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40 years of actigraphy in sleep medicine and current state
of the art algorithms
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Christine C. Guo 1

For the last 40 years, actigraphy or wearable accelerometry has provided an objective, low-burden and ecologically valid approach
to assess real-world sleep and circadian patterns, contributing valuable data to epidemiological and clinical insights on sleep and
sleep disorders. The proper use of wearable technology in sleep research requires validated algorithms that can derive sleep
outcomes from the sensor data. Since the publication of the first automated scoring algorithm by Webster in 1982, a variety of
sleep algorithms have been developed and contributed to sleep research, including many recent ones that leverage machine
learning and / or deep learning approaches. However, it remains unclear how these algorithms compare to each other on the same
data set and if these modern data science approaches improve the analytical validity of sleep outcomes based on wrist-worn
acceleration data. This work provides a systematic evaluation across 8 state-of-the-art sleep algorithms on a common sleep data set
with polysomnography (PSG) as ground truth. Despite the inclusion of recently published complex algorithms, simple regression-
based and heuristic algorithms demonstrated slightly superior performance in sleep-wake classification and sleep outcome
estimation. The performance of complex machine learning and deep learning models seem to suffer from poor generalization. This
independent and systematic analytical validation of sleep algorithms provides key evidence on the use of wearable digital health
technologies for sleep research and care.
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INTRODUCTION
Sleep has intrigued researchers in both basic and clinical
sciences for more than a century. With the advancement of
sensor technology in the 1970s, sleep researchers started to
experiment with the use of accelerometers worn on the wrist to
objectively assess sleep and circadian patterns. This research
grew rapidly in the 90s with improved sensor technology,
increased storage size and improved usability of the devices.
The rich body of sleep research using wearable devices has
contributed substantially to our understanding on the impor-
tance of sleep to overall health1 with poor sleep linked to the
progression of many diseases, including depression2, hyperten-
sion3, obesity4 and neurodegenerative diseases5. Since the
2010s, wearable devices have been increasingly used as
digital heath technologies (DHT) to provide patient-centric
clinical outcomes for drug development, where sleep outcomes
represent one of the major use cases.
Sleep outcomes in clinical trials have traditionally been

provided by polysomnography (PSG) and / or questionnaires.
While PSG is the gold standard for assessing sleep physiology, its
cost and burden can be prohibitive for large-scale deployment.
The ecological validity of PSG-based sleep outcomes is also poor
due to the need to attach a variety of sensors to the participant
and the need for the participant to sleep in a supervised
laboratory environment. Due to these limitations, some sleep
studies use sleep diaries and questionnaires, but such sleep
ratings are known to suffer from subjective and recall bias6. Wrist-
worn accelerometer devices therefore offer an attractive solution
for objective sleep assessments over multiple nights in the natural
home environment. Such devices have low patient burden and
can collect high-resolution data continuously for multiple weeks

without recharging, thus minimizing the burden on the partici-
pants. To derive sleep outcomes, automated scoring algorithms
are used to classify sleep and wake based on wrist acceleration.
The first such algorithm was developed using simple linear
regression and validated against PSG in 19827, with the
coefficients of the linear regression equation being updated in
19928. The latter, referred to as Cole-Kripke, has become one of
the most used sleep algorithms to date.
Due to technical limitations, early actigraphy devices would

perform data reduction on the device to convert the raw
acceleration data into activity counts and only save the latter9.
Many legacy sleep algorithms such as Cole-Kripke thus use
counts as input features for sleep-wake classification8. These
legacy algorithms follow the same format of quantifying activity
count-based features around the epoch of interest and applying
them in a linear or logistic regression equation to make the
binary prediction of sleep or wake10,11. More recently, with the
availability of large sleep datasets, machine learning and deep
learning methods were applied to sleep-wake classification.
Using the Multi-Ethnic Study of Atherosclerosis (MESA) sleep
dataset of 1817 participants12, deep learning models were shown
to have higher sensitivity and specificity compared to legacy
regression-based algorithms13.
With technological advancement and needs from the research

