
ARTICLE OPEN

AI-assisted prediction of differential response to antidepressant
classes using electronic health records
Yi-han Sheu 1,2,3,4✉, Colin Magdamo5, Matthew Miller6,7,8, Sudeshna Das 5, Deborah Blacker3,8 and Jordan W. Smoller 1,2,3,4,8

Antidepressant selection is largely a trial-and-error process. We used electronic health record (EHR) data and artificial intelligence
(AI) to predict response to four antidepressants classes (SSRI, SNRI, bupropion, and mirtazapine) 4 to 12 weeks after antidepressant
initiation. The final data set comprised 17,556 patients. Predictors were derived from both structured and unstructured EHR data
and models accounted for features predictive of treatment selection to minimize confounding by indication. Outcome labels were
derived through expert chart review and AI-automated imputation. Regularized generalized linear model (GLM), random forest,
gradient boosting machine (GBM), and deep neural network (DNN) models were trained and their performance compared.
Predictor importance scores were derived using SHapley Additive exPlanations (SHAP). All models demonstrated similarly good
prediction performance (AUROCs ≥ 0.70, AUPRCs ≥ 0.68). The models can estimate differential treatment response probabilities
both between patients and between antidepressant classes for the same patient. In addition, patient-specific factors driving
response probabilities for each antidepressant class can be generated. We show that antidepressant response can be accurately
predicted from real-world EHR data with AI modeling, and our approach could inform further development of clinical decision
support systems for more effective treatment selection.
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INTRODUCTION
Depression is a common and often disabling psychiatric condi-
tion1. According to the Centers for Disease Control and Prevention
(CDC, USA), more than 10% of adults are prescribed antidepres-
sants within any given 30-day window2, making antidepressants
one of the most commonly used categories of medications. The
American Psychiatric Association guidelines3 for treatment of
major depressive disorder (MDD) suggests four classes of first-line
antidepressant medications: selective serotonin reuptake inhibi-
tors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs),
mirtazapine, and bupropion. Unfortunately, identifying the most
effective treatment for a given patient remains a trial-and-error
proposition. As antidepressant effectiveness may not be evident
before 4–12 weeks, each inadequate trial can incur prolonged
morbidity, disability and exposure to adverse effects as well as
substantial healthcare costs.
Although average response rates are similar across different

antidepressant classes4, individual response can vary widely in
clinical practice. Currently, clinicians initiating antidepressant
treatment have few tools or evidence-based predictors on which
to rely. A major goal of precision psychiatry is to optimize
treatment matching using patient-specific profiles. The growing
availability of large-scale health data such as electronic health
records (EHRs) coupled with advances in machine learning offer
new opportunities for developing clinical decision support tools
that may address this challenge5–8.
That said, setting up an accurate and scalable system to guide

antidepressant selection poses specific challenges. First, patient
characteristics that may contribute to response prediction, such as
depression symptomatology, are not readily codified. Second, the

gold standard for characterizing antidepressant response from the
EHR remains expert chart review, which is labor- and time-
intensive. Lastly, in contrast to modeling predictions under the
naturalistic, observational setting, modeling for interventional
recommendations requires additional consideration of potential
confounds that could arise from non-random treatment assign-
ments. While a handful of studies have modeled prediction of
antidepressant response using data specifically collected for
research such as brain imaging or EEG, sample sizes have been
typically modest and these approaches can be costly and difficult
to scale9–42. Ideally, a clinically useful model would enable
accurate prediction of antidepressant response, comparative
predicted response for alternative treatment choices, and control
for potential confounding – in particular, confounding by
indication – that is, pretreatment factors associated with both
the propensity to choose an antidepressant and treatment
response.
To address these limitations, we developed a machine learning

(ML) pipeline to predict antidepressant response using real-world,
large-scale EHR data. The pipeline incorporates the following
features: (1) a battery of prediction models with different levels of
complexity, ranging from linear to highly non-linear models such
as deep neural networks43 (DNNs, often referred to as “AI”), which
enables comparative model performance; (2) an AI-based natural
language processing (NLP) proxy labeling system, as a comple-
ment to expert label curation, to enable scalable model training;
(3) confounding control through explicit inclusion of potential
confounders among the predictors; (4) direct incorporation of
unstructured data (i.e., clinical notes) as an additional predictor
component to maximize use of information contained in EHRs.
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We use the ML pipeline to address the following scientific
questions: (1) Can clinical data routinely obtained before initial
treatment with an antidepressant predict outcomes within
4–12 weeks after initiation? (2) Can such information predict
which class of medication would work better for a particular
patient? (3) What might be the best model architecture to do so?
As most antidepressant prescriptions are initiated in non-
psychiatric settings44, we focused on patients for whom treatment
was started by a non-psychiatrist physician (e.g. primary care
physician).
See Supplementary Note 1 for brief description of DNN and the

DNN classes we used in this study.

RESULTS
Patient characteristics
The EHR data query for the period of 1990–2018 retrieved 111,563
adult patients who had at least one International Classification of
Diseases (ICD) code for depression and received a new
antidepressant prescription at the same visit. After applying our
exclusion criteria, a total of 17,556 patients were included in the
analysis (Fig. 1). We annotated 3600 patients (details provided in
the Methods section) with expert-curated outcome labels (46%
labeled positive) and the remainder with imputed labels (42%
labeled positive). Patient characteristics, overall and stratified by
the four antidepressant classes, are provided in Table 1.
Overall, the female/male ratio was 2:1 (66% female), consistent

with the known gender ratio of diagnosed depression45. The
mean (SD) age of the patients was 50.04 (17.59) at the date of
index visit. In general, patients started on mirtazapine were older,
more likely to be male, and to have had a greater burden of
medical illness compared to the other three groups. The

bupropion group was slightly younger. There was only a slight
variation in depression-related mental symptoms across the four
groups (Table 1).

