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Predicting patient decompensation from continuous
physiologic monitoring in the emergency department
Sameer Sundrani 1, Julie Chen 2, Boyang Tom Jin 2, Zahra Shakeri Hossein Abad3, Pranav Rajpurkar 4 and David Kim 5✉

Anticipation of clinical decompensation is essential for effective emergency and critical care. In this study, we develop a multimodal
machine learning approach to predict the onset of new vital sign abnormalities (tachycardia, hypotension, hypoxia) in ED patients
with normal initial vital signs. Our method combines standard triage data (vital signs, demographics, chief complaint) with features
derived from a brief period of continuous physiologic monitoring, extracted via both conventional signal processing and
transformer-based deep learning on ECG and PPG waveforms. We study 19,847 adult ED visits, divided into training (75%),
validation (12.5%), and a chronologically sequential held-out test set (12.5%). The best-performing models use a combination of
engineered and transformer-derived features, predicting in a 90-minute window new tachycardia with AUROC of 0.836 (95% CI,
0.800-0.870), new hypotension with AUROC 0.802 (95% CI, 0.747–0.856), and new hypoxia with AUROC 0.713 (95% CI, 0.680-0.745),
in all cases significantly outperforming models using only standard triage data. Salient features include vital sign trends, PPG
perfusion index, and ECG waveforms. This approach could improve the triage of apparently stable patients and be applied
continuously for the prediction of near-term clinical deterioration.
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INTRODUCTION
Triaging emergency department (ED) patients to timely and
appropriate care is essential for clinical and operational outcomes.
Early warning scores at triage have shown moderate success in
predicting physiologic decompensation (deterioration of one or
more vital signs such as heart rate, oxygen saturation, or blood
pressure) and mortality1,2. Such scores include vital signs, assessed
once at presentation, and sometimes again at variable intervals3.
Patients with vital sign abnormalities are prioritized to a higher
level of care. Standardized approaches for risk-stratifying and
managing patients with conditions such as sepsis4, stroke5, cardiac
arrest6, or chronic obstructive pulmonary disease7 have been well
established8.
For patients presenting without initial physiologic abnormalities,

there is no standard framework for predicting subsequent
decompensation or care needs8–10, and unexpected clinical
decompensation can arise. Some studies have shown that up to
14.5% of ED patients experience clinical decompensation11, with
up to 12.9% experiencing unreported decompensation (i.e.,
development of abnormal vital signs without clinician notification),
particularly in overcrowded EDs and among elderly patients12.
ED patients are routinely connected to continuous physiologic

monitors, which measure vital signs continuously (heart rate,
respiratory rate, oxygen saturation) or intermittently (blood
pressure by sphygmomanometry), as well as high-resolution
electrocardiogram (ECG) and photoplethysmography (PPG) signals.
Such monitors offer detailed, real-time data for potential predictive
systems. Trends in vital signs and ECG/PPG waveforms may contain
information about risk of deterioration not captured by a single
waveform or set of vital signs13–16. Machine learning methods
applied to multimodal bedside monitor data might therefore be
used to improve predictions of clinical decompensation.

Previous work has applied machine learning to vital signs and
other patient features to predict clinical and operational outcomes
in the ED, such as COVID-related complications17, sepsis18, and
need for hospital or intensive care unit (ICU) admission9,19–21.
Recent research also suggests that features extracted from
physiologic waveforms such as arterial blood pressure, ECG and
PPG can assist in predicting vital signs22–25 and the development
of vital sign abnormalities such as tachycardia25,26, hypoten-
sion27–29, hypoxia30,31 or death32. Prior work has analyzed
physiologic waveforms to predict specific clinical events such as
atrial fibrillation within 45 minutes33, blood pressure response to
fluid administration within 3 hours34, hemodynamic decompensa-
tion in simulated hemorrhage patients35, and fluid shifts during
hemodialysis36. Most prior studies including physiologic wave-
forms are conducted in ICU, operating room, or laboratory
settings. To our knowledge, no prior study has combined
continuous numeric vital signs and physiologic waveforms to
predict decompensation in a general ED population, whose
underlying diagnoses and disease severity are often not
established, or are actively evolving, at the time of initial
presentation.
In this study, we predict the clinical decompensation of initially

stable ED patients using multi-modal physiologic data from the
first 15 min of monitoring. Specifically, we develop VitalML, a
multimodal machine learning framework that learns patient
physiology through both engineered features and deep
learning-derived ECG/PPG waveform embeddings, to predict
which patients will develop tachycardia, hypotension, or hypoxia
in the next 90min. We also predict critical values of a validated
composite measure for patient decompensation, the Modified
Early Warning Score (MEWS)37. We characterize the features most
relevant to each prediction and conclude with clinical implications
for patient triage and monitoring.
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RESULTS
Study overview
We developed VitalML, a multimodal machine learning framework
using data from physiologic monitors to identify initially stable
patients at risk for clinical decompensation (tachycardia, hypoxia,
or hypotension) within 90min of initial assessment (Fig. 1). Our
approach extracts features from continuous ECG and PPG
waveforms, using both conventional signal processing techniques
to extract features of known clinical relevance (heart rate
variability and pulse arrival time), as well as embeddings derived
from transformer-based deep learning models.
We assessed four classes of features in the prediction of clinical