community, manufacturers started to provide raw acceleration
data from actigraphy devices, making it possible to develop sleep
algorithms based directly on raw acceleration, not the aggre-
gated activity counts. van Hees et al. (2015) used raw acceleration
data to derive the angle of the forearm and developed a sleep-
wake classification method based on the range of the angle
over time14. This group later developed a random forest
model on raw acceleration data and showed it to be more
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accurate than the original model and two legacy algorithms
(Cole-Kripke and Sadeh)15.
To fully leverage the potential of wrist-worn wearables, the sleep

research community can benefit from a systematic evaluation on
the analytical validity of the various sleep algorithms developed and
used for the last 40 years. Such evidence can support fit-for-purpose
use of the proper algorithms in sleep research and therapeutics
development. The current manuscript provides the first systematic
comparison across simple regression to complex deep-learning
models applied to either count or raw data. We assessed the
performance of these algorithms in terms of classification accuracy
and validity in estimating sleep outcomes such as WASO for direct
relevance to clinical applications.

RESULTS
Performance on Sleep-Wake Classification
Sleep-wake classification is an unbalanced classification problem,
in that the datasets typically contain more sleep than wake. For
such problems, the F1 score is typically used to rank algorithm
performance, as it balances precision and sensitivity. However,
the algorithms with the highest F1 scores had low specificity
(CNN-50, Oakley, all Sleep) (Table 1). Since specificity, which
represents classifying wake correctly, is essential to quantifying
sleep disturbances, it should be given strong consideration in the
evaluation. We thus selected only algorithms that passed
minimal levels of sensitivity (75%) and specificity (45%) (Fig. 1;
bold, Table 1). Among these algorithms, Oakley-rescore has the
highest specificity at 62.8%, and van Hees has the best sensitivity
of 83.6 and the highest F1 score of 79.1.

Performance on sleep outcome estimation
For sleep studies, the goal of sleep-wake classification is to derive
the sleep outcomes of interest. We thus examined the perfor-
mance of the algorithms in estimating sleep outcomes using the
Bland-Altman validation approach. Wake after sleep onset (WASO)
is a commonly used sleep outcome. Among the selected
algorithms, Oakley-rescore showed the lowest root mean squared
error (RMSE) and narrowest confidence interval in estimating
WASO as compared to the PSG-derived WASO (Table 2, Fig. 2).
Cole-Kripke and van Hees also presented low RMSE scores and
narrow confidence intervals. These three algorithms also showed
much higher correlation with PSG-derived WASO than other
algorithms. As for the more complex, machine learning models,
the best performers amongst them (Random Forest, LSTM-50 and
LSTM-100) showed low mean errors, but high RMSE scores, wide
confidence intervals and low correlation with PSG-derived WASO.
The performance of all the algorithms on the estimations of
WASO, total sleep time (TST) and sleep efficiency (SE) showed
similar patterns (Supplementary Tables 1 to 3).

DISCUSSION
Wrist-worn accelerometers are the most used wearable DHTs in
clinical trials and research today. Accelerometer-based DHTs
continue to play a central role in clinical research, thanks to the
low cost, lightweight, long battery life and decades of research
findings and datasets. The algorithms used to derive sleep
outcomes from wrist acceleration data have been the focus of
technical improvement and continue to evolve with the advance-
ment of data science. Our systematic evaluation of the most

Table 1. Confusion matrix results for the binary classification problem of identifying sleep-wake from various algorithms compared to gold standard
PSG annotations.

Accuracy Sensitivity Specificity Precision F1

Reference

All Sleep 69.2 (0.2) 100 (0.0) 0 (0.0) 69.2 (0.2) 79.6 (0.2)

All Wake 30.8 (0.2) 0 (0.0) 100 (0.0) 0 (0.0) 0 (0.0)

Raw Acceleration

van Hees 76.2 (0.1) 83.6 (0.2) 47.5 (0.2) 76.2 (0.2) 79.1 (0.2)

Random
Forest

73.3 (0.1) 77.5 (0.2) 55.5 (0.2) 77.7 (0.2) 76.4 (0.2)

Deep Learning Count

CNN-50 77.3 (0.2) 85.6 (0.2) 42 (0.2) 76.1 (0.2) 79.6 (0.2)

CNN-20 76.2 (0.2) 86.2 (0.2) 38.2 (0.2) 74.9 (0.2) 79.4 (0.2)

CNN-100 77 (0.2) 79.8 (0.2) 54.2 (0.2) 78.4 (0.2) 77.8 (0.2)