Model performance metrics
Table 2 reports the point estimates for model performance on the
full test set across each setting (the full table with confidence
intervals is provided as Supplementary Table 1). All models
achieved an area under the receiver operating characteristic curve
(AUROC) of at least 70% and an area under the precision-recall
curve (AUPRC) of at least 68%, indicating good overall model
discrimination. Among the four feed-forward deep learning
models, three that included either i) the treatment response
likelihood score (a decimal number between 0-1 representing a
preliminary evaluation of response probability by a DNN model
using clinical notes in a three-year window prior to the index visit)
as a predictor or ii) the imputed labels, or iii) both (see Methods for
further details) had higher AUROC point estimates than the one
without both the treatment response likelihood score and the
imputed labels (AUROC for the first three models= 74% and
AUROC= 70% for the last model).
Given that no model tested was clearly superior across all

metrics, and for other reasons discussed later (see Discussion), we
selected a “representative model” and report additional model
characteristics of this model for the purpose of discussion and
illustration. One model that performed well and has several
advantages (in terms of extensibility and flexibility) is the feed-
forward DNN model that included both the treatment response
likelihood score and imputed labels (see Methods). In addition, this
model incorporates the broadest range of data among the four
feed-forward DNN models and is less computationally intensive
than the Transformer+ feed-forward DNN model. For this model,

Fig. 1 Flowchart for sample selection after sequential application of exclusion criteria. Text boxes denote each step for sampleselection.
The numbers next to the arrows represent the number of patients remaining after applying the selection step in the preceding text box.
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Table 1. Patient characteristics overall and by antidepressant class.

Class of first antidepressant prescribed Any Bupropion Mirtazapine SNRI SSRI

Antidepressant category first prescribed No.(%)

Bupropion 1765 (10.05)

Mirtazapine 874 (4.98)

SNRI 1635 (9.31)

SSRI 13282 (75.66)

Demographics

Gender No.(%) No. (%) No. (%) No. (%) No. (%)

Male 5974 (34.03) 689 (39.04) 405 (46.34) 491 (30.03) 4389 (33.04)

Female 11582 (65.97) 1076 (60.96) 469 (53.66) 1144 (69.97) 8893 (66.96)

Race No.(%) No.(%) No.(%) No.(%) No.(%)

African American 1185 (6.75) 111 (6.29) 75 (8.58) 96 (5.87) 903 (6.8)

Asian 374 (2.13) 29 (1.64) 26 (2.97) 19 (1.16) 300 (2.26)

Caucasian 13197 (75.17) 1387 (78.58) 627 (71.74) 1333 (81.53) 9850 (74.16)

Hispanic 1558 (8.87) 125 (7.08) 79 (9.04) 84 (5.14) 1270 (9.56)

Other 781 (4.45) 69 (3.91) 36 (4.12) 69 (4.22) 607 (4.57)

Unknown 461 (2.63) 44 (2.49) 31 (3.55) 34 (2.08) 352 (2.65)

Marital status No.(%) No.(%) No.(%) No.(%) No.(%)

Single 6038 (34.39) 664 (37.62) 257 (29.41) 578 (35.35) 4539 (34.17)

Married/Partner 7519 (42.83) 734 (41.59) 346 (39.59) 697 (42.63) 5742 (43.23)

Other 108 (0.62) 15 (0.85) 2 (0.23) 10 (0.61) 81 (0.61)

Separated/Divorced 2070 (11.79) 208 (11.78) 107 (12.24) 234 (14.31) 1521 (11.45)

Unknown 333 (1.9) 40 (2.27) 24 (2.75) 27 (1.65) 242 (1.82)

Widowed 1488 (8.48) 104 (5.89) 138 (15.79) 89 (5.44) 1157 (8.71)

Primary language No.(%) No.(%) No.(%) No.(%) No.(%)

English 15265 (86.95) 1602 (90.76) 740 (84.67) 1488 (91.01) 11435 (86.09)

Other 1914 (10.9) 128 (7.25) 110 (12.59) 110 (6.73) 1566 (11.79)

Unknown 377 (2.15) 35 (1.98) 24 (2.75) 37 (2.26) 281 (2.12)

Antidepressant and other prescriptions Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

Age at antidepressant initiation 50.04 (17.59) 47.19 (15.99) 60.33 (18.95) 49.63 (15.79) 49.79 (17.68)

Number of co-occurring medications 21.64 (21.12) 19.48 (18.85) 32.8 (27.67) 23.67 (20.76) 20.94 (20.71)

Number of NSAIDs 0.79 (1.66) 0.83 (1.68) 0.93 (2.1) 0.99 (1.98) 0.75 (1.58)

Depression related symptomsa

Depressive mood symptoms (0-7) 0.95 (1.21) 0.86 (1.19) 1.24 (1.36) 0.82 (1.16) 0.95 (1.2)

Anxiety symptoms (0-1) 0.76 (0.43) 0.74 (0.44) 0.81 (0.4) 0.77 (0.42) 0.75 (0.43)

