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Weakly supervised deep learning to predict recurrence in low-
grade endometrial cancer from multiplexed
immunofluorescence images
Daniel Jiménez-Sánchez1,2, Álvaro López-Janeiro 2,3, María Villalba-Esparza2,4, Mikel Ariz 1,4, Ece Kadioglu5, Ivan Masetto6,
Virginie Goubert6, Maria D. Lozano2,4,7, Ignacio Melero4,7,8,9, David Hardisson 3,7,10,11, Carlos Ortiz-de-Solórzano 1,4,7 and
Carlos E. de Andrea 2,4,7✉

Predicting recurrence in low-grade, early-stage endometrial cancer (EC) is both challenging and clinically relevant. We present a
weakly-supervised deep learning framework, NaroNet, that can learn, without manual expert annotation, the complex tumor-immune
interrelations at three levels: local phenotypes, cellular neighborhoods, and tissue areas. It uses multiplexed immunofluorescence for
the simultaneous visualization and quantification of CD68+macrophages, CD8+ T cells, FOXP3+ regulatory T cells, PD-L1/PD-1
protein expression, and tumor cells. We used 489 tumor cores from 250 patients to train a multilevel deep-learning model to predict
tumor recurrence. Using a tenfold cross-validation strategy, our model achieved an area under the curve of 0.90 with a 95%
confidence interval of 0.83–0.95. Our model predictions resulted in concordance for 96,8% of cases (κ= 0.88). This method could
accurately assess the risk of recurrence in EC, outperforming current prognostic factors, including molecular subtyping.
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INTRODUCTION
Histology-based morphological and architectural features of the
tumor and its microenvironment are traditionally used to classify
cancer, to prognose clinical outcomes, and to predict the response
of patients to conventional or immune-based therapies1–3. This
examination, primarily performed by a pathologist, uses histology
with the aid of immunohistochemistry (IHC). However, despite the
improvements in IHC testing and molecular profiling, the accuracy
of predicting patient prognosis remains a current-day diagnostic
challenge. In this context, multiplexed IHC/immunofluorescence
(IF) methods provide new biological insights from conventionally
used single-cell markers4–8. Multiplexed IF assays allow for the
simultaneous visualization and quantification of several markers
with single-cell resolution in a single tissue section. These assays
have the immediate potential for translational research and
clinical practice4,9. This is especially true when combined with new
computational tools, such as deep learning, capable of generating
computational tumor-immune maps, with the promise of
improved and unbiased diagnostics10–14.
Advances in deep learning have increasingly demonstrated

accurate and reliable performance in predicting patient outcomes
from routine tumor tissue slides12,15,16. Among other methods,
weakly-supervised deep learning (WSDL) stands out since it does
not require manual expert annotations. It can be quickly applied in
new unseen scenarios, showing an improved predictive perfor-
mance when compared to traditional methods. WSDL offers a
high-throughput, interpretable framework that can automatically,
with no human intervention, extract morphological and architec-
tural features typically not recognized by human experts10,13.

NaroNet was the first WSDL framework to analyze multiplexed
images16. NaroNet was developed based on the idea that the
apparently chaotic distribution of cells in tissue sections can be
transformed into highly structured microenvironmental tissue
levels, known as (i) local phenotypes, (ii) cellular neighborhoods,
and (iii) tissue areas. NaroNet has been previously used to develop
a prediction model for the DNA polymerase epsilon (POLE)
mutation in high-grade endometrial cancer16. The model had an
overall accuracy of 83.3% and was trained and validated on
multiplexed IF images using the spatial infiltration pattern of
immune cells, the expression of the T-cell activation marker CD137
(4-1BB), and the programmed cell death-1 receptor (PD-1)16.
Endometrial cancer is the most common gynecologic malig-

nancy in developed countries, where the majority of patients are
diagnosed with low-grade, early-stage disease (FIGO stage I–II, G1-
G2) with good clinical outcomes17. However, 5–10% of these
patients will eventually experience tumor recurrence17,18. Due to
the heterogeneity and complexity of these tumors, predicting the
recurrence of endometrial cancer has been difficult19. Although
several studies have shown the prognostic value of immune cell
subtypes in high-grade endometrial cancer, particularly T cells and
macrophages, there is still no evidence that a single marker alone
could be used to improve risk stratification in patients with low-
grade, early-stage disease20,21. Using a comprehensive multi-
plexed IF panel, we have recently shown that the tumor-immune
microenvironment milieu is the most important factor for
predicting tumor recurrence in low-grade, early-stage endometrial
cancer, outperforming currently used prognostic variables, includ-
ing molecular subtypes22.
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Here, we have expanded our analysis from 235 patients to 250
patients with long-term follow-up and 32 tumor recurrences22.
Our previous model was developed based on algorithms trained
by experienced pathologists. Now, we developed a weakly-
supervised, multilevel deep learning model that, without requiring
manual expert annotation for regions of interest, could effectively
predict recurrence from multiplexed IF images of primary
resection samples of low-grade, early-stage endometrial cancer.
The novelty here comes from the artificial intelligence nature of
the approach. The WSDL model was developed using (i) our
previously validated panel of seven markers (PD-L1, PD-1, CD8,
CD68, FOXP3, CK, and DAPI)22, (ii) NaroNet, designed to extract the
complex tumor-immune interrelations at multilevel features (local
phenotypes, cellular neighborhoods, and tissue areas) using
unsorted multiplexed IF images (in the current approach, no
images were excluded from the analyses, while previously only
images with a minimum tumor content of 20% were analyzed),
and (iii) a tenfold cross-validation approach (in our previous
approach, all samples were used to train the model). Lastly, we
evaluated the robustness of the model and the power of NaroNet
to overcome technical variabilities.

RESULTS
Clinical characteristics and experimental overview
Our study included 250 eligible patients with low-grade, early-
stage endometrial cancer (Fig. 1). The mean age of the patients
was 64.5 years (Supplementary Table 1). Most patients completed
at least 36 months of follow-up. Thirty-two tumors recurred over
the follow-up period of 30.9 (18.3–50.5) months after surgery
(Supplementary Fig. 1). Most patients were FIGO stage IA and G1
without lymphovascular invasion. Sixty-two percent of the patients
received no adjuvant radiotherapy, while 27% of them received
either external beam radiotherapy, vaginal brachytherapy, or both.
Information about adjuvant radiotherapy was unavailable for
11.6% of the patients. Forty-five (18%) and eight (3.2%) patients
showed mismatch repair protein deficiency and POLE mutations,
respectively. Most tumors showed wild-type p53 expression by
immunohistochemistry (96.8%, Supplementary Table 1).