deterioration: features observed at ED triage, features recorded
directly by bedside monitors during initial monitoring, features
engineered from ECG and PPG waveforms, and deep learning-
derived embedding representations of ECG and PPG waveforms.
Triage features included patient age, gender, Emergency Severity
Index (ESI) assigned at triage, vital signs at triage (HR, RR, SpO2,
MAP, SBP, DBP), and 46 indicator variables for categories of chief
complaint at triage. Directly monitored features included first vital
signs during the assessment period (HR, RR, SpO2, MAP, SBP, DBP),
and the coefficients of linear trends in these features during the
assessment period. Features engineered from ECG and PPG
waveforms included several measures of heart rate variability
(HRV) derived from beat-to-beat RR interval and from the ECG
waveform itself, and pulse arrival time (PAT) as measured from
concurrent ECG and PPG waveforms. Finally, we used transformers
to generate waveform embeddings from 60-second ECG and PPG
samples.

Visit characteristics
We studied 19,847 adult ED visits to monitored beds with normal
vital signs (HR ≤ 110bpm, SpO2 ≥ 90%, and MAP ≥ 65mmHg) at
triage and during the first 15 min of monitoring (the assessment
period). In the 90min following the assessment period, new
tachycardia (HR > 110bpm) developed in 6.11% (1213/19,847) of

visits, hypoxia (SpO2 < 90%) in 11.20% (2222/19,847), and
hypotension (MAP < 65mmHg) in 2.33% (462/19,847). For each
outcome, patients experiencing vital sign abnormalities were
significantly more likely to be admitted to the hospital. Visit details
are described in Table 1.

Prediction of new tachycardia, hypotension, and hypoxia
The best-performing models, using both conventional triage
features (age, gender, triage vital signs, Emergency Severity Index
[ESI], and chief complaint [CC]), as well as features derived from a
15-minute period of continuous monitoring, predicted new
tachycardia with AUROC of 0.836 (95% CI, 0.800–0.870), new
hypotension with AUROC of 0.802 (95% CI, 0.747–0.856), and new
hypoxia with AUROC of 0.713 (95% CI, 0.680–0.745) in a held-out
test set of visits chronologically following those used in training
and validation (Fig. 2, Supplementary Tables 1-2). Each model
significantly outperformed the best models using only conven-
tional triage features, with absolute AUROC improvements of
+0.036 (95% CI, 0.003–0.070) for tachycardia, +0.073 (95% CI,
0.034–0.112) for hypotension, and +0.111 (95% CI, 0.074–0.147)
for the prediction of new hypoxia.

Effect of feature types on prediction performance
In the prediction of tachycardia, we observed significant
improvements over the baseline model with models including
vital sign trends from the first 15 min of monitoring, HRV
measures, PAT, and perfusion index. Prediction of hypotension
benefited from inclusion of vital sign trends over the assessment
period, as well as PAT, HRV, perfusion index, and deep learning-
derived waveform features. Predictions of new hypoxia were
improved with inclusion of vital sign trends over the assessment
period, PAT, HRV, and perfusion index (Fig. 2, Supplementary
Tables 1–2).

Fig. 1 Data sources and modeling approach. Patient demographics, chief complaint, and initial vital signs are collected upon ED arrival. After
rooming, and concurrent with other workup, the patient enters a 15-minute assessment period during which six numeric measures (HR, RR,
SpO2, MAP, Beat-to-Beat RR Interval, Perfusion Index) are recorded at 1-second resolution, and 60-second segments of lead-II ECG and PPG
waveforms are sampled. Triage data and vital sign trends are combined with physiologic measures derived from RR intervals and ECG/PPG
waveforms (heart rate variability, pulse arrival time), as well as deep learning-derived representations of ECG and PPG waveforms, in a model
that predicts whether a patient will develop tachycardia, hypotension, or hypoxia in the 90min following the initial assessment period.
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Prediction test characteristics
We calculated test characteristics (sensitivity, specificity, negative
predictive value [NPV], positive predictive value [PPV]) for the
best-performing and baseline models, selecting operating points
for 0.85 sensitivity in the validation set, and evaluating perfor-
mance in the held-out test set (Supplementary Tables 3-4). For
prediction of tachycardia, the additional features dramatically
improved model specificity, from 0.608 (95% CI, 0.588–0.627) in
the best triage model, to 0.740 (95% CI, 0.723–0.758) in the best
overall model. In predicting hypoxia, the best model likewise
exhibited a large improvement in specificity, from 0.239 (95% CI,
0.221–0.257) to 0.365 (95% CI, 0.344-0.385). For the comparatively
rarer outcome of hypotension, by contrast, the primary benefit of
additional features was to model sensitivity, which improved from
0.661 (95% CI, 0.543–0.778) to 0.742 (95% CI, 0.633–0.848).
Supplementary Table 3 presents detailed test characteristics at
additional model operating points.