Pain (0-1) 0.86 (0.35) 0.85 (0.36) 0.91 (0.29) 0.9 (0.31) 0.85 (0.35)

Poor concentration/psychomotor retardation (0-2) 0.09 (0.3) 0.09 (0.31) 0.13 (0.37) 0.07 (0.27) 0.09 (0.3)

Loss of appetite and body weight (0-1) 0.31 (0.46) 0.31 (0.46) 0.5 (0.5) 0.31 (0.46) 0.3 (0.46)

Increased appetite and body weight (0-1) 0.11 (0.31) 0.14 (0.35) 0.13 (0.33) 0.14 (0.35) 0.1 (0.3)

Insomnia (0-1) 0.24 (0.43) 0.21 (0.41) 0.43 (0.5) 0.23 (0.42) 0.24 (0.43)

Loss of energy/fatigue (0-1) 0.38 (0.48) 0.37 (0.48) 0.57 (0.5) 0.38 (0.49) 0.37 (0.48)

Psychomotor agitation (0-1) 0.19 (0.39) 0.16 (0.37) 0.29 (0.45) 0.21 (0.41) 0.19 (0.39)

Suicidal/homicidal ideation (0-1) 0.28 (0.45) 0.26 (0.44) 0.36 (0.48) 0.27 (0.45) 0.28 (0.45)

Psychotic symptoms (0-3) 0.23 (0.57) 0.22 (0.56) 0.43 (0.75) 0.24 (0.57) 0.21 (0.56)

History of medical co-morbidities No(%) No.(%) No.(%) No.(%) No.(%)

Congestive heart failure 1857 (10.58) 127 (7.2) 184 (21.05) 134 (8.2) 1412 (10.63)

Chronic pulmonary disease 4319 (24.6) 400 (22.66) 270 (30.89) 373 (22.81) 3276 (24.66)

Diabetes with chronic complications 756 (4.31) 63 (3.57) 64 (7.32) 74 (4.53) 555 (4.18)

Diabetes without chronic complications 2811 (16.01) 254 (14.39) 200 (22.88) 221 (13.52) 2136 (16.08)

Glaucoma 75 (0.43) 6 (0.34) 14 (1.6) 3 (0.18) 52 (0.39)

Hemophilia 16 (0.09) 0 (0) 4 (0.46) 3 (0.18) 9 (0.07)

Hypotension 1169 (6.66) 92 (5.21) 133 (15.22) 110 (6.73) 834 (6.28)

Inflammatory bowel disease 405 (2.31) 37 (2.1) 31 (3.55) 43 (2.63) 294 (2.21)

Lipid disorders 5590 (31.84) 508 (28.78) 372 (42.56) 467 (28.56) 4243 (31.95)
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AUPRC= 72%, positive predictive value (PPV)= 71%, negative
predictive value (NPV)= 69%, sensitivity= 68%, specificity= 72%,
F1 score (the harmonic mean of sensitivity and PPV)= 70%, and
accuracy= 70%, based on a threshold that maximizes prediction
accuracy (See Table 2). Brier score was 0.21. A calibration plot for
the model is provided in Supplementary Fig. 1. ROC plots for all
models are provided in Supplementary Figs. 2–6.
To contextualize the potential value of the model, we compared

the overall prevalence of antidepressant response in the test set
data (i.e. the base rate of response independent of applying the

model) to the model-predicted response rate. We can think of the
overall model-agnostic prevalence as the prior probability of
response for these patients based on current practice. We can
then compare this to the PPVs obtained with each model in the
test data (as a kind of counterfactual response rate had the model
been available). For example, the PPV observed with our
representative model was 71%, which is statistically significantly
higher than the base rate of response (50%) by a two-tailed test
for two binomial proportions (z= 7.44, p < 0.00001, 95% CI of the
difference in the two proportions= (0.16, 0.26)).

Table 1 continued

Class of first antidepressant prescribed Any Bupropion Mirtazapine SNRI SSRI

Any malignancy 3824 (21.78) 355 (20.11) 301 (34.44) 374 (22.87) 2794 (21.04)

Any metastatic malignancy 1469 (8.37) 131 (7.42) 127 (14.53) 151 (9.24) 1060 (7.98)

Mild liver disease 2146 (12.22) 214 (12.12) 152 (17.39) 162 (9.91) 1618 (12.18)

Moderate to severe liver disease 211 (1.2) 21 (1.19) 16 (1.83) 17 (1.04) 157 (1.18)

Myocardial infarction 1420 (8.09) 109 (6.18) 133 (15.22) 97 (5.93) 1081 (8.14)

Obesity 3028 (17.25) 363 (20.57) 98 (11.21) 277 (16.94) 2290 (17.24)

Any organ transplantation 320 (1.82) 28 (1.59) 36 (4.12) 23 (1.41) 233 (1.75)

Overweight 452 (2.57) 60 (3.4) 26 (2.97) 38 (2.32) 328 (2.47)

Peptic ulcer 484 (2.76) 38 (2.15) 44 (5.03) 40 (2.45) 362 (2.73)

Peripheral vascular disease 1658 (9.44) 123 (6.97) 168 (19.22) 138 (8.44) 1229 (9.25)

Primary hypertension 6917 (39.4) 584 (33.09) 473 (54.12) 587 (35.9) 5273 (39.7)

Prolonged QTc interval 36 (0.21) 1 (0.06) 4 (0.46) 5 (0.31) 26 (0.2)

