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Explainable artificial intelligence incorporated with domain
knowledge diagnosing early gastric neoplasms under white
light endoscopy
Zehua Dong1,2,3,6, Junxiao Wang1,2,3,6, Yanxia Li1,2,3,6, Yunchao Deng1,2,3, Wei Zhou1,2,3, Xiaoquan Zeng1,2,3, Dexin Gong1,2,3, Jun Liu1,2,3,
Jie Pan4, Renduo Shang1,2,3, Youming Xu1,2,3, Ming Xu1,2,3, Lihui Zhang1,2,3, Mengjiao Zhang5, Xiao Tao1,2,3, Yijie Zhu1,2,3,
Hongliu Du1,2,3, Zihua Lu1,2,3, Liwen Yao1,2,3, Lianlian Wu1,2,3✉ and Honggang Yu 1,2,3✉

White light endoscopy is the most pivotal tool for detecting early gastric neoplasms. Previous artificial intelligence (AI) systems were
primarily unexplainable, affecting their clinical credibility and acceptability. We aimed to develop an explainable AI named
ENDOANGEL-ED (explainable diagnosis) to solve this problem. A total of 4482 images and 296 videos with focal lesions from 3279
patients from eight hospitals were used for training, validating, and testing ENDOANGEL-ED. A traditional sole deep learning (DL)
model was trained using the same dataset. The performance of ENDOANGEL-ED and sole DL was evaluated on six levels: internal
and external images, internal and external videos, consecutive videos, and man–machine comparison with 77 endoscopists in
videos. Furthermore, a multi-reader, multi-case study was conducted to evaluate the ENDOANGEL-ED’s effectiveness. A scale was
used to compare the overall acceptance of endoscopists to traditional and explainable AI systems. The ENDOANGEL-ED showed
high performance in the image and video tests. In man–machine comparison, the accuracy of ENDOANGEL-ED was significantly
higher than that of all endoscopists in internal (81.10% vs. 70.61%, p < 0.001) and external videos (88.24% vs. 78.49%, p < 0.001).
With ENDOANGEL-ED’s assistance, the accuracy of endoscopists significantly improved (70.61% vs. 79.63%, p < 0.001). Compared
with the traditional AI, the explainable AI increased the endoscopists’ trust and acceptance (4.42 vs. 3.74, p < 0.001; 4.52 vs. 4.00,
p < 0.001). In conclusion, we developed a real-time explainable AI that showed high performance, higher clinical credibility, and
acceptance than traditional DL models and greatly improved the diagnostic ability of endoscopists.
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INTRODUCTION
Gastric cancer (GC) is the third cause of cancer-related mortality
globally1,2. The prognosis of GC is highly related to the stage when
diagnosed3,4. Early detection of GC is a cornerstone for effective
treatment and prevention of mortality. White light endoscopy
(WLE) is the first-line tool widely used to detect early gastric
cancer (EGC)5. However, endoscopists have significant skill
variations in detecting suspicious lesions, leading to a 20–40%
missed diagnosis rate of EGC, which greatly threatens patients’
lives6,7. Therefore, it is a principle and of great value to enhance
the diagnosis ability of EGC under WLE.
Deep learning (DL) has invoked tremendous progress in

medical image analysis in recent years8. Several works have been
conducted to achieve DL-based automatic diagnosis under WLE9.
For instance, Tang et al. constructed an artificial intelligence (AI)
system for EGC diagnosis under WLE, with a sensitivity of 85.9% in
still images10. Our group previously developed an AI system
(ENDOANGEL) to diagnose early gastric neoplasms under WLE
with a sensitivity of 91.8%11. However, previous studies were
mainly based on end-to-end DL algorithms, the diagnosis process
of which is opacity and unexplainable “black box”12, difficult to be
interpreted and understood by humans13, not to mention
man–machine interaction that may help humans learn from AI

or continuedly improve AI. This nature greatly affects the
credibility and acceptability of AI systems in clinical practice.
Conversely, an explainable AI may increase the trust and