Prediction performance for 60- and 120-min windows
We trained analogous models, and performed similar analyses, for
the prediction of decompensation in the 60- (Supplementary
Tables 5–7) and 120-minute (Supplementary Tables 8–10) periods
following initial assessment. In the 60-minute prediction window,
prediction of hypoxia was significantly improved in a full-featured
model using all variable types, with +0.085 (95% CI, 0.041-0.129)
improvement in AUROC over the triage model (Supplementary

Table 6). In the 120-minute prediction window, models using
additional monitoring features improved significantly over the
baseline for all three tasks, with AUROC improvements of +0.043
(95% CI, 0.015-0.072) for tachycardia, +0.060 (0.015-0.104) for
hypotension, and +0.079 (0.046–0.113) for hypoxia (Supplemen-
tary Table 9).

Prediction of elevated MEWS score
As an auxiliary outcome, we trained analogous models to predict
newly elevated values of the Modified Early Warning Score
(MEWS), a composite measure of physiologic abnormalities
previously validated for the prediction of decompensation and
adverse outcomes37. Our prediction cohort (patients presenting
without tachycardia, hypoxia, or hypotension upon triage and
initial rooming) had correspondingly low MEWS values on
presentation (median 1, IQR 1-1). We predicted whether these
patients would subsequently develop MEWS ≥ 4, a threshold
previously associated with increased care needs38. In the 90-
minute window, the best-performing model used vital sign trends
during the assessment period, PAT, and HRV to predict the
development of MEWS ≥ 4 with AUROC of 0.825 (95% CI,
0.794–0.856), a+ 0.053 (0.027–0.079) improvement over a base-
line model using triage features alone (Supplementary Table 11).
Supplementary Tables 11-12 show effects of feature combinations
on AUROC and AUPRC for the prediction of MEWS ≥ 4 in the 60-,
90-, and 120-minute windows following initial assessment.
Supplementary Table 13 shows the correspondence between

Table 1. Characteristics of visits for each prediction cohort.

Characteristic Tachycardia Hypoxia Hypotension

Decomp.
(n= 1213)

No Decomp.
(n= 18634)

p value
of diff.

Decomp.
(n= 2222)

No Decomp.
(n= 17625)

p value
of diff.

Decomp.
(n= 462)

No Decomp.
(n= 19385)

p value
of diff.

Age in years,
median [IQR]

53.0
[35.0–70.0]

61.0 [44.0–75.0] <0.001 65.0
[50.0–79.0]

60.0 [43.0–75.0] <0.001 64.0
[39.25–77.75]

61.0 [43.0–75.0] 0.405

Female, n (%) 628 (51.77) 9491 (50.95) 0.578 1135 (51.08) 8984 (50.99) 0.934 275 (59.52) 9844 (50.79) <0.001

Male, n (%) 585 (48.23) 9138 (49.05) 1087 (48.92) 8636 (49.01) 187 (40.48) 9536 (49.21)

Triage VS, median [IQR]

SpO2, % 99.0
[97.0–100.0]

99.0
[97.0–100.0]

0.090 98.0
[97.0–100.0]

99.0
[98.0–100.0]

<0.001 99.0
[97.0–100.0]

99.0
[97.0–100.0]

0.010

Resp. Rate 18.0
[16.0–20.0]

18.0 [16.0–19.0] <0.001 18.0
[16.0–20.0]

18.0 [16.0–19.0] <0.001 18.0
[16.0–20.0]

18.0 [16.0–19.0] 0.800

Heart Rate 97.0
[88.0–103.0]

81.0 [72.0–91.0] <0.001 83.0
[72.0–93.0]

82.0 [72.0–92.0] 0.052 81.0
[70.0–92.0]

82.0 [72.0–92.0] 0.180

Systolic BP 137.0
[122.0–152.0]

138.0
[123.0–153.0]

0.193 135.0
[120.0–151.0]

138.0
[123.0–153.0]

<0.001 116.5
[105.0–132.0]

138.0
[123.0–153.0]

<0.001

Diastolic BP 83.0
[73.0–93.0]

79.0 [69.0–89.0] <0.001 78.0
[68.0–89.0]

79.0 [69.0–89.0] 0.104 66.0
[58.0–79.75]

79.0 [69.0–89.0] <0.001

MAP 101.0
[91.0–111.3]

98.7
[88.3–109.0]

<0.001 97.7
[86.7–108.7]

99.0
[89.0–109.3]

<0.001 83.3
[75.0–96.3]

99.0
[89.0–109.3]

<0.001

ESI, n (%)

Level 1 16 (1.32) 143 (0.77) 0.037 21 (0.95) 138 (0.78) 0.419 17 (3.68) 142 (0.73) <0.001

Level 2 450 (37.1) 5481 (29.41) <0.001 729 (32.81) 5202 (29.51) 0.001 180 (38.96) 5751 (29.67) <0.001

Level 3 714 (58.86) 12617 (67.71) <0.001 1422 (64.0) 11909 (67.57) <0.001 258 (55.84) 13073 (67.44) <0.001