LSTM-50 76.3 (0.1) 77.8 (0.2) 59.0 (0.2) 78.8 (0.2) 77.1 (0.2)

LSTM-100 77.2 (0.1) 78.6 (0.2) 58.9 (0.2) 79.7 (0.2) 77.8 (0.2)

LSTM-20 73.5 (0.1) 74.8 (0.2) 58.5 (0.2) 77.9 (0.2) 75.4 (0.2)

Legacy Count

Oakley 75.1 (0.1) 86.2 (0.1) 42 (0.2) 75.1 (0.2) 79.2 (0.2)

Oakley rsc 76.4 (0.1) 76.9 (0.2) 62.8 (0.2) 80.6 (0.2) 77.8 (0.2)

Sadeh 75.3 (0.1) 82.6 (0.2) 49.7 (0.2) 76.4 (0.2) 78.5 (0.2)

Sadeh rsc 69.4 (0.1) 61.8 (0.2) 75.1 (0.2) 83 (0.2) 68.9 (0.2)

Cole-Kripke 74.5 (0.1) 81.4 (0.2) 50.3 (0.2) 76.3 (0.2) 78 (0.2)

Cole-
Kripke rsc

71.8 (0.1) 66.1 (0.2) 73.4 (0.2) 82.5 (0.2) 72.2 (0.2)

Sazonov 71.3 (0.1) 73.3 (0.2) 60.3 (0.2) 78.2 (0.2) 74.8 (0.2)

Sazonov rsc 63.5 (0.1) 51.3 (0.2) 83.1 (0.2) 84.1 (0.2) 61.8 (0.2)

The mean values of all cases are presented with standard deviation in brackets. The top performing algorithms are shown in bold. Rsc rescore.
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common sleep algorithms developed over the past 40 years
provides researchers with an evidence-based approach to use
them effectively in sleep research.
Our findings suggest that the current application of machine

learning and deep learning techniques to predict sleep-wake
classification are not as robust in estimating sleep outcomes as
simple heuristic (van Hees) and legacy regression models (Oakley-
rescore and Cole-Kripke). This is surprising, as the deep learning
and random forest models were trained on large datasets and
thus would be expected to better model the complex relationship
between wrist movements and sleep than simple models
developed on smaller datasets13,15. The fact that these machine
and deep learning models do not perform better may be due to
the difference in activity counts used across sleep data sets,
suboptimal model architectures, the intrinsic challenge with using
motion data only to estimate sleep physiology and different PSG
annotation styles between different data sets.
Computation of activity counts from raw accelerometer data is a

common data reduction step from the early days of actigraphy.
The conversion from raw acceleration to activity counts is not
always well documented nor understood. Early studies presenting
the legacy count algorithms did not provide any information
about how the counts were obtained7,8,10,16. In addition,
manufacturers might not disclose the way they derive counts

from raw accelerometer data. The activity count calculation is a
crucial step in the count-based sleep algorithms and differences in
the counts would lead to differences in sleep-wake classifications.
Despite this, the current research confirmed that legacy algo-
rithms estimate sleep outcomes with high validity on counts
computed using the open-source agcounts Python package9. The
deep learning count-based algorithms were trained on proprietary
counts from the MESA dataset and may not generalize to different
types of counts as readily as the simple legacy count algorithms
due to the model’s overfitting the PSG annotation style in the
MESA dataset13. Due to the lack of available raw acceleration data
in large data sets, no raw acceleration-based deep learning
models have been presented in the literature.
The top-performing deep learning algorithms performed

slightly worse than the much simpler heuristic and legacy
algorithms. It is possible that the model architectures used in
the current deep-learning algorithms may not be optimal15. In
particular, the models are very simple, having only one layer of
convolution filters or LSTM cells connected to a dense layer. Most
deep learning models employ several layers (hence the term
deep) which helps them capture more details from the training
set. Their training also did not involve regularization techniques
designed to avoid overfitting (and thus improve generalization)
such as dropout or early stopping. The fact that the models were

Fig. 1 Sensitivity and specificity for each algorithm predicting sleep or wake compared to PSG. Sensitivity values are shown in blue and
specific values are shown in orange. Algorithms that met the sensitivity and specificity thresholds are indicated with an asterisk.

Table 2. Bland-Altman statistics for wake after sleep onset (WASO) comparison between PSG and the sleep algorithms applied to wrist-based
acceleration.