acceptance of physicians and patients towards AI, reduce risks in
healthcare, and is regulatory compliance of healthcare provi-
ders14,15. To achieve AI explainability in the medical field, many
previous studies used a novel technique named LIME (Local
Interpretable Model-Agnostic Explanations)16,17. Generally, they
introduced understandable disturbance to the training data, for
instance, blocking features in parts of an image, observing if it
changes the answer of the AI, and finally determining the features
contributing to the AI diagnosis. Other studies applied the
Gradient-weighted Class Activation Mapping (Grad-CAM) techni-
que to show AI explainability in visual18,19. Briefly, a heat map
highlighting the most interested area of AI will be generated. It
will help humans understand what features are being used to
diagnose. However, the above methods were all post hoc
ratiocination without exploring AI explainability, focusing on the
model construction. In clinical applications, the internal decision-
making logic of AI is still opaque, and doctors still cannot fully
understand the diagnosis basis of AI. It is vital to construct an
explainable AI system with the ability of man–machine interaction
and a clear decision process.
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In the present study, we proposed a novel method for
developing AI systems based on feature-extraction and multi-
feature-fitting and developed a real-time explainable AI system
incorporated with domain knowledge named ENDOANGEL-ED
(explainable diagnosis) using this method. ENDOANGEL-ED aimed
to diagnose early gastric neoplasms (intraepithelial neoplasia, EGC,
adenoma) with high performance.

RESULTS
The retrospective datasets 1–5
Dataset 1, including 3612 images (1933 neoplastic images and
1679 non-neoplastic); dataset 2, including 433 images (115
neoplastic and 318 non-neoplastic); dataset 3, including 438
images (126 neoplastic and 312 non-neoplastic); dataset 4,
including 115 videos clips timed 10.19 s on average (IQR,
9.00–12.00) containing 127 lesions (55 neoplasms and 72 non-
neoplasms); dataset 5, including 85 videos clips timed 11.00 s on
average (IQR, 12.00–13.56) containing 85 lesions (34 neoplasms
and 51 non-neoplasms).

The performance of feature-extraction models and fitting
diagnosis models
The accuracy of feature-extraction models 1–6 for identifying
spontaneous bleeding, protrusion, depression, boundary, surface,
and tone reached 94.57%, 85.44%, 76.90%, 75.52%, 81.97%, and
81.31%, respectively, with semi-supervised algorithms performed
better than supervised algorithms (Supplementary Table 1 and
Supplementary Fig. 6–11). The other six-feature-extraction models
were based on quantitative analysis. Their results were descriptive
values, as shown in Supplementary Fig. 3.
The features extracted by the feature-extraction models were

fed to seven ML-based fitting diagnosis models. The results
showed that RF performed the best and was selected for
constructing ENDOANGEL-ED. (Fig. 1A). The features selected by
RF were surface, protrusion, tone, image entropy pf S-channel in
HSI color space, Location, and Texture information, with a weight
of 0.393, 0.190, 0.184, 0.092, 0.078, 0.063, respectively, which show
the contributions of each feature on the final diagnosis. (Fig. 1B)

The performance of ENDOANGEL-ED and sole DL in internal
and external images
The best sole DL model was trained on different methods, and the
best one was used to compare with ENDOENGEL-ED. (Fig. 1A) In
the internal image test, the accuracy and specificity of
ENDOANGEL-ED were better than that of the sole DL model
(86.61% vs. 80.37%, p < 0.01; 87.11% vs. 76.73%, p < 0.001;
McNemar test). In the external image test, the accuracy, specificity,
and negative predictive value (NPV) of ENDOANGEL-ED were not
significantly higher than the sole DL model (Table 1).

The performance of ENDOANGEL-ED and sole DL in internal
and external videos
In 127 internal videos, the specificity of ENDOANGEL-ED was
significantly higher than that of the sole DL model (77.78% vs.
58.33%, p < 0.05; McNemar test). In 85 external videos, the
accuracy, sensitivity, specificity, positive predictive value (PPV),
and NPV of ENDOANGEL-ED were not significantly higher than the
sole DL. The test result is presented in Table 1 (Fig. 2A, B).