Level 4 23 (1.9) 287 (1.54) 0.333 34 (1.53) 276 (1.57) 0.898 5 (1.08) 305 (1.57) 0.400

Level 5 1 (0.08) 11 (0.06) 0.748 4 (0.18) 8 (0.05) 0.015 0 (0.0) 12 (0.06) 0.593

Visit duration,
hours [IQR]

6.00
[4.42–8.07]

5.65 [4.12–7.58] <0.001 6.18 [4.57–8.1] 5.6 [4.08–7.55] <0.001 5.88
[4.35–7.95]

5.67 [4.12–7.6] 0.029

Admitted, n (%) 595 (49.05) 7452 (39.99) <0.001 1085 (48.83) 6962 (39.50) <0.001 251 (54.33) 7796 (40.22) <0.001

ICU, n (%) 36 (2.97) 265 (1.42) <0.001 43 (1.94) 258 (1.46) 0.105 31 (6.71) 270 (1.39) <0.001

Decompensation refers to the development of a new vital sign abnormality in the 90min following initial assessment. Differences were evaluated with
Wilcoxon rank-sum tests for numeric variables, and chi-squared tests for categorical variables.
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predictions of specific abnormalities (tachycardia, hypotension,
hypoxia), and the maximum MEWS recorded in the 90-minute
prediction window.
Supplementary Figure 1 shows calibration plots for triage-only

baseline and best-performing models for each outcome (tachy-
cardia, hypotension, hypoxia, MEWS ≥ 4), in the 90-minute
prediction window, as well as the result of isotonic regression fit
on the validation set for the best-performing models. For
prediction of tachycardia, hypoxia, and MEWS ≥ 4, the best-
performing models exhibited better calibration than the triage-
only baseline models, which tended to overpredict decompensa-
tion for low-risk visits and underpredict decompensation for
higher-risk visits. In prediction of new hypotension, both baseline
and best-performing models underpredicted the outcome at all
risk levels. Isotonic regression, fit on the validation set, improved
model calibration, particularly for hypotension and hypoxia,
though hypotension remained under-predicted for some visits.

Interpreting model performance
Identifying features with high contributions to final prediction. We
used SHAP analysis to identify the most important features for
each prediction, for the baseline and best-performing models (Fig.
3, Supplementary Table 14). We calculated correlations between
SHAP scores and feature values to assess the direction of the
contribution, where a positive correlation indicates that greater
values of a feature contribute toward a positive prediction.
Baseline (triage) models were restricted to age, gender, chief
complaint, and vital signs at triage. For tachycardia, triage features
associated with a positive prediction included higher HR,
temperature, and diastolic blood pressure at triage, and younger
age. Prediction of hypotension was related to lower blood
pressure and temperature at triage, and younger age. Predictions
of hypoxia were associated with increased age, lower SpO2 and
systolic blood pressure, and higher RR at triage.
Given the similar performance of fully featured and best-

performing models for each outcome, and the variance in best-
performing models among the 60-, 90-, and 120-minute predic-
tion windows (Supplementary Tables 1, 6, 9), we applied SHAP
analysis to the fully featured models to assess the relative
importance of all features. In addition to triage features, unrest-
ricted models had access to a 15-minute assessment period of
continuous monitoring, PAT, HRV, perfusion index, and deep-
learning-derived waveform embeddings. These unrestricted mod-
els relied substantially on vital sign trends during the assessment
period (HR for tachycardia, blood pressure and RR for hypotension,
SpO2 and SBP for hypoxia), on deep-learning derived ECG and
PPG waveform embeddings (tachycardia and hypoxia prediction),
and on various measures of HRV and the perfusion index of the
PPG waveform (the ratio of pulsatile to non-pulsatile blood flow39)
for all three tasks (Fig. 3, Supplementary Table 14).

Characterizing patient populations with improved predictions in the
best-performing model. We characterized features of visits
classified correctly by the best-performing models and incorrectly
by the baseline triage models to determine which patient
populations benefit from more sophisticated predictive methods
(Fig. 4, Supplementary Table 15). For tachycardia, patients
correctly reclassified to a negative prediction had higher HR at
triage, were younger, had a higher diastolic blood pressure,
distinct ECG and PPG waveform embeddings, and different values
of one HRV metric (TINN). Patients correctly reclassified to a
positive prediction of tachycardia had distinct HRV characteristics
and PPG/ECG embeddings, as well as differences in monitored HR
and DBP during the assessment period. For hypotension, patients
correctly reclassified to negative by the best-performing model
had lower MAP and systolic BP at triage, lower RR and higher
diastolic BP on first monitoring, were younger, and had distinct
ECG waveform embeddings. Patients correctly reclassified to
positive hypotension had distinct ECG and PPG waveform
embeddings, and lower systolic BP on first monitoring. For
hypoxia, patients benefiting from improved predictions in the

Fig. 2 Effect of feature types on AUROC for prediction of decompensation. a AUROC point estimates with bootstrapped 95% CIs represent
prediction performance on the test set (see also Supplementary Tables 1-2). b AUROC differences from the baseline triage model with 95% CIs.
For each outcome, additional monitoring features produced more accurate predictions than the baseline triage model. “Triage” variables
include age, gender, triage vital signs, and chief complaint. “VS Trends” denotes first vital signs from continuous monitoring, and the linear
trend of each vital sign over a 15-minute assessment period. “PAT” denotes pulse arrival time, calculated from the ECG and PPG waveforms.
“HRV” is a suite of heart rate variability measures. “Perfusion” is the perfusion index. “Waveforms” indicates an 8-dimensional embedding
generated from a transformer model, with 4 features each from the PPG and ECG waveforms. The best-performing model for each outcome is
highlighted in light blue.
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best-performing model had extreme values of the perfusion index,
different HRV profiles, and distinct vital signs during the
assessment period, compared to non-reclassified visits.