ME RMSE Correlation CI-95%+ CI-95%- CI-width

Raw Acceleration

van Hees 39.3 91.1 0.786 201.9 −123.4 325.3

Random Forest 1.0 93.0 0.717 184.9 −183.0 367.9

Deep Learning Count

CNN-100 11.9 99.8 0.712 207.9 −184.1 392.0

LSTM-50 0.7 91.6 0.743 181.9 −180.5 362.4

LSTM-100 2.6 93.9 0.736 188.3 −183.1 371.4

Legacy Count

Oakley rsc −10.4 81.7 0.795 149.9 −170.7 320.6

Sadeh 33.6 93.6 0.756 206.3 −139.0 345.3

Cole-Kripke 28.4 90.4 0.770 198.1 −141.3 339.4

ME mean error, RMSE root mean squared error, CI confidence interval, rsc rescore.
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trained for only 30 epochs may limit their performance compared
to heuristic algorithms15. In short, while deep learning algorithms
hold promise, there is still work to be done.
Polysomnography (PSG) is considered the gold standard for

sleep assessment and provides clinical diagnosis of sleep
disorders such as apneas, hypopneas and rapid eye movement
(REM) disorders17. Using PSG scoring as the ground truth for
actigraphy sleep algorithms, however, has some intrinsic chal-
lenges. PSG measures physiological changes during sleep, while
wrist actigraphy measures the movement of the distal forearm.
Physiology and movement present highly structured and
correlated patterns during sleep and wake cycles, which is the
fundamental principle behind actigraphy use in sleep research.
But the intrinsic difference between the two types of source
signals means that there is a limit to how close one can be used
to estimate the other. This does not mean wrist-based
accelerometer assessment of sleep is inferior to PSG, as this
method is superior in longitudinal and reliable assessment of
sleep patterns in free-living environments. To facilitate the proper
use of wrist accelerometer-based sleep outcomes, it may be

necessary to interpret actigraphy-quantified sleep endpoints in
their own right, and not expect them to perfectly match PSG.
Due to the subjective nature of PSG scoring, it may be difficult

for a model to generalize between different data sets with
different scorers. PSG needs to be scored by trained technicians to
derive sleep outcomes. The scoring process takes 2–4 h to score
one night of sleep and is also known to have high inter-rater
variability, especially in pathological sleep populations18. To
improve objectivity and reduce variability, the American Academy
of Sleep Medicine (AASM) guidelines provide a series of rules that
the PSG technician applies while they score raw PSG data17. For
example, the scoring rule for wake is when more than 50% of the
epoch contains an alpha rhythm (8–13hz) over the occipital region
or eye blinks at 0.5 to 2hz or rapid eye movements associated with
normal / high chin muscle tone or reading eye movements17. Such
scoring criteria is inherently subjective and leaves room for
different raters to score the same segment differently. Automated
software packages have been developed to score PSG data;
however, these are not considered gold-standard18. With the
presence of high inter-rater variability, it may be difficult for a

Fig. 2 Bland-Altman validation plots for estimated WASO from the top performing algorithms in each category compared to PSG. The
upper plots show the comparison of each algorithm estimated WASO to PSG WASO in circles, with a dashed line of slope equal to one
representing where points would fall if the algorithm and PSG matched perfectly. The lower plots show the PSG WASO plotted against
the difference between the algorithm and PSG for each data point. The solid horizontal line represents the mean error and the dashed
horizontal lines represent the 95% confidence intervals of the differences.
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model trained on the relationship between PSG scoring and
movement patterns to generalize robustly to different data sets
scored by different raters. Deep learning and machine learning
models run the risk of overfitting to data set-specific PSG
annotator style if they do not include proper model architecture
to enhance generalization.
While this work is the first systematic comparison across simple