The performance of ENDOANGEL-ED and sole DL in
consecutive videos
A total of 1441 patients who underwent EGD were consecutively
enrolled. One thousand two hundred fifty-three patients who met
the exclusion criteria were excluded. After lesion eligibility

assessment, 84 lesions (17 neoplastic, 67 non-neoplastic) with
pathology results from 82 patients were included in the analysis
(Supplementary Fig. 12). All videos were edited into clips of 11.49 s
per lesion (IQR, 10.00–14.00). The characteristics of patients and
lesions are presented in Table 2. ENDOANGEL-ED’s accuracy,
sensitivity, specificity, PPV, and NPV were not significantly higher
than the sole DL model.

Man–machine comparison
In the 127 internal videos, ENDOANGEL-ED showed significantly
higher accuracy (81.10% vs. 70.61%, p < 0.001; Mann–Whitney U
test), sensitivity (85.45% vs. 75.95%, p < 0.001; Mann–Whitney U
test), specificity (77.78% vs. 66.44%, p < 0.001), PPV (74.60% vs.
65.29%, p < 0.001; Mann–Whitney U test), and NPV (87.50% vs.
78.20%, p < 0.001; Mann–Whitney U test) compared with all the 31
endoscopists. The accuracy, specificity, and PPV of ENDOANGEL-
ED were comparable to that of the experts. The inter-rater
agreement among endoscopists was 0.312 (fair agreement).
In 85 external videos, ENDOANGEL-ED had a significantly better

performance in accuracy (88.24% vs. 78.77%, p < 0.001;
Mann–Whitney U test), sensitivity (97.06% vs. 85.58%, p < 0.001;
Mann–Whitney U test), specificity (82.35% vs. 74.23%, p < 0.05;
Mann–Whitney U test), PPV (78.57% vs. 70.96%, p < 0.01;
Mann–Whitney U test), and NPV (97.67% vs. 88.95%, p < 0.001;
Mann–Whitney U test) compared with 21 novices. Compared to
the 11 experts, the system was significantly better on sensitivity
(97.06% vs. 88.24%, p < 0.001; Mann–Whitney U test) and NPV
(97.67% vs. 90.12%, p < 0.001; Mann–Whitney U test). The inter-
rater agreement between endoscopists was 0.504 (moderate
agreement). The comparison results of internal and external
videos are presented in Tables 1 and 3 (Fig. 2A, B).

MRMC study
With the assistance of ENDOANGEL-ED, the endoscopists’ accuracy
(79.63% vs. 70.61%, p < 0.001; Mann–Whitney U test), sensitivity
(82.11% vs. 75.95%, p < 0.01; Mann–Whitney U test), specificity
(77.73% vs. 66.44%, p < 0.01; Mann–Whitney U test), PPV (75.50%
vs. 65.29%, p < 0.001; Mann–Whitney U test), and NPV (85.56% vs.
78.20%, p < 0.001; Mann–Whitney U test) were significantly
improved. Notably, the accuracy of novices was significantly
lower than that of experts without ENDOANGEL-ED’s assistance
(67.15% vs. 80.58%, p < 0.01; Mann–Whitney U test), while
comparable to the experts after assistance (78.14% vs. 80.58%,
p= 0.935; Mann–Whitney U test) (Table 3). The inter-rater
agreement between endoscopists after AI assistance was 0.594
(moderate agreement). The diagnostic time with AI assistance was
mildly shorter (52.28 vs. 58.68 min, p= 0.281; Mann–Whitney U
test).

Scale analysis
Thirty-one endoscopists completed the scale. The results showed
that the explainable AI would increase the patient’s trust in the
endoscopists, the endoscopists’ trust and acceptance of AI
systems (4.35 vs. 3.90, p= 0.01; 4.42 vs. 3.74, p < 0.001; 4.52 vs.
4.00, p < 0.001; Mann–Whitney U test), compared with the
traditional AI. Furthermore, the explainable AI would make
endoscopists more interested and focus more on lesion observa-
tion and diagnosis (4.74 vs. 4.03, p < 0.001; 4.52 vs. 3.77, p < 0.001;
Mann–Whitney U test), enhance the endoscopists’ confidence,
and remind the endoscopists to think more comprehensively than
traditional AI (4.71 vs. 4.06, p < 0.001; 4.71 vs. 4.00, p < 0.001;
Mann–Whitney U test).
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DISCUSSION
In this study, we developed a real-time explainable AI system
named ENDOANGEL-ED incorporated with domain knowledge
using feature-extraction and multi-feature-fitting methods. The
ENDOANGEL-ED showed satisfactory results in diagnosing early
gastric neoplasms in both image and video tests and performed
better than the endoscopists. Furthermore, the system improved
the diagnostic performance of endoscopists and was more
acceptable and trusted than traditional AI.
In this study, based on thorough literature research and expert