DISCUSSION
We present VitalML, a multimodal machine-learning framework
that uses continuous physiologic monitoring to identify initially
stable ED patients who will subsequently develop tachycardia,
hypotension, or hypoxia. For each outcome, we find that models
incorporating features from a 15-minute period of passive
monitoring significantly outperform models restricted to conven-
tional triage features. For some outcomes and prediction
windows, engineered and learned waveform features improve
discrimination over vital sign trends alone. We propose that this
approach could be used to improve the triage of initially stable
patients at risk for decompensation, and could be applied
continuously for real-time estimates of near-term clinical
deterioration.
ED patients are unique in the extent to which their underlying

diagnoses and severity of illness are often unknown on initial
presentation. While several prior studies have applied machine
learning to the prediction of clinical events18,32,40–47, almost all
have focused on general hospital ward, ICU, or operating room
settings in which the patient has already undergone substantial
evaluation. The few studies involving ED patients have seldom
forecasted outcomes occurring within the ED visit itself48,49.
Though high-resolution physiologic monitors are ubiquitous in the
ED setting, few institutions retain the data they record. As the
costs of storing and processing such data continue to fall, we
anticipate that clinical prediction using real-time physiologic data
will become increasingly routine.
Tree ensemble models often outperform deep learning models

on structured data50, particularly on smaller datasets51. We
adopted a hybrid modeling approach, using a gradient-boosted
decision tree ensemble as our high-level modeling framework,
and incorporating both engineered waveform features and deep

learning-derived waveform embeddings as inputs to these
models.
Unsurprisingly, trends in vital signs during post-triage monitor-

ing are major predictors of subsequent abnormalities in the same
vital sign. In predicting tachycardia or hypotension in the 90-
minute window following assessment, most of the improvement
in prediction accuracy (over baseline models using triage
information alone) was achieved by modeling vital sign trends
during the assessment period. In many cases, engineered or
learned waveform features may be substantially correlated with
vital signs (e.g., PAT with BP, HRV with HR, perfusion index with
SpO2). In predicting hypoxia, however, the addition of the
perfusion index nevertheless yielded a performance improvement
over otherwise identical models without this information. For the
prediction of tachycardia, second-order features appeared to be
more useful for longer-range (120 min. window) compared to
shorter-range (90 min. window) predictions, which may reflect
diminishing prognostic value of simple vital sign trends at this
longer horizon.
For prediction of hypotension and hypoxia, engineered wave-

form features including HRV measures and the PPG perfusion
index were highlighted by SHAP analysis. The best-performing
model for hypoxia, for example, uses SpO2 during the assessment
period, as well as the perfusion index (derived from the PPG
waveform) and HRV (measures derived from the ECG waveform)
to reduce false positives compared to the baseline model. Though
the best-performing model for hypotension prediction contains
ECG/PPG waveform-derived embeddings, SHAP analysis does not
heavily weight these features. This discrepancy may derive from
correlations among embedding dimensions and other features. In
the fully featured hypotension model, which performs similarly to
the more restrictive, best-performing model, blood pressure
trends are supplemented by perfusion index and an HRV metric,
which has previously been associated with incipient hemody-
namic collapse52,53. Overall, our feature analysis suggests that the
assessment period is highly valuable for the prediction of
hypotension, as the best-performing model is able to correctly
reclassify visits that would otherwise be erroneously flagged as
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Fig. 3 Contribution of feature types to model predictions. Mean SHAP importance values were calculated for each feature in the baseline
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given feature in the model’s prediction. Pearson’s correlation coefficients represent the extent to which a higher feature value contributes to a
positive prediction as assessed through SHAP analysis.
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high-risk by a simpler model solely relying on lower blood
pressures at triage.
Predicting new hypoxia was the most difficult task overall, and

the best-performing model made broad use of available features.
Indeed, the perfusion index, a measure of peripheral perfusion
derived from the PPG waveform, was the single highest-weighted
feature in the prediction of incipient hypoxia in initially normoxic
patients. Previous work has not established a clear role for the
perfusion index in predicting hypoxia54. Given that the perfusion
index reflects the quality of the pulse oximetry signal55, we
speculate that the addition of this feature may help the model
calibrate the influence of SpO2 measurements and trends on
predictions of subsequent hypoxia.
Our study has several limitations. Though we tested models on