A total of 489 multiplexed IF images were analyzed. Due to
tissue loss during staining, 11 patients had one core available.
Tumor cores from the same patient were merged into a single-
image. For imaging preprocessing, background signal subtraction
was applied using ImageJ software. No images were excluded
from the analysis. Self-supervised learning for patch feature
extraction was combined with weakly-supervised learning to
enable a single, unified predictive model to be efficiently trained
on hundreds of images. Using trainable assignment matrices,
elements of the tumor microenvironment with high biologic
relevance were identified and quantified. They were categorized
as (i) local phenotypes, that link similar patches (20 × 20 µm) based
on features derived from cell morphometry and marker expres-
sion, (ii) cellular neighborhoods, patches that aggregate features
from adjacent patches via graph neural networks (GNNs) to form
neighborhoods acquiring the contextual information in
100 × 100 µm, and (iii) tissue areas, where the graph of neighbor-
hoods was used to aggregate neighborhood information in a way
so that groups of neighborhoods form tissue areas. They are
connected through edges representing the spatial affinities of the
neighborhoods acquiring the contextual information in
~1800 × 1800 µm.
Within the NaroNet AI model, quantifications were passed

through a max-sum pooling operation to obtain abundance
values for each local phenotype, cellular neighborhood, and tissue
area. Therefore, patients are represented by an enrichment vector
containing abundance values of the microenvironmental ele-
ments. Enrichment vectors were then used to obtain the final
patient prediction value. During training, a cross-entropy function
loss updates model parameters to identify optimal tumor features
for patient classification23.
NaroNet interpretability is based on heatmaps and graphs that

summarize relevant features and patterns from the entire
dataset16. This is achieved due to the previous assignment of
patches to phenotypes, neighborhoods, and areas. Moreover, as
patients are represented by abundance vectors, specific elements
from the tumor microenvironment were associated with tumor
recurrence.

Fig. 1 Artificial intelligence (AI)-based spatial phenotyping workflow to predict tumor recurrence in low-grade, early-stage endometrial
cancer (EC). 250 patients with early-stage, low-grade endometrial cancer who underwent surgical resection were included in this study.
Thirty-two tumors recurred over the follow-up period (mean 95.8 months). Tumor cores from primary tumor resection were stained using
multiplexed immunofluorescence for the simultaneous visualization and quantification of CD68 of macrophages, CD8+ T cells,
FOXP3+ regulatory T cells, PD-L1 and PD-1 protein expression, and tumor cells. NaroNet, a weakly-supervised deep learning framework,
was applied to learn, without manual expert annotation, the complex tumor-immune interrelations at three levels: local phenotypes, cellular
neighborhoods, and tissue areas. Our proposed method could accurately predict recurrence in EC, outperforming current prognostic factors,
including molecular subtypes. Scale bar, 25 μm.
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Evaluation of model performance
The initial self-supervised learning module transformed 20 × 20 × 7
image patches into representation vectors (each patch fits one or
two cells and seven marker expressions). These vectors or
embeddings of 256 values contain features from cell morphology,
marker expression, and marker colocalization. When trained, self-
supervised learning achieved an accuracy of 71.11%, contrasting a
total of 8.520.336 image patches from the entire dataset, similar to
what has already been reported in ref. 24. From these patch
embeddings, a graph was created by connecting each image patch
to its four adjacent neighbors and to itself. This graph represents
the elements of the tissue microenvironment. Patient-level graphs
were then generated by joining all the patch graphs available from
one patient, which in general, consisted of one or two tumor cores.
By using self-supervised learning, the large input images were

embedded in compact, low-dimensional, enriched patch graphs.
Thus, NaroNet did not require long training times. As a result, our
model hyperparameters were configured to provide the highest
predictive performance using an architecture search algorithm

called hyperparameter tuning (Supplementary Table 2). NaroNet
had a better performance (lower cross-validation test loss) when set
up to identify ten local phenotypes, eight cellular neighborhoods,
and four tissue areas (Fig. 2a–c). Two levels of depth (two hops) were
selected to identify cellular neighborhoods (each patch was
assigned to a cellular neighborhood based on its own embedding
and those of its 12 closest neighbors) (Fig. 2d). For the max-sum
pooling operation, NaroNet performed better when patches were
constrained to be assigned to one microenvironmental element
only (a patch cannot belong to two local phenotypes simulta-
neously) (Fig. 2e). NaroNet also selected softmax over the sigmoid
activation function so that every image patch had the same
relevance in the classification process (patch contributions add up to
one when obtaining patient representations) (Fig. 2f).
Finally, using the optimal NaroNet architecture, a tenfold cross-

validation strategy was used to measure the classification
performance for predicting tumor recurrence. In each fold, 225
patients (90%) were used to train the model, whereas the
remaining 25 patients (10%) were used to test the model.
Prediction performance was measured over the tenfolds with the

Fig. 2 Evaluation of model performance. a–c Optimal number of local phenotypes, cellular neighborhoods, and tissue areas for patient
classification. NaroNet had a better performance (lower cross-validation test loss) when set up to identify ten local phenotypes, eight cellular
neighborhoods, and four tissue areas. d Optimal number of hops (levels of depth) used by the graph neural network for assigning patches to
cellular neighborhoods. Two hops were selected to identify cellular neighborhoods (each patch was assigned to a cellular neighborhood
based on its own embedding and those of its 12 closest neighbors) e NaroNet performed better when patches were constrained to be
assigned to one tumor microenvironmental element (TME) only. f Every image patch had the same relevance in the classification process.
g, h Confusion matrix and area under the curve of the receiver operating characteristic curve (AUC ROC) for predicting tumor recurrence in EC
using a tenfold cross-validation strategy. Data were analyzed using a two-sided Mann–Whitney–Wilcoxon test with Bonferroni correction. *, **,
***: P < 0.05 values considered statistically significant. ns statistically non-significant.
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ROC curve and confusion matrix shown in Fig. 2g, h. Even though
moderate concordance rates between cores from the same
patient were found (r= 0.6 for local phenotypes, r= 0.5 for
cellular neighborhoods, r= 0.61 for tissue areas), our model
predictions resulted in concordance for 96,8% of cases (κ= 0.88
when adjusted for agreement by chance). The overall accuracy
was 90.40 with a 95% confidence interval (CI) of [86.72, 94.08] and
an AUC of 0.90 with a 95% CI of [0.83, 0.95] (prediction values
shown in Supplementary Table 3).