experience, we selected and extracted 13 features that were
previously reported to be useful for diagnosis. By multi-feature-

fitting using ML models, the RF model showed the best
performance and included six features in diagnosis. The impor-
tance of these features was represented by weights (Fig. 1B). The
top three important features were surface (rough or smooth),
protrusion or not, and tone. These indicated that the abstract
features proposed by previous studies could be subjectively
analyzed and effectively integrated and obtain good diagnosis
ability. This could provide new evidence for diagnosing neoplasm
under WLE.
AI has been widely used in medical image analysis20. Generally,

traditional DL only outputs a diagnosis conclusion without
interpreting the decision process and diagnosis basis, which

Fig. 1 The schematic diagram of all feature indexes and the framework of developing ENDOANGEL-ED. A Thirteen features, including
seven deep learning-based features and six quantitative features. B The framework of developing ENDOANGEL-ED. HIS (Hue, Saturation,
Intensity).
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significantly impairs human trust and acceptance and causes
severe social and ethical issues21,22. The USA and China’s official
departments required AI systems to be open, explainable, and
fair23,24. However, few studies in the medical field meet the
requirements. Many studies used LIME and Grad-CAM techniques
to show AI explainability logically and visually16–19. Nonetheless,
they were both post hoc methods without exploring AI
explainability during the model-constructing process.
Considering the importance of improving the explainability of

the AI system, we tried to construct the ENDOANGEL-ED using
novel methods in this study. However, diagnostic performance is
the prerequisite for an AI model. Though an AI system has good
explainability, it will be nonsense if the diagnostic performance is
very poor. Theoretically, the DL models had powerful capabilities
of feature-representation. However, they were questioned for their
black-box nature and unexplainability12,25,26. Traditional ML
models were not superior to DL models in feature-extraction
and image analysis; nonetheless, their algorithm structures are
visible and interpretable.
The primary purpose of this study is to construct high-

performance explainable AI using novel methods. We believe
that only with diagnostic performance not inferior to the
traditional model, the advantage of the explainability nature of
the AI could be discussed. Based on this, we proposed a novel
method combining the strength of DL and ML models by feature-
extraction (using DL models and quantitative analysis) and multi-
feature-fitting (using ML models), and constructed an explainable
AI system to diagnose early gastric neoplasms. The system gives
not only prediction results but also the diagnostic basis to the
operating endoscopists, greatly enhancing its transparency.
Compared to traditional sole DL, explainable AI systems increased
the patient’s trust in the endoscopists, the endoscopists’ trust, and
the acceptance of AI systems. In addition, the explainable AI
would make endoscopists more interested, focus more on lesion
observation and diagnosis, and remind endoscopists to think
more comprehensively than traditional AI. These indicated that

the explainable AI might also have the potential to be useful in
other scenarios, such as training programs.
Our method was similar to the learning process of humans. For

diseases with obvious characteristics, humans could make a
diagnosis by learning limited data. Generally, humans diagnose by
learning typical pictures and summarizing their characteristics.
Therefore, limited data on specific diseases may be of full use in
the feature-fitting diagnosis process. We proved that explainable
AI developed using this novel method showed high performance,
though not significantly higher than the sole DL model
constructed using the same training dataset. Therefore, our
method may theoretically solve the long-standing problem of
difficulty in collecting AI medical datasets and greatly promote the
development and application of AI medical care.
This study has several limitations. First, only features related to