Psoriasis 485 (2.76) 38 (2.15) 28 (3.2) 34 (2.08) 385 (2.9)

Chronic renal insufficiency 1170 (6.66) 82 (4.65) 130 (14.87) 83 (5.08) 875 (6.59)

Rheumatic disease 846 (4.82) 52 (2.95) 50 (5.72) 87 (5.32) 657 (4.95)

Secondary hypertension 111 (0.63) 6 (0.34) 9 (1.03) 18 (1.1) 78 (0.59)

Sexual dysfunction 501 (2.85) 75 (4.25) 38 (4.35) 29 (1.77) 359 (2.7)

SLE 210 (1.2) 17 (0.96) 14 (1.6) 27 (1.65) 152 (1.14)

History of neurological co-morbidities

Cerebral vascular disease 1925 (10.96) 126 (7.14) 168 (19.22) 153 (9.36) 1478 (11.13)

Dementia 281 (1.6) 16 (0.91) 48 (5.49) 18 (1.1) 199 (1.5)

Epilepsy 1051 (5.99) 48 (2.72) 76 (8.7) 115 (7.03) 812 (6.11)

Hemiplegia 545 (3.1) 27 (1.53) 45 (5.15) 54 (3.3) 419 (3.15)

Migraine 1650 (9.4) 160 (9.07) 65 (7.44) 194 (11.87) 1231 (9.27)

Multiple sclerosis 196 (1.12) 18 (1.02) 7 (0.8) 24 (1.47) 147 (1.11)

Parkinson’s Disease 170 (0.97) 30 (1.7) 19 (2.17) 14 (0.86) 107 (0.81)

Traumatic brain injury 542 (3.09) 39 (2.21) 42 (4.81) 45 (2.75) 416 (3.13)

History of psychiatric co-morbidities

ADHD 442 (2.52) 82 (4.65) 17 (1.95) 43 (2.63) 300 (2.26)

Alcohol use disorders 1497 (8.53) 167 (9.46) 98 (11.21) 124 (7.58) 1108 (8.34)

Anxiety disorders 6454 (36.76) 581 (32.92) 341 (39.02) 565 (34.56) 4967 (37.4)

Cluster A personality disorder 9 (0.05) 1 (0.06) 2 (0.23) 1 (0.06) 5 (0.04)

Cluster B personality disorder 100 (0.57) 10 (0.57) 4 (0.46) 16 (0.98) 70 (0.53)

Cluster C personality disorder 8 (0.05) 1 (0.06) 0 (0) 1 (0.06) 6 (0.05)

Other personality disorder 101 (0.58) 15 (0.85) 7 (0.8) 8 (0.49) 71 (0.53)

Eating disorders 242 (1.38) 23 (1.3) 12 (1.37) 22 (1.35) 185 (1.39)

PTSD 729 (4.15) 58 (3.29) 39 (4.46) 90 (5.5) 542 (4.08)

Substance use disorders (non-alcohol) 3039 (17.31) 407 (23.06) 194 (22.2) 297 (18.17) 2141 (16.12)

Total N 17556 1765 874 1635 13282

aThe value for “depression related symptoms” refers to the number of “concepts” that comprise each symptom (e.g., “depressive mood and anhedonia”) that
were recorded by applying NLP to the patient’s clinical note set during the interval from 3 months prior up to the index visit. For example, for “depressive
mood and anhedonia,” “anhedonia” and “sadness” are two comprising concepts. The parenthesis after each symptom denotes the number of concepts
comprising that symptom – for example, “depressive mood and anhedonia” includes 7 concepts, while “pain” only include one concept. Detailed description
of the derivation procedure is provided in Sheu et al. 202248.
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Supplementary Table 2 shows performance metrics for the
representative model after patient stratification by age, number of
co-morbidities, counts of depression-related symptoms, and
antidepressant class initiated. Performance of the representative
model was generally consistent for all model metrics across most

strata. Figure 2 shows the most important predictors overall for
the representative model by global sHapley Additive explanation
(SHAP) values46 (i.e., mean of absolute local SHAP values.
Supplementary Fig. 8 shows mean local SHAP values of these
important predictors to provide additional information on

Table 2. Model performance metrics for antidepressant treatment response prediction.