Interpretability of local phenotypes
Ten conserved, distinct local phenotypes were found and
measured (Supplementary Table 4). For each local phenotype,
100 patches (20 × 20 µm) with the highest confidence (most
representative patches) were selected. The mean intensity for each
marker is shown in a heatmap where columns were normalized.
Thus, the maximum value for each marker is one (Fig. 3a). Two
additional heatmaps were generated showing the level of
colocalization between markers (calculated by Spearman correla-
tion, Fig. 3b), and the cell morphology features (calculated based
on Stardist25 cell segmentation masks and Morpholibj for feature
extraction: cell area, cell density, and cell circularity, Fig. 3c)26.
The 12 most representative patches from each of the ten local

phenotypes were selected and displayed, allowing for a compre-
hensive interpretation of the entire dataset without the need to
visualize full images individually (Fig. 3d–h). Three local pheno-
types, P1, P3, and P5, have captured the highest immune cell
infiltrates and were more significantly associated with tumors with
no recurrence (Fig. 3d, f, h). Local phenotype P1 was enriched with
FOXP3 and CD68. Local phenotype P3 was enriched with CD8 and
CK. Local phenotype P5 was enriched with CD8 and PD-1. In
contrast, local phenotypes P2 and P4 captured different sizes of
tumor cells alone (CK) with variable PD-L1 expression and no
immune cell infiltration. Local phenotype P2 was more signifi-
cantly associated with tumors with recurrence and local pheno-
type P4 was more significantly associated with tumors with no
recurrence (Fig. 3e, g). Local phenotype P8 was enriched with cells
with elongated nuclei expressing none of the markers (possibly
stromal cells). Local phenotype P8 was also more significantly
associated with tumors with recurrence (Fig. 3i).

Interpretability of cellular neighborhoods
Eight conserved, distinct cellular neighborhoods were found
and measured (Supplementary Table 4). For each neighbor-
hood, 100 patches with the highest confidence (the most
representative patches) were selected and computed to which
local phenotypes they were assigned. A heatmap was then
generated. As cellular neighborhoods were calculated with two
hops of distance, they were composed of the proximity of the
12 most adjacent local phenotypes (Fig. 4a).
Cellular neighborhood N5 contained mainly local phenotypes P2

and P7 and represented regions enriched with tumor cells with
variable PD-L1 expression and no immune cell infiltration (Fig. 4b).
Cellular neighborhood N5 was more significantly associated with
tumors with recurrence. Cellular neighborhood N3 was composed
of local phenotypes P3, P4, P5, and P8 which show few immune
cell infiltrates characterized by CD8, PD-1, FOXP3, CD68, and PD-L1.
Cellular neighborhood N3 was more significantly associated with
tumors with no recurrence (Fig. 4c). Cellular neighborhood N8 was
formed by local phenotypes P1, P3, and P5. It showed higher
immune cell infiltration with CD8, FOXP3, and CD68 and was more
significantly associated with tumors with no recurrence (Fig. 4d).
Finally, cellular neighborhood N7 was mainly composed of local
phenotype P8, which was enriched with cells with elongated nuclei
expressing none of the markers (possibly stromal cells) with few
immune cell infiltrates. Cellular neighborhood N7 was more
significantly associated with tumors with no recurrence (Fig. 4e).

Interpretability of tissue areas
A total of four tissue areas were found and measured (Supplemen-
tary Table 4). Each tissue area was computed from the graph of
cellular neighborhoods. Each neighborhood was assigned to a tissue
area (Fig. 5a). Tissue areas A1 and A4 showed very little immune cell
infiltration located in the stromal compartment, representing
“noninflamed” or “cold tumors” (Figs. 5a, b, e, f, 6a). Tissue areas
A1 and A4 were more significantly associated with tumors with
recurrence. Tissue areas A2 and A3 were the most immune
infiltrated with intra-tumor CD8+ T cells located. Tissue areas A2
and A3 were more associated with tumors with no recurrence,
representing “inflamed” or “hot tumors” (Figs. 5a, c, d, g, 6b).

Evaluation of the clinical characteristics and molecular
subtypes
Tumor grade, patient age, and p53 status showed no association
with any of the local phenotypes, cellular neighborhoods, or tissue
areas. In contrast, most of the morphological patterns found by
NaroNet were associated with FIGO stage and lymphovascular
invasion (Supplementary Fig. 1). Tissue area A2 was significantly
underrepresented in mismatch repair protein (MMRP)-deficient
tumors compared to their proficient counterparts. Tissue area
A2 showed high immune cell infiltration and was more associated
with tumors with no recurrence. Furthermore, local phenotypes P1
and P3 were significantly enriched in POLE-mutated tumors, while
N5 and P7 were underrepresented in these tumors (Supplementary
Fig. 1). Local phenotype P1 showed high immune cell infiltrates
with CD8, FOXP3, and CD68. Local phenotype P3 represented the
local interaction between a CD8 T lymphocyte and tumor cells (CK).
Local phenotypes P1 and P3 were more associated with tumors
with no recurrence. Local phenotype P7 and cellular neighborhood
N5 showed regions enriched with tumor cells with no immune cell
infiltration and were associated with tumors with recurrence.
Finally, NaroNet’s prediction model was compared to those built
using mismatch repair protein status and the presence of a POLE
mutation. The NaroNet model (AUC= 0.90) outperformed the
other two models (AUC= 0.79 and 0.78).

NaroNet robustness
Multiplexed IF staining was performed in two different institutions
using a standardized and validated protocol. Nine TMAs were
stained at the University of Navarra, and five TMAs were stained at
Lunaphore Technologies. Each institution stained their allotment
of slides with distinct staining batches (antibodies and reagents).
Therefore, potential batch-to-batch variation across institutions
was expected.
To obtain a reference for variability between cases, one TMA

with 36 tumor cores from 19 patients was stained in both
institutions (Fig. 7a).
In the replicate cores, nuclear segmentation was performed

using the DAPI channel. Each segmented nucleus was then
expanded to provide an approximation of the full cell area.
Intensity measurements for each marker were then calculated. No
threshold normalization was applied to adjust for potential batch-
to-batch variation. As expected, intensity variation was found
across institutions (Fig. 7b). Similar variation using a similar
multiplexed IF assay has been previously reported in a multi-
institutional study4,7. The most significant variation was found in
PD-L1 staining (p < 0.0001). CD8 staining showed similar intensity
across institutions (p > 0.05).
Although intensity variations were found, the overall quantifica-

tion of the relevant local phenotypes, cellular neighborhoods, and
tissue areas showed good correlations (Fig. 7c). More importantly,
tumors stained in both institutions were used to efficiently train and
test our model predictions. Our model predictions resulted in
concordance in 92 and 85% in both institutions separately, showing
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that, to some extent, NaroNet is capable of generalization to diverse
data sources. Moreover, relevant elements, such as local pheno-
types P1 and P8, showed positive correlations across institutions
(r= 0.70 and 0.45, respectively, Fig. 7d, e). In contrast, negative
correlations were found only for the microenvironmental elements
located in regions with no tissue (background staining), such as
local phenotype P9 and cellular neighborhood N6 (Fig. 7f, g). This

shows that NaroNet captured differences in background staining
and assigned it to nonrelevant microenvironmental elements.