a chronologically later corpus of visits to simulate prospective
validation, we had access to data from a single academic center,
which may not generalize to other settings. Our outcome of
interest, near-term decompensation of initially stable patients,
represents a small but important proportion of all ED visits, and
larger models are likely to benefit from a larger and more diverse

number of training cases. Hypotension-prediction models exhib-
ited the worst calibration to the underlying event distribution,
which may result from the comparatively lower incidence of
hypotension compared to the other abnormalities. Isotonic
regression improved calibration, particularly for hypotension and
hypoxia. We anticipate that training the models on larger datasets
with more decompensation events will lead to further improve-
ments in calibration, which will be essential to minimize
distracting false alarms in clinical deployment. We used only the
first 15 min of monitoring to simulate the benefit of a “secondary
triage” model for subsequent decompensation, and because
patients in our dataset are most reliably monitored early in the
visit. Future research can extend this approach to a rolling
prediction window, potentially including iterative model persona-
lization based on the accuracy of earlier predictions. ECG and PPG
waveforms captured in ED settings can be noisy due to frequent
patient movement and transfers. While we preprocessed our
waveform segments to filter out noisy segments, this filtering
limits the length and number of usable waveforms. Given the
limited size of our dataset and the predictive impact of well-

A

Fig. 4 Differences in feature values among correctly reclassified visits. We isolated the visit cohorts correctly classified by the best-
performing model, but incorrectly classified by the baseline triage model. For each reclassified cohort, we identified the features that differed
significantly from the non-reclassified cohorts (p < 0.05, two-sided t-tests). Points represent differences in mean feature values for correctly
reclassified visits, scaled to each variable’s distribution among non-reclassified visits.
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described waveform features like HRV and PAT, we cannot claim
to have learned all relevant latent features of the ECG and PPG
waveforms. Finally, though we could identify the applications in
which waveform embeddings contributed to correct predictions,
we were limited in our ability to discern specific waveform
features related to these predictions.
The decompensation of initially stable patients may be

substantially predictable, using data already routinely collected
in acute care settings. If prospectively validated, we propose that
our prediction framework could be implemented in two
complementary ways. First, as a supplement or modification to
existing triage practices, a brief period of continuous monitoring
could be performed in the waiting room, upon initial rooming, or
even prior to hospital arrival via remote patient monitoring.
Features would be automatically computed, and a risk score
generated that could aid triage staff in prioritizing care for higher-
risk patients. Prediction of specific physiologic abnormalities,
rather than more commonly predicted aggregate or composite
outcomes, can direct scarce clinician attention to a specific
patient’s most time-sensitive diagnostic tests and modifiable risks.
For instance, an initially normotensive patient at high risk for
hypotension can be rapidly phenotyped for correctible derange-
ments by bedside ultrasound56, while a normoxic patient at risk
for hypoxia can receive noninvasive oxygen or ventilatory support,
or evaluation by a respiratory therapist, prior to a decompensation
requiring emergent ventilatory measures. Because our models rely
on information collected passively by ubiquitous ECG and PPG
sensors, these data could be obtained from standard monitors or
from wearable devices in the waiting room or even in ambulatory
settings. Second, our framework could be applied continuously to
monitored patients, or when queried by a clinician, to provide a
real-time estimate of a patient’s risk of near-term decompensation,
thereby guiding management and disposition. Such an approach
would make fuller use of continuously collected waveforms and
could also incorporate data on physiologic responses to medica-
tion administration and other interventions.

METHODS
Data sources and transformations
We studied 19,847 adult visits to monitored beds of the Stanford
Health Care Emergency Department that occurred between
August 1st 2020 and April 30th 2022. For each visit, we observed
patient age, self-reported gender, and vital signs at triage: heart
rate (HR), systolic (SBP) and diastolic (DBP) blood pressure, mean
arterial blood pressure (MAP= 1/3 SBP+ 2/3 DBP), oxygen
saturation (SpO2), temperature, and respiratory rate (RR). We
obtained vital signs (HR, RR, SpO2, MAP) and continuous lead II
ECG and PPG waveforms through the entire ED visit from Philips
IntelliVue bedside monitors. We obtained intermittent tempera-
ture measurements from nursing charts. We used the one-minute
means of HR, RR, and SpO2 measurements to reduce impact of
localized variation or noise. We calculated the Modified Early
Warning Score (MEWS) at each minute37, omitting neurologic
status (which was not consistently documented in our data), and
carrying forward intermittently observed vital signs (i.e., blood
pressure and temperature). In order to predict new or unexpected
decompensation, we included only visits with grossly normal vital
signs at triage and during the first 15 min of monitoring (HR ≤ 110,
SpO2 ≥ 90, MAP ≥ 65), and excluded visits without at least one
measurement of each vital sign and waveform (Supplementary
Figure 2).
For each ED visit, we defined the assessment period as the first