Model type Treatment response
likelihood score

Imputationb AUROC AUPRC Accuracy F1 NPV PPV Sensitivity Specificity Thresholdc

Regularized GLM yes yes 0.73 0.71 0.71 0.70 0.69 0.72 0.68 0.73 0.50

Regularized GLM yes no 0.72 0.71 0.69 0.68 0.68 0.70 0.67 0.71 0.53

Regularized GLM no yes 0.73 0.71 0.71 0.72 0.73 0.69 0.76 0.65 0.43

Regularized GLM no no 0.73 0.70 0.70 0.74 0.77 0.66 0.83 0.57 0.44

Random forest yes yes 0.71 0.70 0.68 0.68 0.68 0.67 0.70 0.66 0.44

Random forest yes no 0.73 0.72 0.70 0.67 0.67 0.73 0.63 0.77 0.52

Random forest no yes 0.72 0.71 0.69 0.73 0.76 0.65 0.82 0.56 0.37

Random forest no no 0.73 0.72 0.70 0.69 0.69 0.70 0.68 0.72 0.47

Gradient boosting yes yes 0.73 0.70 0.69 0.65 0.66 0.73 0.59 0.78 0.53

Gradient boosting yes no 0.73 0.70 0.69 0.68 0.67 0.70 0.65 0.73 0.53

Gradient boosting no yes 0.73 0.71 0.67 0.68 0.69 0.66 0.71 0.64 0.43

Gradient boosting no no 0.73 0.71 0.69 0.72 0.76 0.65 0.82 0.56 0.38

Transformer+ feed-
forward DNN

a yes 0.71 0.69 0.68 0.68 0.68 0.69 0.67 0.70 0.42

Transformer+ feed-
forward DNN

a no 0.72 0.68 0.68 0.67 0.67 0.69 0.66 0.71 0.45

Feed-forward DNN yes yes 0.74 0.72 0.70 0.70 0.69 0.71 0.68 0.72 0.52

Feed-forward DNN yes no 0.74 0.73 0.70 0.67 0.67 0.73 0.62 0.77 0.56

Feed-forward DNN no yes 0.74 0.72 0.70 0.71 0.71 0.69 0.73 0.67 0.51

Feed-forward DNN no no 0.70 0.70 0.67 0.61 0.63 0.74 0.51 0.82 0.42

Bold indicates the highest value for the specific metric. Treatment response likelihood score: treatment response likelihood score derived by the NLP
prediction model using clinical notes up to 3 years prior to index visit.
aUse of vectorized 3-year notes instead of the treatment response likelihood score.
bImputation: inclusion of deep-learning imputed labels in addition to expert-curated labels during training.
cThreshold: probability threshold used to derive threshold-dependent metrics; value used was threshold at which model accuracy was maximized.

Fig. 2 Top 15 features by global SHAP score. Global SHAP scores were calculated by averaging the absolute values of local (i.e., individual)
level SHAP scores, and represent overall contribution of the predictors to the model.
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directionality of feature effects). The top three predictive variables
by global SHAP values were the number of co-occurring
medications, the treatment response likelihood score, and number
of references to depressed mood and anhedonia in clinical notes.
The appearance of SNRI initiation among the top 10 predictors
confirms that choice of specific antidepressant class is an
important contributor to likelihood of responding to an
antidepressant.

Visualization of clinical utility
To illustrate the kind of information the models can provide, Fig. 3
shows actual and alternative test set predictions and local SHAP
predictor importance (i.e., predictor importance for a given
patient) for illustrative patients using the representative model
(feed-forward DNN). Figure 3a demonstrates predicted response
for each antidepressant for three patients drawn from strata that
are modeled to be moderately likely (Patient 1), highly likely
(Patient 2), and less likely (Patient 3) to respond (see Methods),
respectively, to the actual antidepressant class prescribed. Overall,

there is substantial variation in predicted treatment response
among these patients to any of the four antidepressant classes
(e.g., ~80 for Patient 2 and ~0.25 for Patient 3). Within an
individual patient, we see more modest variation in predicted
response to alternative antidepressants. For example, Patient 1
had a 66% probability of a positive response to an SSRI (the class
that was actually prescribed in this case) but only a 51%
probability of response had an SNRI been chosen. Figure 3b
shows the corresponding local SHAP scores for each initiation
scenario for Patient 1. The visualization (“force plot”47) displays the
relative importance of each predictor to the response prediction
for a given antidepressant class. The bolded values are the SHAP
model’s overall response prediction for each antidepressant.
(Note: the SHAP estimates differ slightly from the DNN estimates
(e.g., 0.67 vs 0.66 for SSRI) because they reflect SHAP as a linear
estimator of the DNN model; the relative ranking of predicted
responses and the feature importance are the same in both
models). For each antidepressant, the visualization shows how the
predicted probability of response would change given changes in

Fig. 3 Illustration of differential treatment response predictions and local predictor importance for different treatment scenarios.
a Predicted response for actual and alternative treatments for three patients randomly drawn from strata that were modeled to be moderately
likely (Patient 1), highly likely (Patient 2), and less likely (Patient 3) to respond, respectively, to the actual antidepressant class prescribed.
Results are shown for the representative model (feed-forward DNN). b “Force plots”47 illustrating local predictor importance (by SHAP score)
for each of the treatment scenarios for Patient 1 from a. The patient was a 49-year-old male with co-morbid alcohol used disorder, depressed
mood/anhedonia, anxiety symptoms, fatigue/loss of energy, and 8 co-occurring medications prescribed in the past 3 months, who was started
on an SSRI. The directions and strengths of each predictor are shown in directed bars in either blue or red. Only predictors with strengths
greater than a threshold level are captioned. The bars denote predictors that decrease (blue) or increase (red) the likelihood of response from
base value (i.e., sample mean response probability). Longer bars indicate stronger contributions to predicted response.
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the values of the predictors. Thus, for example, the patient’s
response to an SSRI would be predicted to be higher had they not
have a diagnosis of alcohol use disorder.