the image were included in the analysis; clinical characteristics of
the patients were not included. Adding clinic-related features in
the algorithm may potentially further enhance the model. Further
studies are needed to explore the performance of AI by combining
the image and clinical feature indexes. Second, although the
performance of the ENDOANGEL-ED was fully tested in internal,
external, and consecutive videos and MRMC study, a real-time
assessment of the model in clinical patients will further confirm its
reliability and clinical validity and should be further conducted.
In conclusion, this study developed a real-time explainable AI

system named ENDOANGEL-ED, incorporating domain knowledge,
using feature-extraction and multi-feature-fitting methods. The
system showed higher clinical credibility and acceptance than sole
DL and greatly improved the diagnostic ability of endoscopists. The
system can potentially improve the clinical safety and efficacy of AI
systems in a real clinic.

METHODS
Datasets
Five datasets were used for training, validation, and retrospective
testing: (1) dataset 1, training and validation set; (2) dataset 2,

Table 1. The performance of ENDOANGEL-ED, sole DL model, and endoscopists in image and video tests.

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Internal image test

ENDOANGEL-ED 86.61% (83.08–89.50%) 85.22% (77.60–90.56%) 87.11% (82.98–90.35%) 70.50% (62.45–77.45%) 94.22% (90.94–96.36%)

Sole DL model 80.37% (76.37–83.84%)** 90.43% (83.68–94.57%) 76.73% (71.78–81.04%)*** 58.43% (51.09–65.42%) 95.69% (92.45–97.58%)

External image test

ENDOANGEL-ED 77.17% (73.01–80.85%) 87.30% (80.36–92.03%) 73.08% (67.90–77.70%) 55.84% (48.86–62.60%) 93.44% (89.61–95.92%)

Sole DL model 74.89% (70.62–78.72%) 92.86% (86.99–96.20%) 67.63% (62.25–72.58%) 57.64% (50.76–64.23%) 96.17% (92.88–97.97%)

Internal video test

ENDOANGEL-ED 81.10% (73.42–86.96%) 85.45% (73.83–92.44%) 77.78% (66.91–85.83%) 74.60% (62.66–83.72%) 87.50% (77.23–93.53%)

Sole DL model 71.65% (63.27–78.76%) 89.09% (78.17–94.90%) 58.33% (46.80–69.01%)* 62.03% (51.01–71.94%) 87.50% (75.30–94.14%)

External video test

ENDOANGEL-ED 88.24% (79.69–93.49%) 97.06% (85.09–99.48%) 82.35% (69.74–90.43%) 78.57% (64.06–88.29%) 97.67% (87.93–99.59%)

Sole DL model 84.71% (75.58–90.84%) 94.12% (80.91–98.37%) 78.43% (65.37–87.51%) 74.42% (59.76–85.07%) 95.24% (84.21–98.69%)

All endoscopists (n= 46) 78.49 % (76.03–80.95%)***^^^ 86.45% (84.22–88.67%)***^^^ 73.19% (68.34–78.03%)**^ 70.95% (67.20–74.70%)***^^ 89.45% (88.18–90.73%)***^^^

Novices (n= 21) 78.77% (75.65–81.89%)***^^ 85.58% (81.94–89.22%)***^^^ 74.23% (67.97–80.49%)*^ 70.96% (65.92–76.00%)**^ 88.95% (86.85–91.06%)***^^^

Seniors (n= 14) 79.24% (75.17–83.31%)*** 86.35% (81.90–90.79%)***^^ 74.51% (66.09–82.94%) 71.56% (64.79–78.33%) 89.67% (87.13–92.21%)***^^

Experts (n= 11) 77.01% (68.85–85.16%) 88.24% (83.91–92.57%)***^ 69.52% (54.15–84.90%) 70.16% (58.69–81.63%) 90.12% (87.62–92.63%)***^^

Consecutive video test

ENDOANGEL-ED 79.76% (69.96–86.96%) 88.24% (65.67–96.71%) 77.61% (66.29–85.93%) 50.00% (33.15–66.85%) 96.30% (87.47–98.98%)

Sole DL model 70.24% (59.75–78.96%) 82.35% (58.97–93.81%) 67.16% (55.25–77.21%) 38.89% (24.79–55.14%) 93.75% (83.16–97.85%)