Analysis of prediction confidence
Using only two tumor cores from primary tumor resections to
predict patient recurrence is very challenging. They may not

Fig. 3 Interpretability of local phenotypes. a Heatmap showing the mean intensity for each marker in each one of the ten conserved,
distinct local phenotypes (P1–10). For visualization, markers were normalized by columns; the maximum value for each marker is one.
b Heatmap showing the level of colocalization between DAPI and other markers (calculated by Spearman correlation). For visualization,
markers were normalized by columns; the maximum value for each marker is one. c Heatmap showing the cell morphology features
(calculated based on cell segmentation for feature extraction: cell area, cell density, and cell circularity. For visualization, cell size and shape
information vary from low to high. d, f, h The 12 most representative patches from each local phenotypes (P1, P3, and P5) associated with
tumors with no recurrence were selected and displayed, allowing for a comprehensive interpretation of the entire dataset without the need to
visualize full images individually. The relative abundance of each local phenotype is shown. e, g, i The 12 most representative patches from
each local phenotypes (P2, P4, and P8) associated with tumors with recurrence were selected and displayed. The relative abundance of each
local phenotype is shown. Data were analyzed using a two-sided Mann–Whitney–Wilcoxon test with Bonferroni correction. ****, P values:
P1= 2.23e-9, P2= 5.95e-28, P3= 3.94e-26, P4= 2.94e-24, P5= 6.67e-26, and P8= 4.00e-20.
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represent the totality of the tumor. Here, our model predictions
classified the vast majority of tumors correctly (confidence of
0.90). This suggests that the primary tumors were well represented
in the TMAs. In a subset of these patients, we have previously
shown a very good correlation between the immunofluorescence
results of TMAs and whole-slide tumor sections22,27.
Looking at the complex tumor-immune interrelations for all

patients (Fig. 8a–c), tumors with recurrence showed the “proto-
typical” spatial features of “noninflamed” or “cold tumors”
represented by tissue areas A1 and A4. Next, we looked at the
tumors misclassified by NaroNet with a high prediction con-
fidence. Only two tumors with no recurrence were incorrectly
classified as having recurrence (confidence >0.90, Fig. 9a, b). They
developed late endometrial cancer relapses at 86 and 90 months
after resection (Supplementary Fig. 2). Tumor cores from these
two patients were quantified as tissue area A1, indicating
“noninflamed” or “cold tumors”. Visual interpretation of the tumor
cores showed heterogeneity within the tumor (Fig. 9a, b).
Furthermore, tumors with recurrence that were incorrectly
classified as having no recurrence (confidence >0.90, Fig. 9c)
showed tumor cores quantified as tissue area A3, indicating
“inflamed” or “hot tumors”. Visual interpretation of the tumor
cores showed inflammation and distinct glandular architectural
patterns (Fig. 9c). The incorrect classifications show that tumors

are complex diseases and suggest that, for some cases, predic-
tions based solely on a panel of seven cellular markers are not
sufficient.

Support for clinical decisions
Finally, we set up a patient screening process by implementing a
decision tree in which spatial phenotype quantifications were
used to make the final patient prediction. Here, a decision tree
regressor was fed by the spatial features of all patients. Figure 10
shows the optimized scheme of the decision tree, which was
based on three sequential steps. Tissue area A1 (“noninflamed” or
“cold tumors”) was the most relevant spatial feature to
differentiate between tumors with recurrence from those with
no recurrence.

DISCUSSION
Predicting recurrence in low-grade, early-stage endometrial
cancer is both difficult and important. Recurrence is seen in
5–10% of patients, and recurrence outside the pelvis is typically
untreatable. Different studies have demonstrated the importance
of molecular subtypes in the clinical outcomes of high-grade
endometrial cancer. Most of these subtypes are associated with

Fig. 4 Interpretability of cellular neighborhoods. a Heatmap showing the eight conserved, distinct cellular neighborhoods (N1–8)
composed of the proximity of the 12 most adjacent local phenotypes (P1–8). For visualization, relative abundances of local phenotypes were
normalized by columns; the maximum value for each local phenotype in a neighborhood is one. b The six most representative images from
cellular neighborhood N5. N5 was more associated with tumors with recurrence and represented regions enriched with tumor cells with
variable PD-L1 expression and no immune cell infiltration. Relative abundance of cellular neighborhood N5 is shown. c–e The six most
representative images from cellular neighborhoods (N3, N7, and N8) are more associated with tumors with no recurrence. N3 shows discrete
immune cell infiltrates characterized by CD8, PD-1, FOXP3, CD68, and PD-L1. N7 is enriched with cells with elongated nuclei expressing none
of the markers (possibly stromal cells) with discrete immune cell infiltrates. N8 shows higher immune cell infiltration with CD8, FOXP3, and
CD68. Relative abundances of cellular neighborhoods N3, N7, and N8 are shown. Data were analyzed using a two-sided
Mann–Whitney–Wilcoxon test with Bonferroni correction. ****, P values: N3= 2.87e-11, N5= 1.57e-29, N7= 3.51e-12, and N8= 2.58e-22.
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Fig. 5 Interpretability of tissue areas. a Heatmap showing four conserved, distinct tissue areas (A1–4) composed of the spatially interacting
cellular neighborhoods (N1–8). For visualization, relative abundances of cellular neighborhoods were normalized by columns; the maximum
value for each cellular neighborhood in a tissue area is one. b, e Relative abundances of tissue areas A1 and A4 associated with tumors with
recurrence are shown. c, d Relative abundances of tissue areas A2 and A3 associated with tumors with no recurrence are shown. f Top-3 tumor
core images assigned to tissue area A1, which is associated with tumors with recurrence. For each one of the representative panel of images:
the top left image shows the whole tumor core, the top right image shows the image patch confidence when assigning to tissue area, the
bottom image shows a tumor region with the highest relevant information from tissue area A1 (more associated with tumors with recurrence).
Tissue area A1 shows very little immune cell infiltration, representing “noninflamed” or “cold tumors”. g Top-3 tumor core images assigned to
tissue area A2, which is associated with tumors with no recurrence. For each one of the representative panel of images: the top left image
shows the whole tumor core, the top right image shows the image patch confidence when assigning to the tissue area, the bottom image
shows a tumor region with the highest relevant information from tissue area A2 (more associated with tumors with no recurrence). Tissue area
A2 is one of the most immune infiltrated, representing “inflamed” or “hot tumors”. Data were analyzed using a two-sided
Mann–Whitney–Wilcoxon test with Bonferroni correction. ****, P values: A1= 2.22e-29, A2= 5.93-16, A3= 6.25e-31, and A4= 2.04e-12. Scale
bars, 100 μm.