regression to complex acceleration-based machine learning sleep
algorithms, a subset of these models has been evaluated in
previous literature. Sundararajan et al. 2021 reported slightly
worse results for Sadeh (F1 68.1 to 78.5%), Cole-Kripke (F1 67.5 to
78.0%), van Hees (F1 70.1 to 79.1%) and Random Forest (F1 73.9 to
76.4%) than the present study15. There are several potential
reasons for this difference. One, no data was dropped in the
current study. Sundararajan et al. 2021 had 24 participants in their
test set, while the current work used all 28 participants from the
Newcastle PSG dataset. Second, accuracy, sensitivity and other
statistics were calculated for each subject and then averaged in
the current work, whereas Sundararajan et al. 2021 combined all
epochs from all subjects together and calculated the evaluation
metrics. The advantage of averaging evaluation metrics from each
participant is that a Bland-Altman style validation analysis can be
performed on the sleep outcomes.
Rescoring is a series of heuristic rules that was developed in

conjunction with the original legacy sleep algorithm to rescore
periods as wake or sleep based on the length of a period and
the length of the surrounding periods7. Previous research
showed that rescoring improved performance for all legacy
algorithms on the MESA data set13. However, on the Newcastle
PSG data set, rescoring resulted in poorer performance for Cole-
Kripke (RMSE 13.0 to 18.5), Sadeh (RMSE 13.6 to 23.4) and
Sazonov (RMSE 14.5 to 30.5) algorithms, while it improved
performance for the Oakley algorithm (RMSE 15.9 to 12.7). In
both studies rescoring decreased sensitivity and increased
specificity, so algorithms with high sensitivity and low specificity
to begin with were improved with rescoring and algorithms with
reasonable sensitivity and specificity to begin with were made
worse with rescoring.
Supplementary Table 1 summarizes sensitivity, specificity and

accuracy from previous studies presenting algorithms to predict
sleep-wake from wrist accelerometry. The Sadeh model on the
Sadeh data set had the highest specificity and accuracy of all
other model / data set combinations, however the Sadeh data
set consisted of only healthy sleepers. On the MESA data set,
rescoring improved performance for the Sadeh, Cole-Kripke and
Oakley algorithms. The van Hees and Sundararajan (random
forest) algorithms could not be run on MESA because they
require raw acceleration and the MESA data set contains only
activity counts.

The current work has several limitations. Since the PSG scoring
process was not detailed in the open-source Newcastle PSG
dataset, we do not know how it was performed. The test data set
in the current work was from one PSG study, future work should
consider using multiple PSG studies as test data sets, to ensure
generalizability to different PSG annotation styles. The challenge
with this currently is that many open-source PSG data sets (MESA,
STAGES) only include activity count data and not raw acceleration,
making it impossible to test the raw acceleration-based algo-
rithms. The current work considered algorithms that used
acceleration only. Heart rate and other physiological signals have
the potential to improve sleep classification and staging, however,
the trade off with more sensors is a decrease in battery life19. This
is an important area for future research.

METHODS
Sleep dataset
PSG data was obtained from the open-source Newcastle PSG
dataset14. The study design included ethics approval from the NRES
North East Sunderland ethics committee (12/NE/0406) and
participants provided written informed consent. PSG data was
collected from 28 adult patients (11 female). Mean age of the
participants was 44.9 years (14.9 years standard deviation).
Concurrent wrist accelerometry data (GENEActiv, Kimboloton, UK)
was collected at 85.7hz. All 28 patients had complete data from a
left wrist accelerometer and 27 patients had complete data from a
right wrist accelerometer. A single night PSG (Embletta, Denver)
was performed using a standard procedure that included electro-
encephalogram (leads C4-A1 and C3-A2), video recording, bilateral
eye movements, oxygen saturation, bilateral anterior tibialis EMG,
abdominal and chest inductance bands, and submental EMG. All
sleep stages were scored according to standard AASM criteria20.
Twenty of the participants had at least one sleep disorder. Sleep
disorders included idiopathic hypersomnia, restless leg syndrome,
sleep apnea, narcolepsy, sleep paralysis, nocturia, obstructive sleep
apnea, REM sleep disorder, parasomnia and insomnia.

Accelerometer data processing
Raw tri-axial acceleration data was calibrated using GGIR, an
R-package to process multi-day raw accelerometer data21. Analysis
was performed by creating scripts in Python (v 3.8.13) that called
each algorithm. For each algorithm, sleep-wake classifications
were found in 30-second, non-overlapping windows and com-
pared to the PSG-annotated sleep stages. All algorithms are
summarized in Table 1. In addition, the random forest model
presented in Sundararajan et al. 2021 was included. For the van
Hees et al. 2015 algorithm, a python implementation of the
algorithm described in the paper was used14. Table 3.