DISCUSSION
In this study, we developed an AI-assisted machine learning
pipeline for antidepressant treatment response prediction using
large-scale, real world healthcare data. We systematically exam-
ined 14 machine learning models that differed in complexity. The
models generated from the pipeline performed generally well by
test set metrics, with AUROCs of at least 0.70 and AUPRCs of 0.68
or higher. As a representative example, a feed-forward DNN
achieved AUROC of 0.74, and PPV of 0.71 at a threshold that
maximized model accuracy. These results show that through
appropriate modeling, readily available clinical data (even without
formal psychiatric assessment) may provide a basis for the future
development of clinical decision support for antidepressant
treatment selection. Moreover, we demonstrated how the pipeline
could be applied in a clinical context by modeling outcomes for
the same patient under each alternative antidepressant treatment
scenarios. Using SHAP, we also illustrate the model’s interpret-
ability by displaying the relative importance of predictors to the
overall model and to an individual patient’s response to
alternative prescription choices. No model was clearly superior
to all others based on the full range of performance metrics in the
current study. In practice, users might favor some models over
others based on other considerations including model interpret-
ability, computational complexity, extensibility (i.e., capability of
incorporating additional data modalities), flexibility, or
transportability.
A number of prior studies have explored the potential for

antidepressant response prediction using a variety of data sources,
though all have had limitations. A meta-analysis of 20 studies
using some type of machine learning algorithm found none based
on large-scale healthcare data and none with a sample size
approaching the current study31. In addition, in many cases,
model performance metrics were either missing or not fully
reported. Most studies of antidepressant prediction algorithms
have relied on a limited range of predictors, derived largely from
demographic variables and symptom scales or have been based
on biomarkers (neuroimaging, EEG, or genomics) that are not
widely available in clinical practice30.
In the feed-forward DNN model we used for illustration, the top

15 features by mean absolute SHAP scores (Fig. 2) include
indicators of illness burden as well as specific depression-related
symptoms. The top feature was the count of medication
prescriptions in the previous 90 days, a possible indicator of
psychiatric and medical comorbidity burden. The second-most
important feature, the three-year response likelihood score, is a
transformation of a patient’s medical history over the prior three
years as captured in clinical notes. Several other high-ranking
features reflect a range of core depressive symptoms (depressive
mood, anhedonia, loss of energy, suicidal tendencies, insomnia) or
commonly comorbid conditions that complicate treatment of
depression (substance use disorder, anxiety disorder). Patient-
specific profiles of these features are commonly considered by
clinicians in selecting among classes of antidepressants; as such,
they provide some reassurance that influential features selected
by the model are consistent with patient factors presumed to be
clinically-relevant.
Our study has a number of strengths. First, we performed a

systematic examination of models of varying complexity, evaluat-
ing the impact of AI-imputed labels and alternative strategies for
feature engineering. We demonstrated that AI-assisted label
imputation provides a highly scalable alternative to manual chart
curation that can otherwise be rate-limiting for model develop-
ment. Second, we empirically tested the effect on prediction

performance of including novel features, including AI-generated
vectorized notes and a “treatment response likelihood score”
derived from clinical notes. Our motivation for developing these
features was the expectation that efficiently incorporating
extensive information from longitudinal narrative notes could be
helpful. However, in the current study, neither the addition of the
3-year treatment response likelihood score, nor directly using
3-year vectorized notes as features substantially enhanced
performance (although the feed-forward DNN models using the
response score did show numerical improvement in AUROC).
Third, we controlled for confounding by indication by explicitly
incorporating potential treatment selection features that might
affect treatment response into feature engineering. This allowed
us to address the clinically-relevant question for treatment
selection: to which major antidepressant classes is a given patient
most likely to have a therapeutic response? Finally, the ability to
identify which features are most important for predicted response
enhances interpretability and gives clinicians insight into indivi-
dual patient characteristics that are informing the model output.
Our results should also be interpreted in light of several

limitations. First, models were trained on labels derived from
clinician-documented information on patients’ antidepressant
response and augmented with AI-imputed labels. As in any
model, misclassification of outcomes used for labeling can impair
model accuracy. In addition, EHRs inevitably have missing data,
(e.g., patients may receive some of their care outside of the
healthcare system), and the model does not explicitly account for
effects of concurrent psychotherapy; such missing data may have
reduced the predictive performance of the models. Also, while the
inclusion of 20 years of EHR can be strength, secular trends in
clinician prescribing or documentation practices over this span
may have adverse affected model performance. Moreover, as with
in any observational setting, there may be residual confounding.
However, our approach should minimize confounding by control-
ling for a broad range of predictors that might influence both
antidepressant selection and treatment outcome.
Of note, we applied two data requirements that may impact the

generalizability of the model. First, we required at least one clinical
note within the 4–12 week period after initiating an antidepres-
sant, which may limit the model’s performance for patients not
seen within that window. In training the model, a substantial
proportion (70%) of patients started on an antidepressants lacked
a clinical note within the following 4–12 weeks. This window was
chosen in part because treatment guidelines suggest that
4–8 weeks are typically needed before concluding that an
antidepressant is not effective3. Beyond 12 weeks, patients may
have been more likely to have additional interventions (e.g.,
antidepressant augmentation or switching) that could complicate
outcome assessment. In addition, long prediction windows (e.g.
many months) would be less suited to our goal of enhancing
expeditious selection of effective treatments. Second, we included
only patients with at least one note within 90 days prior to
initiating an antidepressant. This was done to minimize confound-
ing by indication as recent symptom severity is associated with
clinician antidepressant choice48 and also likely to be an important
predictor of the outcome (i.e., antidepressant response). To
address this, we used recent clinical status (derived by NLP of
clinical notes) proximal to the treatment decision to adjust for
propensity to select a given treatment. While the 90-day cut-off for
“recent” was of necessity arbitrary, we chose it to balance the goal
of assessing symptoms proximal to treatment initiation while not
overly restricting the window for including such information.
In sum, we present a novel computational pipeline, based on

real-world EHR data, for predicting differential response to the
most commonly used classes of antidepressants. The resulting
models achieved good accuracy, discrimination, and positive
predictive value. The models’ ability to predict and compare
responses across antidepressant classes could prove valuable for
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further efforts aiming to provide clinical decision support for
prescribers. The approach we demonstrate here could also be
adapted to a wide variety of other clinical applications for
optimizing and individualizing treatment selection.