D. Jiménez-Sánchez et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)    48 



spatial immune infiltration patterns in the tumor. Despite the
prognostic value of immune infiltration in endometrial cancer,
relatively little is known about whether these immune features
could accurately be associated with the risk of recurrence in
patients with the low-grade disease. Recently, we have shown that
the immune infiltration features in a primary tumor resection
studied with multiplexed IF (PD-L1, PD-1, CD8, CD68, FOXP3, and
CK) could reliably predict recurrence in patients with low-grade,
early-stage endometrial cancer, outperforming the molecular
subtypes22. Here, we have confirmed this.
It has been shown that the type of immune response may play a

role in preventing tumor recurrence28,29. Recent studies have
shown the prognostic value of immune cell infiltration in clinical
outcome and treatment response in endometrial cancer19–21.
Tumor-associated macrophages have been linked to a high
relapse-free survival rate after surgery20. Higher CD8+ T-cell
infiltration has been shown to be an independent predictor of
improved overall survival21. Moreover, a high CD8+/FOXP3+ ratio
has been shown to be an independent prognostic factor for better
disease-free survival21. However, the identification of predictive
biomarkers consistently associated with recurrence derived from a

comprehensive multiplexed IF assay has not been thoroughly
studied. Here, we follow the pioneering efforts of pivotal research
groups to use multiparametric assays on single tissue sections to
characterize the tumor microenvironment of solid tumors2,30–32.
Our weakly-supervised, multilevel deep learning model was

used, without manual expert annotation, to train a model on a
large and well-characterized collection of 489 TMA tumor cores
from 250 patients with low-grade, early-stage endometrial
carcinoma. This represents a unique set of tumors with long-
term follow-up and clinical annotation. Quantitative multiplexed IF
targeting the PD-L1 and PD-1 protein levels, CD68+macrophages,
CD8+ T cells, FOXP3+ regulatory T cells, and CK+ tumor cells was
used to assess the association between the complex tumor-
immune interrelations and the risk of recurrence. To create a tumor
recurrence prediction model, our algorithm trained graph neural
networks with only patient recurrence data labels. Using a 10-fold
cross-validation strategy (in each fold, 90% of patients were used
to train the model and 10% of patients were used to test the
model), an overall prediction value of 90.40% with a 95% CI of
[86.72, 94.04] and an AUC of 0.90 with a 95% CI of [0.83, 0.95] were
achieved. Our multilevel interpretable deep learning framework

Fig. 6 Visualization of tissue areas. a Top-3 tumor core images assigned to tissue area A4, which is associated with tumors with recurrence.
For each one of the representative panel of images: the top left image shows the whole tumor core, the top right image shows the image
patch confidence when assigning to tissue area, the bottom image shows a tumor region with the highest relevant information from tissue
area A4 (more associated with tumors with recurrence). Tissue area A4 shows immune cell infiltration located in the stromal compartment,
representing “noninflamed” or “cold tumors”. b Top-3 tumor core images assigned to tissue area A3, which is associated with tumors with no
recurrence. For each one of the representative panel of images: the top left image shows the whole tumor core, the top right image shows the
image patch confidence when assigning to tissue area, the bottom image shows a tumor region with the highest relevant information from
the tissue area A3 (more associated with tumors with no recurrence). Tissue area A3 shows high immune cell infiltration located in the intra-
tumor compartment, representing “inflamed” or “hot tumors”. Scale bars, 100 μm.
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allowed the model to learn three levels of interactions within
tissues: (i) local phenotypes (one single cell or interactions between
two neighboring cells), (ii) cellular neighborhoods, and (iii) tissue
areas. These features are of high biologic relevance and combine

information to make the final predictions of tumor recurrence.
Each level of interaction and feature in the deep learning
framework is fully interpreted using graphs, heatmaps, and direct
visualization in the tissue.

Fig. 7 NaroNet robustness. a Multiplexed immunofluorescence staining on tissue microarrays (TMAs) was performed in two different centers
using a standardized and validated protocol. Nine TMAs were stained at the University of Navarra, and five TMAs were stained at Lunaphore
Technologies. To obtain a reference for variability between cases, one TMA with 36 tumor cores from 19 patients was stained in both
institutions. In the replicate cores, deep learning quantifications were performed. b In the replicate cores, intensity measurements for each
marker were then calculated. No threshold normalization was applied to adjust for potential batch-to-batch variation. As expected, the
intensity variation is found across centers. c The overall quantification of the relevant local phenotypes, cellular neighborhoods, and tissue
areas showed good correlations. d, e Relevant elements, such as local phenotypes P1 and P8, showed positive correlations across institutions.
f, g Negative correlations were found only for the microenvironmental elements located in regions with no tissue (background staining), such
as local phenotype P9 and cellular neighborhood N6. r, Spearman correlation coefficient with either positive value indicates positive
association and negative value shows a negative association. *P < 0.05 values considered statistically significant. ns statistically non-significant.

Fig. 8 Analysis of prediction confidence. a Heatmap showing the “prototypical” spatial features of the tumor microenvironmental elements
(TME) at three levels: local phenotypes (P1–10), cellular neighborhoods (N1–8), and tissue areas (A1–4) in tumors with recurrence and tumor
with no recurrence. High and low-confidence predictions are shown. b, c The overall confidence predictions of NaroNet for all 250 patients is
shown. The vast majority of patients show high confidence predictions (>0.90). Patients with low-confidence predictions (<0.50) were
misclassified.
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At the local phenotype level, NaroNet showed tumor-immune
cell interactions that were positively and negatively associated
with recurrence in patients with low-grade, early-stage endome-
trial cancer. Tumors with no recurrence were more inflamed. Their
tumor microenvironment was characterized by immune cells
closely interacting with tumor cells. This immune infiltration was
composed of FOXP3+ regulatory T cells in close contact with
either macrophage (local phenotype P1) or CD8+ T cells (local
phenotype P3) and CD8+ T cells expressing PD-1 (local pheno-
type P5). Tumors with recurrence were less inflamed. Their tumor
microenvironment was characterized by tumor cell enrichment
with variable PD-L1 expression (local phenotype P2) or with no
infiltration of immune cells (local phenotype P8).
It has been proposed that mutual information relationships

provided by cell marker expression and cell localization within tissue
reveal the spatial organization of the tumor microenvironment,

known as cellular neighborhoods31,33. Here, the cellular neighbor-
hoods are composed of neighboring local phenotypes. In our
interpretable deep learning framework, for every local phenotype in
tissue, its 12 nearest spatial neighbors are identified and labeled as
cellular neighborhoods. We found eight conserved, distinct cellular
neighborhoods. The information relationships that link each cellular
neighborhood were further identified and interpreted as tissue areas.
Each tissue area could recapitulate the tumor tissue. The relationship
between cellular neighborhoods and tissue areas was then used in
the multilevel process to predict disease recurrence in patients with
low-grade, early-stage endometrial cancer. Cellular neighborhood N3
was associated with tumors with no recurrence and was enriched for
FOXP3+ regulatory T cells, CD8+ T cells, high PD-1 protein levels,
stromal cells, and tumor cells. Cellular neighborhood N3 is mainly
composed of local phenotypes P1, P3, and P5. Next, cellular
neighborhood interactions, known as tissue areas, provide a novel,
interpretable view of patient samples. Integrating tumor and
immune cell neighborhoods, NaroNet showed that tumors with
recurrence were composed of tumor islands within a stromal cell-
enriched stroma with few immune cells (tissue area A1), indicating
“noninflamed” or “cold tumors”. Conversely, tissue areas A2 and A3
displaying FOXP3+ regulatory T cells and CD8+ T cells with high
PD-1 protein levels interacting with tumor cells were strongly
associated with no recurrence, indicating “inflamed” or “hot tumors”.
Tissue area A1 contains the most relevant feature to differentiate
between tumors with recurrence from those with no recurrence.
Tissue area A1 can be interpreted as tumors with a “noninflamed” or
“cold” microenvironment.
Recent studies have demonstrated that deep convolutional