The McNemar test was used to compare the accuracy, sensitivity, and specificity between the ENDOANGEL-ED and the sole DL model. The χ2 test was used to
compare the PPV and NPV between ENDOANGEL-ED and the sole DL model. Performance metrics between different levels of endoscopists and ENDOANGEL-
ED and the sole DL model were compared using the Mann–Whitney U test.
DL deep learning, CI confidence interval, PPV positive predictive value, NPV negative predictive value.
*Significant difference between the target group and ENDOANGEL-ED. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
^Significant difference between the target group and the sole DL. ^, p < 0.05; ^^, p < 0.01; ^^^, p < 0.001.
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internal image test set; (3) dataset 3, external image test set; (4)
dataset 4, internal video test set; (5) dataset 5, external video test
set. Datasets 1–4 were retrospectively collected from the Renmin
Hospital of Wuhan University (RWHU) from November 2016 to

November 2021. Dataset 3 was retrospectively collected from six
hospitals, including Central Hospital of Wuhan, People’s Hospital
of China Three Gorges University, Yichang Central People’s
Hospital, Jingmen Petrochemical Hospital, Xiaogan Central Hospi-
tal, and Wenzhou Central Hospital from January 2019 to
December 2019. Dataset 5 was retrospectively collected from
the Beijing Cancer Hospital from June 9, 2020, to November
17, 2020.
The inclusion criterion of lesions: (1) focal lesions (only one focal

lesion in the same sight of view). The exclusion criteria of lesions:
(1) multiple lesions (more than one focal lesion in the same sight
of view); (2) type I lesion, type III lesions, and ulcer; (3) the field of
view was too close or too far; and (4) submucosal lesions. Images
from the same lesion were not split between the training,
validation, and test sets. The eligible images and ineligible images
are shown in Supplementary Fig. 1. An expert endoscopist
selected the images and videos according to the inclusion criteria
of lesions. The internal and external videos were selected and
edited by a research assistant under the guidance of an expert.
The pathology results of the image and video test sets were
reviewed by experienced gastroenterologists with over 10 years of
experience in the pathological diagnosis of gastric abnormalities.

Establishment of features
We determined the features related to gastric neoplasms through
literature research. We searched by the keywords “white light
endoscopy” OR “white light imaging”, “diagnosis” OR “feature” OR
“characteristic”, “early gastric cancer” OR “gastric dysplasia” OR
“gastric intraepithelial neoplasia” in the PubMed database between
January 1, 2011, and December 31, 2021. A total of 164 pieces of
literature were assessed. Furthermore, 149 records were excluded
due to unrelated to gastric neoplasms diagnosis (n= 49), unrelated
to WLE (n= 97), and case reports (n= 3). One of the 15 records was
not retrieved because the full text was unavailable. Then, 14 records

Fig. 2 The system interface of ENDOANGEL-ED. The prediction of the six feature indexes and the diagnostic result were presented on the
left.

Table 2. Patient and lesion characteristics in consecutive videos.

Characteristics Consecutive video test (n= 82)

Age, years (SD) 56.70 (11.80)

Sex, n (%)

Male 50 (60.98)

Female 32 (39.02)

Recruitment, n (%)

Inpatient 19 (23.17)

Outpatient 63 (76.83)

Neoplasms, n

Gastric carcinoma 3

HGIN 7

LGIN 6

Tubular adenoma 1

Lymphoma 0

Non-neoplasms, n

IM 21

Atrophy (without IM) 1

Chronic inflammation 43

Benign polyp 2

Total lesions

HGIN high-grade intraepithelial neoplasia, LGIN low-grade intraepithelial
neoplasia, IM intestinal metaplasia.
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were assessed for eligibility; 8 were excluded due to unrelated to
gastric neoplasms diagnosis features.
In addition, six records were added via manual search. Finally,

12 pieces of literature were included. Based on the literature, two
expert endoscopists and two algorithmic engineers determined
the features related to diagnosis. Ultimately, 13 features were
selected for inclusion. The process of establishing features is
shown in Supplementary Fig. 2.