METHODS
Institutional review board approval
All procedures were approved by the Institutional Review Board of
Mass General Brigham (MGB) Healthcare System (Boston, Massa-
chusetts, USA, Protocol 2018P000765), with a waiver of consent for
the analysis of electronic health record data.

Data source
The data for the study were extracted from the Research Patient
Data Registry (RPDR)49 of the MGB Healthcare System. The RPDR
is a centralized clinical data registry that gathers clinical
information from the MGB system. The RPDR database includes
more than 7 million patients with over 3 billion records seen
across seven hospitals, including two major teaching hospitals:
Massachusetts General Hospital and Brigham and Women’s
Hospital. Clinical data recorded in the RPDR includes detailed
patient information, encounter meta-data (e.g., time, location,
provider, etc.), demographics, diagnoses, laboratory tests, medica-
tions, providers, procedures, radiology tests, reasons for visits, and
narrative clinical notes49.

Study population
EHR data spanning January 1990 to August 2018 were obtained
for adult patients (age ≥ 18 years) with at least one visit with a
diagnostic ICD code for a depressive disorder (defined as ICD-9-
CM: 296.20–6, 296.30–6, and 311; ICD-10-CM: F32.0–9, F33.0–9) co-
occurring with an antidepressant prescription, and at least one ICD
code for non-recurrent depression (ICD-9-CM: 296.20–6 and 311;
ICD-10-CM: F32.0–9) any time during their history. The first visit
with an antidepressant prescription is defined as the “index visit”
for each patient. Patients were excluded if: (1) the antidepressant
prescription was initiated by a psychiatrist, as we focused on
patients initiated by non-psychiatrists in this study; (2) initiated
antidepressants not among the four classes of interest, or initiated
more than one antidepressant; (3) no clinical notes or visit details
were available in the 90 days prior to the index visit date or within
4–12 weeks after the index visit date; (4) first prescription occurred
before 1997, the year during which use of the latest antidepres-
sant category (mirtazapine) began; or (5) the patient had a
diagnosis of bipolar disorder, schizophrenia, or schizoaffective
disorder at or prior to the index visit as antidepressant treatment
is less likely to be initiated by non-psychiatrists and depression in
the context of bipolar or psychotic disorders might introduce
heterogeneity in treatment response. We utilized data from all
patients available that met the above inclusion/exclusion criteria
in our EHR database. Details of the stepwise sample selection
procedure are shown in Fig. 1.

Constructing the outcome labels
For each patient, notes within the outcome window (4–12 weeks
after the index visit) were concatenated as a “note set.” One of the
authors (YHS), a psychiatrist, randomly sampled 3600 note sets
and manually labeled them into two categories. One category was
evidence of improvement, based on the presence of notes within
the time window indicating that the patient’s mood was
improving, such as “depression is well controlled” or “mood-wise,
the patient felt a lot better.” The second category was no evidence
of improvement, based on either notes stating the patient’s mood
is not improving or is worsening, no documentation of mood
status, or evidence that mood status could not be addressed due

to medical status (e.g., consciousness change). In note sets where
mood status was discussed more than once, the most recent
status was taken for labeling. These labels were then incorporated
in a deep learning-based text classification model trained on the
full set of clinical notes to impute labels for the remaining patients
(N= 13,956) as described previously50,51. In brief, we trained a
deep learning model to “emulate”manual chart review and used it
to impute labels for notes that were not manually reviewed. The
model is a modified version of one described in Sheu and
colleagues51 and the accuracy of the model is 79% (based on a
test set where 45% of the samples are positive).

Constructing the predictors
Since there is substantial uncertainty about which factors predict
response to antidepressants, we constructed a broad set of
possible predictors based on prior literature of antidepressant
treatment1,52,53 as well as interviews with clinicians to identify
demographic and clinical factors thought to influence treatment
selection. The predictor set was designed to capture factors that
might be correlated with “confounding by indication” so that we
could control for such confounding in the analyses. The final
predictor set include three components: (1) “Structured predictors
(Supplementary Table 3),” which included demographics, history
of diagnoses preceding the index visit (as binary indicators) as well
as counts of concurrent medication prescriptions, NSAID prescrip-
tions, and depressive symptoms mentioned in clinic notes at the
index visit and up to 90 days prior. Because depressive symptoms
are not readily captured in structured EHR data, these were
extracted from clinical notes through application of a set of NLP
rules, as previously described48. Briefly, these features were
extracted and constructed using a hierarchical approach consist-
ing of the following four levels (from highest to lowest): 1.
categories of depression-related symptoms (e.g., “depression and
anhedonia”); 2. concepts within these categories; 3. specific terms
used to describe these concepts; and 4. lexical derivatives and
regular expressions (i.e., strings in the form the computer program
reads) of the specific terms. Terms extraction (with the handling of
negation) was performed with matching regular expressions on
the clinical notes for each patient, which were then organized
following the hierarchy defined above. The final features built that
were included in the predictors were the number of concepts
present per category. We also included the antidepressant class
initiated at the index visit (as one-hot encoding variables
contrasting SNRI, bupropion or mirtazapine vs. SSRI as the
reference class). The selection and processing for the structured
predictors is described in more detail in Sheu et al. 2022;48 (2)
“Treatment response likelihood score,” a decimal number between
0-1 representing a preliminary evaluation of response probability
by a DNN model, constructed by processing the three-year note
sets (i.e., clinical notes in a three-year window prior to the index
visit) through a DNN model (“Longformer”)50, which was trained
on the manually-curated outcome labels (in the training set, as
described below). The score was then used as a feature in each of
the models we tested (with the exception of the Transformer+
feed-forward DNN model); and (3) “Vectorized clinical notes,”
instead of a single score, a numerical vector representing the
same set of clinical notes as mentioned in (2).
Among 3600 patients with expert-curated labels, we randomly