15min of monitoring after the patient was roomed. We used vital
signs and ECG/PPG waveforms from the assessment period, in
addition to patient age, gender, triage vital signs, and chief
complaint, to predict subsequent physiologic decompensation:

tachycardia (HR > 110), hypoxia (SpO2 < 90), or hypotension
(MAP < 65) within 90 min after the assessment period. In supple-
mental analyses, we assessed a previously validated composite
outcome of vital sign derangements (MEWS ≥ 4), and 60- and 120-
minute prediction windows for all outcomes.
We developed separate models for each abnormality (tachy-

cardia, hypoxia, hypotension, and MEWS ≥ 4) on the same cohort
of initially stable patients. We divided the cohort into training
(75%), validation (12.5%), and hold-out test sets (12.5%), with the
test set containing visits occurring after those in the training and
validation sets, so as to simulate prospective validation. The
training and validation sets contained data from approximately
the first 18 months of data collection, and the test sets contained
visits from the last 3 months of data collection. We used scikit-
learn’s ‘GroupShuffleSplit’ package for the grouped splitting based
on patient identification, such that the train, validation, and hold-
out test sets had no patient overlap (in the case of patients with
multiple visits)57.

Features used for prediction of decompensation
We combined four classes of features in the prediction of clinical
deterioration: features observed at ED triage, features recorded
directly by bedside monitors during the assessment period,
features engineered from ECG and PPG waveforms, and deep
learning-derived embedding representations of ECG and PPG
waveforms. Triage features included patient age, gender, Emer-
gency Severity Index (ESI) assigned at triage, vital signs at triage
(HR, RR, SpO2, MAP, SBP, DBP), and 46 indicator variables for
categories of chief complaint at triage. Directly monitored features
included first vital signs during the assessment period (HR, RR,
SpO2, MAP), and the coefficients of linear trends in these features
during the assessment period. Features engineered from ECG and
PPG waveforms included several measures of heart rate variability
(HRV) derived from beat-to-beat RR interval and from the ECG
waveform itself, and pulse arrival time (PAT) as measured from
concurrent ECG and PPG waveforms. Finally, we used transformers
to generate waveform embeddings from 60-second ECG and PPG
samples.

Waveform data and preprocessing
Continuous ECG and PPG waveforms are subject to artifacts and
gaps in recording due to sensor detachment and patient
movement. We developed a pre-processing strategy to select
the first 60-second window of the assessment period in which
both ECG and PPG waveforms demonstrated acceptable quality.
For ECG waveforms, we used Hamilton’s method58 to identify
R-peaks and determine heart rate, and discarded waveforms
without a detectable heart rate between 25–300 beats per minute,
or with outlier amplitudes exceeding 4mV. For PPG waveforms,
we measured skewness, matching of systolic waves, and presence
of stationary segments, using signal quality thresholds based on
prior studies59,60. We discarded visits without acceptable ECG and
PPG waveforms in the same 60-second window. To reduce noise,
we applied a 3–45 Hz bandpass filter to the ECG waveforms and a
4th-order Butterworth filter to the PPG waveforms. ECG wave-
forms were downsampled from 500 Hz to 125 Hz to match PPG
waveform frequency.

Measures of heart rate variability
Prior research has established time- and frequency-domain
measures of heart rate variability (HRV) for clinical prediction
tasks61. We used beat-to-beat RR intervals from continuous lead II
ECG to generate the following time-domain HRV measures:
standard deviation of the RR intervals (SDRR), percentage of
successive RR intervals that differ by more than 50ms (pRR50),
root mean square of successive RR interval differences (RMSSD),
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the HRV triangular index as calculated by an approximation of the
integral of the density of the RR interval histogram divided by its
height, and the width of the RR interval histogram (TINN). We
produced a frequency-domain representation of 60 s ECG wave-
forms by applying a Fourier transform to estimate the power
spectral density of the ECG signal. We then calculated the
following frequency-domain HRV measures: peak frequency of the
low-frequency band (0.04–0.15 Hz), peak frequency of the high-
frequency band (0.15–0.4 Hz), absolute power of the low-
frequency band, absolute power of the high-frequency band,
relative power of the low-frequency band, relative power of the
high-frequency band, and the ratio of low-frequency to high-
frequency power61.

Pulse arrival time
For each 60-second segment of aligned ECG and PPG waveforms,
we calculated the pulse arrival time (PAT): the mean time between
peaks of the ECG and PPG signal, representing the delay between
electrical systole in the heart and resulting peripheral blood flow.
We found waveform peaks using scipy’s ‘find_peaks’ function57,
discarded ECG-PPG peak pairs appearing to be further apart than
the corresponding ECG RR interval, then measured the mean
delay between valid pairs of ECG and PPG peaks.