Table 3. Summary of the compared algorithms.

Paper Model Type Input Model Complexity Description

Van Hees Heuristic Acceleration Low Considers range of angle-z over 5min window to classify it as sleep or wake

Sundararajan Random Forest Acceleration High Random forest machine learning model trained on 136 sleep patients from two
different data sets

Palotti CNN Counts High Deep neural network trained on MESA data set (training n= 1454) using a
convolutional neural network layer

Palotti LSTM Counts High Deep neural network trained on MESA data set (training n= 1454) using a long-
short term memory layer

Cole-Kripke Regression Counts Medium Commonly used linear regression model

Oakley Regression Counts Medium Linear regression model with a trained threshold

Sadeh Regression Counts Medium Commonly used linear regression model

Sazonov Regression Counts Medium Logistic regression model trained on infants from sensor on diaper location
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For the count-based algorithms, activity counts were calcu-
lated by first downsampling the raw acceleration data to 40hz by
taking the mean in 25 milli-second windows and then using the
open-source Python agcounts package to obtain activity counts
in 30 s epochs9. The legacy count-based algorithms implemented
were Cole-Kripke8, Oakley10, Sadeh16 and Sazonov11. In addition,
Long Short-Term Memory (LSTM) and convolutional neural
network (CNN) with sequences of 20, 50, and 100 samples were
implemented with the same weights provided in Palotti et al.13.
For the deep learning algorithms, the activity counts were
combined by taking the 6th root of the sum of the squared 3 axes
values, then the values were normalized. Directly using the scaler
from the MESA training set resulted in poor performance, likely
due to differences in activity counts.
A rescoring was implemented on the legacy count-based

algorithms that was originally proposed in Webster et al. 1982 and
was implemented more recently in Palotti et al.7,13. The rescoring
was only applied to the legacy algorithms as it was developed for
the legacy algorithms and Palotti et al. 2019 showed that
rescoring did not improve deep learning models performance.
Original performance statistics from all algorithms are reported in
Supplementary Table 4.

Statistics
A confusion matrix was obtained for predictions from each
algorithm for each subject compared to the gold standard PSG
sleep stages at 30-second epochs. An epoch was true positive
(TP) if both the PSG and the algorithm prediction labelled it
sleep, an epoch was true negative (TN) if both the PSG and
algorithm prediction were wake, an epoch was false positive (FP)
if the PSG was wake and the algorithm prediction was sleep,
finally, an epoch was false negative (FN) if the PSG was sleep and
the algorithm prediction was wake. These equations were used
to calculate the following statistics:

Sensitivity ¼ True Positives
True Positivesþ False Negatives

(1)

Specificity ¼ True Negatives
True Negativesþ False Positives

(2)

Precision ¼ True Positives
True Positivesþ False Positives

(3)

F1 Score ¼ 2 � Precision � Sensitivity
Precisionþ Sensitivity

(4)

sensitivity, Eq. (1), was calculated as the percentage of PSG scored
sleep that the algorithm scored correctly. Specificity, Eq. (2), was
calculated as the percentage of PSG scored wake, that the
algorithm scored correctly. Precision, Eq. (3), was calculated as the
percentage of algorithm detected sleep that was correct accord-
ing to PSG. F1 score, Eq. (4), was calculated as the harmonic mean
of sensitivity and precision. Wake after sleep onset (WASO) was
calculated by summing the amount of wake within the sleep
period. Sleep efficiency (SE) was calculated as the percentage of
sleep within the period in which there were PSG annotations. Total
sleep time (TST) was calculated as the sum of sleep epoch
classifications per night.
A Bland-Altman style validation statistical approach was

applied to the sleep endpoints WASO, TST and SE because this
provides validation statistics that are specific to the sleep
endpoints that are commonly used in clinical research22. Mean
error (ME) was calculated as the average of the differences
between the predicted measure and the PSG derived measure
for all patients. Mean error indicates if there is a bias in a model
output. Root mean squared error (RMSE) was calculated as the
square root of the squared mean error and is useful because

positive and negative values cannot cancel each other out.
Pearson’s correlation coefficient is calculated as well as the 95%
confidence intervals, which is the range for which 95% of the
differences between the predicted endpoint and the PSG scored
endpoint exist22.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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