neural networks applied to H&E-stained histopathology images
were able to predict the histological and molecular subtypes and
common gene mutations in endometrial carcinoma34. Examining
H&E slides is still the most widely used method by pathologists to
assess endometrial cancer histological subtypes in the clinical
setting. Therefore, WSDL models have shown great potential in
assisting pathologists in making decisions and improving diag-
nostic accuracy12,13,35. While this article was under review, using
routinely H&E-stained slides and molecular and clinicopathological
from 2028 patients with intermediate-to-high-risk endometrial
cancer, the group of Fremond S. et. al. reported a deep learning
model for H&E-based prediction of cancer classification that could
accurately identify morpho-molecular correlates outperforming the
molecular classification at predicting 5-year recurrence-free survi-
val in an independent cohort (n= 393)36. These results are in
agreement with our main conclusions, though the use of multi-
plexed IF may strengthen the performance of the predictions.
Here, we used multiplexed IF, which allows for the simultaneous

visualization of several cellular markers in a single tissue section,
giving a more comprehensive understanding of the complex
tumor-immune interrelations. In precision immuno-oncology,
these interrelations have been used to identify prognostic and
predictive biomarkers37. Standardization and validation of an end-
to-end multiplexed IF workflow is critical7. We assessed the
reproducibility of NaroNet to input data from two institutions
using a similar and standard workflow. Although the intensity of
the markers varied, the quantification of the relevant local
phenotypes, cellular neighborhoods, and tissue areas could still
capture critical microenvironmental elements allowing a very high
predictive ability independent of the center of origin. It shows
robustness. The relatively higher interinstitution variations were
likely due to batch-to-batch variation and the local handling of
assay reagents, such as how accurately they were prepared or
diluted. These sources of variability have been previously reported
in multiplexed IF, which can be further improved with additional
standardization of reagent and instrument handling4,7,8.
The outstanding predictive performance obtained by NaroNet

(90.40%) showed that two tumor cores per patient could be used to
correctly predict the risk of recurrence. In our framework of analysis,

Fig. 9 Evaluation of challenging patients. a, b Only two patients
with no recurrence were incorrectly classified as having recurrence
(confidence predictions >0.90). They developed late endometrial
cancer relapses after >7 years of relapse-free survival. Both patients
were quantified as tissue area A1, indicating “noninflamed” or “cold
tumors”. Visual interpretation of the tumor cores showed hetero-
geneity within the tumor. c Patients with recurrence that were
incorrectly classified as having no recurrence (confidence prediction
>0.90) showed tumor cores quantified as tissue area A3, indicating
“inflamed” or “hot tumors”. Visual interpretation of the tumor cores
showed inflammation and distinct glandular architectural patterns.
Scale bars, 50 μm.

D. Jiménez-Sánchez et al.

10

npj Digital Medicine (2023)    48 Published in partnership with Seoul National University Bundang Hospital



they were merged into a single image. The modest concordance
rates between tumor cores from the same patient highlight that the
spatial heterogeneity of the tumor architecture and immune
infiltrates are highly variable across tumor lesions. In this line,
complex tumors displaying higher tumor-immune heterogeneity
could be enriched in more aggressive tumor subclones that could
potentially be linked to the propensity for recurrence. It must be
acknowledged that is very difficult to quantitatively measure spatial
heterogeneity with only two tumor cores.
Tumors with recurrence displayed a common architecture of

tissue areas A1 and A4, and tumors with no recurrence showed a
common architecture of tissue areas A2 and A3. Tumors with
recurrence misclassified as having no recurrence displayed some
features of tissue areas A2 and A3 that are more associated with
tumors with no recurrence. This incorrect prediction is unlikely
due to incorrect AI quantification but possibly due to other factors
that were not considered in the analysis, reflecting the complexity
of these tumors. Other factors that could have played a role in
misclassifying tumors are the heterogeneous immune environ-
ment, the mutational profile, and other characteristics intrinsic to
the patient (such as comorbidities, age, etc.). Importantly, the two
tumors with no recurrence that were classified as recurrence
developed very late endometrial cancer relapse at 86 and
90 months after primary tumor resection. These very late disease
recurrences after >7 years of relapse-free survival show an
indolent tumor behavior. Therefore, it is of the highest clinical
interest to combine patient characteristics obtained from different
sources. They might be relevant and relatively easy to assess. In
this way, our AI quantifications (local phenotypes, cellular
neighborhoods, and tissue areas) could be incorporated into
multi-omics data analysis pipelines to increase patient prediction
and better understand the complexity of the disease.
In summary, we developed a predictive model based on the

spatial morphologic immune cell composition associated with the
risk of recurrence in low-grade, early-stage endometrial cancer.
Our WSDL interpretable approach automatically learned to locate
regions in the TMA tumor core by local phenotypes, cellular
neighbors, and tissue areas and to combine their information to
make the final prediction. Combining AI-based models with
multiplexed IF has the potential to unveil novel tumor-immune
interrelations that human experts traditionally would not focus on.
Future work may benefit from a more comprehensive study
analyzing the composition and spatial distribution of immune cells
using many more cellular markers in independent cohorts of low-
grade, early-stage endometrial cancer.

METHODS
Patient cohort and tissue microarrays
Formalin-fixed, paraffin-embedded (FFPE) samples from a retro-
spective collection of low-grade (FIGO G1 or G2) endometrioid
carcinomas presented in tissue microarrays (TMAs) were analyzed.
This included samples seen at the Pathology Department of the
University Hospital La Paz (Madrid, Spain) from 250 patients with
low-grade endometrioid carcinomas that met the following
inclusion criteria: (i) surgical treatment and long-term follow-up
undertaken at the University Hospital La Paz; (ii) all tumors were
low-grade (G1 or G2) endometrioid carcinomas, stages I and II,
according to the 2009 International Federation of Gynecology and
Obstetrics (FIGO) classification; (iii) patients did not undergo
neoadjuvant/adjuvant systemic treatment or immunotherapy; and
(iv) because most tumors recur in the first 3 years after diagnosis,
all patients had a minimum follow-up period of 3 years. All
molecular subtypes were included in the analysis. This collection
has been reported previously22,27. All tissues were used after
approval from the University Hospital La Paz Human Research
Committee, protocol number: HULP: PI-3108. TMAs were con-
structed using standard procedures as described previously in
refs. 38,39. In brief, after a pathology review of hematoxylin and
eosin (H&E)-stained slides, 1.2-mm cores were obtained from the
original paraffin blocks using a needle and inserted into a
recipient paraffin block. For a better representation of the tumors,
two cores obtained from different areas were included in the
TMAs. Clinicopathologic information from all patients, including
disease recurrence, was collected from clinical records and
pathology reports and is detailed in Supplementary Table 1.
Patient follow-up was completed after 10 years.