Deep learning representations of ECG/PPG waveforms
To extract additional features from ECG and PPG waveforms, we
modified a transformer-based deep neural network initially
developed for the classification of static 12-lead ECGs62. The
model consists of a series of 1D convolutional layers to extract
waveform features, followed by transformer blocks and fully
connected layers to represent waveform features relevant to the
prediction task. We initialized the model with weights from its
original application for the detection of ECG rhythm abnormal-
ities62, reasoning that these pre-trained weights would extract
some general waveform features relevant to any downstream task.
We adapted Natarajan et al.’s model to predict ED decompensa-
tion by adding input channels to the convolutional layers for both
ECG and PPG waveforms, and to the final fully connected layers to
produce a lower-dimensional embedding layer whose values
could be used as inputs to our final models for the prediction of
decompensation. Figure 1 depicts our overall data sampling and
modeling strategy.
We trained each deep model for 60 epochs, using a cyclic

learning rate scheduler and applying a binary cross entropy loss
against labels of new tachycardia, hypoxia, or hypotension. The
prediction performance of these deep models alone after
supervised training when evaluated on the test set is reported
in Supplementary Table 16. We tested various embedding lengths
for waveforms as inputs to light gradient boosting machine
(LGBM) models, in which we combined waveform embeddings
with other features for the prediction of physiologic decompensa-
tion (Supplementary Tables 17-18). We selected 4-dimensional
embeddings for each of the PPG and ECG waveform inputs.

Gradient-boosted decision tree classifiers
We combined the features above in light gradient boosting
machine (LGBM) classifiers63, a decision tree ensemble model that
has proven effective in clinical classification tasks64. We trained
separate LGBMs for each prediction task and set of input features.
We fine-tuned each model’s hyperparameters using the Python
package ‘verstack’65 for 100 trials, optimizing for AUROC on the
validation set.
We retrained 100 LGBM models (with early_stopping_rounds

set to 50) for each task and each set of input features by varying
the models’ ‘random_state’ hyperparameter and chose the best-
performing model based on AUROC on the validation cohort to

then evaluate on the test set. Given the inherent stochasticity of
the underlying model architecture, this approach enables us to
select a model that more likely represents the peak performance
by treating the model’s initial random state as an additional
hyperparameter to optimize.

Statistical analysis
We performed statistical analysis of model performance via
bootstrapping to account for uncertainty derived from random-
ness in the test set patient data, and without imposing
distributional assumptions. For each model, we computed 95%
CIs for AUROC and AUPRC using bootstrap resampling with 10,000
replicates. All descriptive statistical tests (e.g., t-tests) are two-
sided.

Model interpretability
We evaluated feature importance using SHapley Additive exPlana-
tions (SHAP), which uses a game-theoretic mechanism to assign a
contribution score to each feature66. We calculated the mean
absolute SHAP value for each feature across each example in the
test set and divided by the sum of SHAP values across all features
to produce a score for each feature’s overall contribution to model
predictions of clinical decompensation. To determine direction-
ality of contributions (i.e., whether greater values of a feature
contributed towards a positive or negative prediction), we
calculated Pearson’s correlation coefficient between a feature’s
value and its SHAP score.

Analysis of correctly reclassified cases
To determine features of visits correctly classified by our best-
performing models but incorrectly classified using the baseline
triage model, we set operating points for each model to 85%
classification sensitivity on the validation set. We then identified
the visits correctly classified by the best-performing model for
each task, and incorrectly classified by the baseline triage model.
We compared features of these visits to visits not reclassified by
the best-performing models using two-sided t-tests.

Model calibration plots
We produced calibration plots for baseline and best-performing
models for each task, in the 90-minute prediction window. We
ranked visits by predicted probability of decompensation, divided
predictions into quintiles, and for each quintile of predicted
decompensation calculated mean predicted probability and
proportion of true positives. We applied isotonic regression, fit
on the validation set, to the best-performing models.

Alignment between individual decompensation predictions
and MEWS
For each individual abnormality predicted (tachycardia, hypoten-
sion, hypoxia), we produced dichotomous predictions of decom-
pensation using operating points selected for 85% validation
sensitivity. For visits predicted positive or negative for decom-
pensation in the test set, we recorded the number of patients
reaching MEWS ≥ 4 during the prediction window. “Alignment”
between predicted decompensation and MEWS is the proportion
of patients reaching MEWS ≥ 4 who were predicted to decom-
pensate, or the proportion of patients with maximum MEWS < 4
predicted not to decompensate.

Software
Continuous monitor data was extracted from the Stanford Health
Care Philips Data Warehouse using Philips PIC iX DWC Toolkit
(C.03.31). All analyses were performed using Python (3.9.7). Data
processing was performed using numpy (1.21.6), pandas (1.4.2),
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h5py (3.6.0) and scikit-learn (1.0.1). Cohort statistical analysis was
performed using scipy (1.8.0). HRV/PTT feature extraction was
performed using scipy (see above) and matplotlib (3.5.1).
Transformer training and evaluation was performed using torch
(1.10.2+ cu111), pytorch_lightning (1.6.1), torchmetrics (0.8.0),
edm (0.0.4) and wandb (0.12.14). Additionally, the edm package
uses biosppy (0.6.1) and vital-sqi (0.1.0). LGBM model training,
tuning and evaluation was performed using lightgbm (3.3.0),
scikit-learn (see above) and verstack (3.2.3). Secondary analyses of
model performance were performed using shap (0.40.0), scikit-
learn (see above), matplotlib (see above) and scipy (see above).

Ethics
The study was approved by the Institutional Review Board of
Stanford University, with a waiver of consent for retrospective
research on anonymized data.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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