (Fig. 1). Internal validation assesses the reproducibility
of algorithm performance in data that is distinct from the
development (or: train) data but derived from the exact same
underlying population. It provides an optimism-corrected estimate
of performance for the setting where the data originated from6.
Cross-validation and bootstrapping are the recommended meth-
ods to assess internal validity6,7. Cross-validation splits the data in
equal parts (usually five or ten) and trains the algorithm on all but
one holdout part that is used for testing. This process is repeated
until all parts have been used as test data. The whole procedure is
preferably repeated multiple times for more stability, e.g., a

10 × 10-fold cross-validation procedure. Bootstrapping repeatedly
samples data points from the development data with replacement
(usually 500–2000 times). These samples are used to train the
algorithm with the original development data as test set6,8.
Internal validation is necessary but not sufficient to ensure safe
clinical applicability. The main stakeholder is the developer of the
algorithm, who uses internal validation to assess the validity of the
development process, and quantifies overoptimism in expected
performance7,9.
External validity assesses the transportability of the clinical

predictive algorithm to other settings than those considered
during development (Fig. 1). It encompasses three generalizability
types: temporal, geographical and domain generalizability.
Temporal validity assesses the performance of an algorithm over
time at the development setting. This type of generalizability is
required to understand data drift (a change in the data over time
from the data that was used during development)10. Temporal
validity may be assessed by testing the algorithm on a dataset
derived from the same setting as the development cohort but
from a later time. Variations in design are possible, such as a
‘waterfall’ design, in which the development time window is
repeatedly increased11. The main stakeholders of temporal validity
are clinicians, hospital administrators, and other clinical end-users
that plan to implement the algorithm into their clinical practice.
These stakeholders need proof of temporal validity to ensure the
safe use of the algorithm at their local clinical institution or
hospital.
Geographical validation assesses the generalizability of an

algorithm to a place (institution or location) that is different from
where the algorithm was developed. This type of validation
assesses the heterogeneity across places. Geographical validity
can be assessed by testing the algorithm on data collected from
the new place(s). More complex designs are possible, such as a
leave-one-site-out (or internal-external) validation in which the
algorithm is developed on all but one location and tested on the
left-out one12. This process is repeated until all locations have
been used as test location. Geographical validation is required
when the algorithm is going to be used outside of the original
development place. The main stakeholders are the clinical end-
users at a new implementation site who want proof of validity
for safe use at their site. Manufacturers, insurers, and governing
bodies could be other stakeholders that are interested in
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evidence for the general or widespread applicability of the
prediction tool. When geographical generalizability is low, a
global model that is valid for different places may not be
tenable13. Instead, a local variant of the algorithm could be
achieved through updating the global algorithm at each
individual place4.
Domain validation assesses the generalizability of an algo-

rithm to a different clinical context14,15. This type of validation
considers generalizability across medical background (e.g., 30-
day mortality risk for emergency versus surgical patients), but
also medical setting (e.g., fall prevention in nursing home versus
hospital), and demographics (e.g., emergency admission risk for
adult versus pediatric patients). For example, some COVID-19
prediction models were developed for related respiratory
diagnoses16. In a large study on generalizability of prediction
models, model performance was found to be better in ‘closely
related’ than ‘distantly related’ validation cohorts, which under-
scores the relevance of domain generalizability17. Like geogra-
phical validation, domain validity is assessed by testing the
algorithm on data collected from a new domain. Stakeholders of
domain validity include clinical end-users from the new domain,
manufacturers, insurers, and governing bodies. If the algorithm
does not generalize across domains, the underlying relationships
may be truly different, warranting separate algorithms for each
domain.
The overview presented in Fig. 1 may be used as a starting

point by regulatory bodies, industry, and academia when
formulating guidelines and requirements for the generalizability
of a clinical predictive algorithm. Building on previous work18–21,
we argue that validation studies should be suited to the target
context and the intended use of the clinical predictive algorithm.
Always aiming for a specific type of generalizability may not be
defensible for some predictive algorithms and their intended
use18,22.
During algorithm development and validation, researchers

and developers should adhere to guidelines, specifically TRIPOD
or its forthcoming variant, TRIPOD-AI20,23. They should report on
the algorithm’s capacity to generalize and provide a justification

for their chosen validation strategy by relating it to their
intended operational period, (clinical) population, and environ-
ment. Moreover, they should add a disclaimer about the type of
generalizability and intended use of their algorithms. If general-
izability is limited this ought to be acknowledged alongside
other implementation risks. For example, only internal or
temporal validation was performed, or poor generalizability
was found across places or clinical contexts. Researchers and
developers should also report when the algorithm’s scope limits
the necessary validation steps. For example, domain validation
may not be attempted when a predictive algorithm cannot be
used (or has very limited use) outside of its domain (e.g., a
prostate biopsy model).
In conclusion, we propose more precise specification for the

desired and required type of generalizability for the implementa-
tion of clinical predictive algorithms. The three generalizability
types discussed here, comprising temporal, geographical, and
domain generalizability, all serve a unique goal and specific
application purpose. Hence, researchers, developers, journals,
funding organizations, and regulatory bodies should ensure that
their chosen generalizability claims on the algorithm’s intended
use align with the underlying evidence. Future research may
assess the impact of different types of heterogeneity on general-
izability and steps to improve generalizability for clinical predictive
algorithms.
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