sampled 300 as a hold-out validation set for model tuning, and
600 as a hold-out test set. All performance results are reported
based on the hold-out test set.

Models for treatment response prediction
We compared five model architectures for prediction (Fig. 4a): (1)
regularized generalized linear model (GLM); (2) random forest;54

(3) gradient boosting machine (GBM);55 (4) feed-forward DNN
(with 4 hidden layers); and (5) Transformer56+ feed-forward DNN
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Fig. 4 Diagrams for prediction modeling designs. a Schematic diagram for modeling antidepressant treatment response (improved vs no
evidence for improvement). Model inputs comprised structured and unstructured EHR data regarding demographics and clinical history,
choice of antidepressant class, and response outcome labels. Labels were based on chart review by a psychiatrist, plus in some cases by deep
learning imputed labels as described in the text. Prediction model outputs modeled probabilities of treatment response, which can be further
binarized to a modeled improvement (yes/no) label. Hexagonal boxes indicate data components that were experimentally evaluated for their
effect on prediction performance. Yellow boxes indicate data that are used as inputs for every model. Light green and cyan boxes are inputs
used only with prediction models shown in matching colors. b Schematic diagram for the Transformer+ feed-forward DNN model. The model
first takes in the vectorized clinical notes through the Transformer, transforms them into a fixed-sized vector, which is concatenated with the
other features and then passed through additional feed-forward layers.

Y.-h. Sheu et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)    73 



(Fig. 3b). The main difference between models (4) and (5) is that in
model (5), we applied an additional “Transformer” component that
takes in the structured predictors plus the vectorized notes as
inputs (Fig. 4b). For models (1)–(4), we examined performance
with and without the 3-year treatment response likelihood score.
For all models, we also evaluated whether or not the imputed
labels enhanced model performance. All models were trained on a
fixed training set, and hyperparameters were tuned to maximize
AUROC on the hold-out validation set. For the GLM, we tuned the
amount of regularization (lambda), and set alpha at 0.5 (i.e., an
elastic net57 with both L1 and L2 regularization). For the GBM and
random forest models, we tuned on the complexity of the base
learners (tree depth) and the total number of trees grown. For
deep learning models (model classes (4) and (5)), we tuned on
learning rate, dropout probability, and a weight factor that
discounts the contribution of patients with imputed labels, based
on the confidence of the imputation. We developed the non-deep
learning models with R’s h2o package58, and the deep learning
models with Python, PyTorch59, PyTorch-lightning60, Huggingface
Transformers61, and SimpleTransformers62. More details regarding
model architectures and training processes are provided in
Supplementary Methods.

Assessment of model performance: discrimination and
calibration
For all models, we report AUROC, AUPRC, sensitivity, specificity,
PPV, NPV, F1 score and accuracy on the test set. Threshold-
dependent metrics are reported for the threshold that maximizes
accuracy. Although all models performed similarly as shown in
Results, we selected a feed-forward DNN as a “representative
model” for discussion based on overall consideration of model
performance, complexity, flexibility, extensibility, and data repre-
sentativeness. For this model, we also calculated Brier score, and
produced the corresponding calibration plot. To determine if the
estimates the model provides are meaningfully different to the
current practice, the PPV of the representative model is compared
to the base prevalence of response in the test set by a two-tailed
Z-test for two proportions and the corresponding confidence
interval for the difference in proportions. The base prevalence of
response represents the prior probability of response based on
clinician judgement.

Prediction of relative treatment response probability for
different antidepressant classes
For any given models tested, four probabilities (one correspond-
ing to each antidepressant class) can be derived for each patient.
To illustrate the differential probabilities of antidepressant
responses the resulting models can provide at the time when
an antidepressant is initiated, we (post-hoc) split the test set by
predicted probability of response to a given antidepressant class
into high (>70%), medium (40–70%), and low (<40%) using the
representative model, based on the actual antidepressant class
prescribed. We then sample one patient from each stratum and
report the estimated probability of improvement had the patients
been treated with each of the other three classes of antidepres-
sants. In this way, we are able to (1) assess whether a patient
would response to first-line antidepressants in general; and (2)
compare predicted responses to each of the four antidepressant
classes for a given patient.

Global and local predictor importance
For the representative model, we identify which predictors are
most important to the overall prediction model (using global
SHAP, i.e., mean of absolute local SHAP values)46. We also calculate
mean SHAP values to assess the overall directionality of the effect
of each top feature. Lastly, we illustrate how the model can

identify the most important predictors for selecting among the
alternative antidepressant classes for a given patient (using the
local SHAP metric).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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