Multiplexed immunofluorescence staining
Multiplexed IF assay development and validation have been
previously described by our group5,38. A seven-color multiplexed
quantitative immunofluorescence protocol for FFPE tissue sections
was used for simultaneous detection of CD8, FOXP3, CD68, PD-1,
PD-L1, CK, and DAPI. Of note, since each section is put through
seven sequential rounds of antibody staining, tyramide signal
amplification-based (TSA) visualization is expected to detect a
slightly higher number of positive cells. Therefore, each single
antibody was optimized individually for its optimal conditions and
position in the sequence of multiplex staining to reduce interference
with previous antibody-TSA complexes or by disruption of epitopes.
Single stains (singleplex) were then initially performed on endo-
metrial carcinoma tissue sections (positive controls). Singleplex
assays were used as the gold standard for cell antigen visualization.

Fig. 10 Support to clinical decisions. Decision tree to assess patient recurrence based on spatial phenotype quantifications. In each decision
tree step (from left to right), an automatic threshold is set to divide patients with recurrence from those with no recurrence. Tissue area A1
(“noninflamed” or “cold tumors”) was the most relevant spatial feature to differentiate between tumors with recurrence from those with no
recurrence.
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The markers were then integrated into a multiplexed immunofluor-
escence panel. Each single antibody was optimized individually for
its optimal conditions and position in the multiplexed staining
sequence. A singleplex versus multiplexed comparison for each
antibody was performed to validate the staining patterns and
distribution. Based on this comparison, we established the optimal
signal through dilution of the primary antibodies and/or the
fluorophores to obtain staining levels and cell counts comparable
to conventional singleplex immunofluorescence staining as pre-
viously described5. Although staining variation was observed
between singleplex and multiplex, overall, the markers had similar
cell counts as previously described in ref. 22. Respective immunos-
tainings without primary antibodies on endometrial carcinoma
tissue sections were used as negative controls.
Multiplexed immunofluorescent staining was performed on the

LabSat® Research platform (Lunaphore Technologies), a fully
automated tissue-staining instrument for rapid immunostaining
that utilizes a microfluidic technology for the rapid and uniform
delivery of reagents to tissue samples40. In brief, TMA sections
were dewaxed, rehydrated, and subjected to heat-induced
antigen retrieval with a high pH (pH 9, catalog # S2367) target
retrieval solution (Dako-Agilent). Each TMA section was subjected
to six successive rounds of antibody staining. The antibody panel
included cytokeratin (pan-CK) (1:150 clone AE1/AE3, catalog #
NBP2-33200, Novus Biologicals), CD8 (1:150, clone 4B11, catalog #
MCA1817, Bio-rad), CD68 (1:75, clone PG-M1, catalog # M0876,
Dako-Agilent), FOXP3 (1:50, clone 236 A/E7, catalog # ab252201,
Abcam), PD-1(1:300, ERP4877, catalog # ab137132, Abcam), and
PD-L1 (1:300, clone E1L3N, catalog # 13684, Cell Signaling). Each
round consisted of protein blocking with 20% normal goat serum
(catalog # X0907, Dako-Agilent) in phosphate-buffered saline
(PBS), incubation with the primary antibody, biotinylated anti-
mouse/rabbit secondary antibodies and streptavidin-HRP (catalog
# P0397, Dako-Agilent), followed by TSA visualization with
fluorophores Opal 520, Opal 540, Opal 570, Opal 620, Opal 650,
and Opal 690 (catalog # NEL861001KT, Akoya Biosciences) diluted
in 1X Plus Amplification Diluent (catalog # FP1609, Akoya
Biosciences). Thus, in the seventh round, nuclei were counter-
stained with spectral DAPI (catalog # FP1490, Akoya Biosciences),
and sections were mounted with Faramount Aqueous Mounting
Medium (catalog # S3025, Dako-Agilent). In our experimental
setup, 9 TMAs were stained in one center, and another 5 TMAs
were stained in another. For comparison, one TMA with 36 tumor
cores was stained in both centers using the same platform and
protocol but with distinct batches of antibodies and reagents.

Tissue imaging
Multiplexed immunofluorescence TMA slides were scanned on a
PhenoImager HT Automated Quantitative Pathology Imaging
System (Akoya Biosciences). Briefly, a spectral library containing
the spectral peaks emitted by each fluorophore from single
stained slides was created using inForm software (version 2.4.8,
Akoya Biosciences). This spectral library was used for spectral
unmixing of the images, allowing color-based identification of the
markers of interest. Autofluorescence was determined on an
unstained endometrial carcinoma tissue. Each TMA core image
was spectrally unmixed and exported as a component TIF image
(2656 × 2656 × 7 pixels) using Akoya Biosciences’ Inform software.
Component TIF images were then imported into the NaroNet
deep learning framework. Due to tissue loss during multiplexed
staining, each patient contributed one or two TMA tumor cores.

Image preprocessing
Each image was preprocessed with background subtraction using
the ‘rolling ball’ algorithm in ImageJ software version 1.52c (NIH,
Bethesda, MD, USA; http://imagej.nih.gov/ij)41. Here, a local back-
ground value was determined using a window of 50 × 50 pixels.

This value was then subtracted from the original image, removing
large spatial variations in the background intensities. The window
size was set as the size of the largest cell object that is not part of
the background, so that the real marker signal was not eliminated.

Patch feature extraction
In our WSDL framework, two tumor core images from the same
patient were merged into a single image. Then, pixel information
from each image was converted into a representation space,
enabling a drastically faster training time, lower computational
cost, and improved predictive performance. This has been
previously demonstrated when classifying images into different
categories using a public database named ImageNet24,42. This
method is usually used to benchmark computer vision algorithms.
In multiplexed image analysis, to allow precise interpretability with
single-cell resolution, images were divided into a set of image
patches, each containing one or two cells. To this end, we used
our patch contrastive learning (PCL) strategy to embed pixel
information into descriptive 256-dimensional representation
vectors that gather both the size and shape of cells as well as
marker expression and marker colocalization43. Specifically, a
ResNet101-based convolutional neural network was trained with
contrastive loss over 200 epochs and using a batch size of 80
image crops. Once the model was generated, it was used to create
vector representations of all the images used in the study. Each
multiplexed image was evenly divided into 20 × 20 × 7-pixel
image patches with no overlap, and each patch was introduced
into the PCL module to obtain a representation vector. Then, the
spatial position of the patch in the image was stored. In this way,
each TMA core was converted from a 2656 × 2656 × 7-pixel image
into a list of 17,424 × 256 patches in the 256-representation space.