Construction of ENDOANGEL-ED
Thirteen features, including seven DL features and six quantitative
features, were determined by literature research and included to
construct the ENDOANGEL-ED.
Seven DL features were extracted using deep conventional

neural networks (DCNN 1-7). Feature-extraction models 1–6
were trained, validated, and tested using images in Dataset 1.
The images were not split among the training, validation, and
testing sets. DCNN 1–6 were binary or three-category classifica-
tion models aimed to determine the following six features,
respectively: (1) spontaneous bleeding: whether a lesion has
spontaneous bleeding; (2) protrusion: whether a lesion is
protuberant or not; (3) depression: whether a lesion is depressed
or not; (4) boundary: whether a lesion has a clear boundary; (5)
surface: whether the surface of a lesion is rough or smooth; and
(6) tone: whether the tone of a lesion is red, pale, or unaltered
(the same tone as the background mucosa). We compared the
performance of the supervised and semi-supervised algorithms
in constructing DCNN 1-6. Before an image was sent to DCNN
1–6, it was first processed by our previously constructed YOLO-
v3 model to localize the abnormities27. Briefly, YOLO-v3 was
trained for detecting gastric lesions using 21,000 gastric
images11 and could detect focal lesions with a sensitivity of
96.90%.
The seventh feature-extraction model was previously developed

using the ResNet-50 algorithm for classifying 26 anatomical
landmarks in esophagogastroduodenoscopy28,29. The location of
a lesion was further classified into three categories, the upper-
middle stomach, the lower stomach, and undistinguishable.
The quantitative features were extracted and analyzed based on

the localized area by YOLO-v3. These quantitative features
included:

1. The aspect ratio of the lesion area: the ratio of the width to
the height of the lesion in an image, describing the general
shape of a lesion.

2. The spectral principal component information of the color of
the lesion area: transform the image from red-green-blue
color space to P color space, and extract ten main color
features of the images in P color space. Then the average
pixels of each color feature in the three channels were
calculated, and the median of all average pixels is the
representative value of spectral principal component
information. It was used to quantify the color characteristics
of the lesion.

3. The image entropy of the S-channel in the HSI color space of
the lesion area: transform the image from RGB color space
to HSI color space and calculate the image entropy in the
S-channel. It was another feature used for describing the
color characteristics.

4. The texture information of the lesion area: the local binary
patterns method was used to analyze the statistical texture
features of an image. The change of texture information
reflects the changes in the gastric mucosa.

5. The histogram of oriented gradients of the lesion area: the
distribution (histograms) of directions of gradients (oriented
gradients) are used as features. The edges and corners pack
in a lot more information about object shape than flatTa
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regions. This index reflects information about the boundary
and shape of a lesion.

6. The color moments of the lesion area: a simple but efficient
color feature that reflects the general brightness, the
distribution region of the color, and the symmetry of the
color distribution.

When the seven DL-based features and six quantitative features
were extracted, they were combined and inputted into the fitting
diagnosis models using machine learning methods, including
random forest (RF), Gaussian Naive Bayes (GNB), k-Nearest
Neighbor (KNN), logistic regression (LR), decision tree (DT),
support vector machine (SVM), and gradient boosting decision
tree (GBDT). The best model was selected for constructing
ENDOANGEL-ED. The representative images of these features
and the schematic diagram of this study are shown in Fig. 3 and
Supplementary Fig. 3. The literal workflow of this study is
illustrated in Supplementary Fig. 4.

Construction of sole DL model for diagnosing gastric
neoplasms
The resnet-50 algorithm was used to construct a traditional sole
DL model to diagnose early gastric neoplasms under WL using the
same training set as ENDOANGEL-ED. We compared two image
preprocessing methods (the detection box of the YOLO-V3
maintain the original size or be enlarged to 1.2 sized to contain
more information about the mucosa around the lesion) and both
supervised and semi-supervised algorithms in developing the sole
DL model.

Internal image test, external image test, internal video test,
and external video test
The performance of the ENDOANGEL-ED and sole DL was tested in
datasets 2–5 based on images and videos.

Fig. 3 The performance of machine learning (ML) models and the weights of the included feature indexes. A The performance of the
seven ML models on the internal image test set. Random forest (RF) showed the best performance. B Six indexes were determined by the RF
model and the corresponding weights. RF, random forest, GNB, Gaussian Naive Bayes, KNN, k-Nearest Neighbor, LR, logistic regression, DT,
decision tree, SVM, support vector machine, GBDT, gradient boosting decision tree.

Fig. 4 Performance of ENDOANGEL-ED and endoscopists in the internal and external videos. A Internal videos. B External videos.
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Consecutive video test
The performance of ENDOANGEL-ED was tested in consecutive
videos of patients undertaking EGD examinations from the RWHU
between March 2022 and June 2022.
The inclusion criteria were: (1) age ≥18 years; (2) sedated

gastroscopy; and (3) can read, understand and sign informed
consent. The exclusion criteria were: (1) emergency bleeding; (2)
food residues; (3) history of gastrectomy or diagnosed as remnant
stomach; and (4) no lesions or no pathology results. For enrolled
patients, they were further selected according to the criteria for
the lesions described above. Then the raw videos of the eligible
lesions were collected. All the videos were edited into video clips
containing target lesions. The ENDOANGEL-ED is activated when
the image frame freeze. The prediction of the ultimately included
features and the diagnosis by the ENDOANGEL-ED was presented
on the screen (Fig. 4 and Video 1).

Man–machine comparison
The man–machine comparison was conducted in the internal and
external videos. Thirty-one endoscopists from the RWHU and 46
endoscopists from 44 other hospitals participated in the
comparison in the internal and external videos, respectively. They
independently reviewed all the video clips and answered
“neoplastic” or “non-neoplastic.” The external man–machine
comparison was re-analyzed from the trial we previously
published30. The experience levels of the endoscopists were
determined as novices [1–5 years of EGD (esophagogastroduode-
noscopy) experience], seniors (6–10 years of EGD experience), and
experts (>10 years of EGD experience). The performance of
endoscopists was compared with ENDOANGEL-ED and sole DL.

MRMC study
Thirty-one endoscopists and 127 video clips in the internal video
test were involved in the MRMC study. Using a crossover design,
we randomly and equally divided the endoscopists into group A
(first read videos without ENDOANGEL-ED augmentation) and
group B (first read videos with ENDOANGEL-ED augmentation).
After a washout period of 2 weeks, the arrangement was reversed.
The endoscopists had their own options to consider the
augmentation or disregard it based on their judgment. The
overall time of each endoscopist for reading these cases was
recorded. The study design is shown in Supplementary Fig. 5.

Acceptance analysis using a specific scale for the AI system
We modified and used a five-point Likert-type acceptance scale
for the implementation of AI in gastrointestinal endoscopy
published by Tian et al.31 The scale consisted of nine items for
evaluating and comparing the trust, acceptance, confidence, etc.,
of endoscopists on the explainable AI system and the traditional
sole DL system. Thirty-one endoscopists were invited to the scale
evaluation. The scale form is attached in the Supplementary.

Ethics
The Ethics Committee of RHWU approved this study. The
institutional review boards exempted the informed consent for
the retrospectively collected data. All the prospectively enrolled
patients had signed the informed consent. The study was registered
as ChiCTR2100045963 in the Chinese Clinical Trial Registry.

Statistical analysis
As for the consecutive video test, the accuracy of ENDOANGEL-ED
was estimated at 80%. The sample size was calculated as 72 with
an alpha of 0.05 and a power of 0.80 using the Tests for One
Proportion procedure (PASS 2021).

The performance of ENDOANGEL-ED, sole DL model, and
endoscopists were evaluated by accuracy, sensitivity, specifi-
city, PPV, and NPV. The McNemar test was used to compare the
accuracy, sensitivity, and specificity. The χ2 test was used to
compare the PPV and NPV between ENDOANGEL-ED and the
sole DL model. The inter-rater agreement among the endosco-
pists was calculated using Fleiss’ Kappa. Performance metrics
between different levels of endoscopists and ENDOANGEL-ED
and the sole DL model were compared using the
Mann–Whitney U test. The comparison of the acceptance and
other items in the questionnaire was analyzed using Wilcoxon
signed-rank Test. P values <0.05 were considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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