Patch-graph generation
To allow graph neural networks to model the structure of the tissue
and capture cellular neighborhoods as well as tissue areas, a graph
of patches was created. An adjacency matrix was then created that
contained the connectivity between patches, where each patch was
connected to its four adjacent neighbors. If more than one image is
available for a single patient, patches from distinct images were
joined into a single graph. Compared to convolutional neural
networks (CNNs) that input fixed-size images, GNNs are flexible
when modeling the tumor microenvironment, allowing input from
patients with different amounts of tissue available. In this case,
patients have one or two tissue cores. From here on, we refer to
patient tissue information instead of image information.

NaroNet model
Our multilevel interpretable deep learning framework was used to
generate a model to predict the risk of recurrence from
multiplexed IF images of primary resection samples of low-grade,
early-stage endometrial cancer. Our WSDL paradigm was used to
handle large datasets and to capture the large heterogeneity seen
in the microenvironment of these tumors. Patient classification
occurred on the fixed, low-dimensional feature representation
instead of the pixel space. In the feature space, NaroNet was
trained to assign L patches to elements from the tumor
microenvironment at three levels of complexity:

● Local phenotype learning: This module allowed the assign-
ment of individual patches to different categories (e.g., tumor
cells {CK}, CD8+ T cells, etc.). To this end, patch representation
vectors were forwarded through an 8-layer perceptron with
skip connections, with the last layer being an assignment
matrix SP 2 RL ´ P , where P consists of the number of local
phenotypes learned. A softmax operation was applied to
convert neuron activations into probability values so that SP
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row values sum to one representing the probability each
patch had of belonging to each of the P phenotypes.

● Cellular neighborhood learning: This module allowed the
assignment of individual patches to different categories based
on features of their neighbors (e.g., groups of tumor cells and
tumor-infiltrating CD8+ T cells). To capture relationships
between connected patches of a graph, a trainable weighted
sum was applied so that each patch representation vector was
updated with the features of their neighbors. This operation
was performed K times, or hops, to aggregate information
from more spatially distant patches. As in local phenotype
learning, the last layer of the GNN consisted of an assignment
matrix SN 2 RL ´N , where N is the number of neighborhoods,
and a softmax operation was used to obtain probability
values.

● Tissue area learning: This module allows the assignment of
cellular neighborhoods to different categories based on its
own features and other neighborhoods (e.g., an immune cold
tumor, an immune hot tumor). To this end, a graph of
neighborhoods was created, where nodes consist of cellular
neighborhoods and edges represent connections. Similar to
cellular neighborhood learning, neighborhood features were
aggregated and assigned to A tissue areas with an assignment
matrix SA 2 RN ´A.

From these patch assignment matrices SP; SN; SA NaroNet
calculated a patient enrichment vector with a max-sum pooling
operation:

P ¼
X

1::L

max
1::P

SPð Þ 2 RP
(1)

N ¼
X

1::L

max
1::N

SNð Þ 2 RN
(2)

A ¼
X

1::L

max
1::N

SAð Þ 2 RA
(3)

This intuitive trainable aggregation function allowed the
network to obtain a patient vector that gathered how abundant
each phenotype, neighborhood, and area was in the tissue. These
abundance values were then used to calculate the final patient
prediction score of recurrence. To this end, the patient enrichment
vector P;N ;A½ � was fed to a one-layer perceptron that outputs
two final values, with one being the probability that patients will
experience disease recurrence and the other the probability they
will not experience recurrence. To obtain these probability values,
a softmax operation was applied. The network parameters were
updated using a cross-entropy function loss. The combination of
trainable assignment matrices and max-sum pooling allowed the
identification and annotation of tumor microenvironmental
informative features from multiplexed images to predict the
patient probability of disease recurrence. Further description of
the method can be found in ref. 16.

Hyperparameter tuning
To determine the configuration that provides the highest
predictive performance, we incorporated an architecture search
algorithm into the training phase. To this end, we use the Tune
framework v1.0.0 with the ASHA search strategy to explore the
search space44,45. We tested 400 model architectures for five
different learning rates (1e-2, 1e-3, 5e-3, 1e-4, and 5e-4), for six
weight decays (1e-3, 1e-4, 5e-4, 1e-5, 5e-5, and 1e-6), for three
numbers of hops when learning neighborhoods (1, 2, and 3), for
four neural network hidden dimensionalities (32, 64, 96, and 128),
for six dropout rates (0.01, 0.05, 0.1, 0.2, 0.3, and 0.4), for four
phenotypes (6, 9, 12, and 15), for four neighborhoods (7, 10, 13,
and 16), and for four areas (8, 11, 14, and 17).

Interpretability of the multilevel approach: local phenotypes,
cellular neighborhoods, and areas
In addition to model predictions, NaroNet provided quantification
of the tumor microenvironment at three levels of complexity: local
phenotypes, cellular neighborhoods, and tissue areas. They can be
interpreted using graphs and heatmaps.
At the local phenotype level, the 100 patches with the highest

confidence levels were selected, and their marker-mean intensity
was averaged and displayed in a heatmap. In this way, marker
expression values can be compared within phenotypes. To
measure colocalization between markers in phenotypes, the
Spearman correlation was calculated. To this end, a Spearman
value was calculated between pairs of markers for each patch and
then averaged and displayed in a heatmap. To measure nucleus
morphology parameters, Stardist25 was used on the DAPI channels
for each patch, and segmentation masks were introduced in
Morpholibj to extract features (i.e., nucleus area, cell density, and
nucleus circularity)26.
Next, cellular neighborhoods were defined as interactions, or

spatial affinities, between local phenotypes. As patches were
assigned to a neighborhood based on their own features as well
as their k-hop adjacent ones, a k= 2 hop-based neighborhood
was composed of 12 patches. Then, for each neighborhood, we
calculated the local phenotypes to which adjacent patches were
assigned. This was exhaustively done for all neighborhoods in all
images from the patient cohort. Once count values were
computed, cellular neighborhood composition was visualized in
a heatmap by performing a z-scored normalization, showing all
the local phenotypes that make up the neighborhoods.
Next, tissue areas were defined as interactions, or spatial

affinities, between cellular neighborhoods. As areas were calcu-
lated from a graph of neighborhoods, each of the neighborhoods
was assigned to one area or another. Images were exhaustively
evaluated to obtain the neighborhood assignment to areas. These
counts were area-wise z-score normalized and visualized in a
heatmap.
Finally, to investigate the association between local phenotypes,

cellular neighborhoods, and tissue areas with clinical character-
istics and molecular subtypes, we compared the relative
abundance of each of these features with different clinical,
pathological, and molecular characteristics of the tumors.
Associations with FIGO stage and age were analyzed by Spearman
correlation. The other variables were analyzed by a two-sided t-
test. All p values were penalized using False Discovery Reach.

Visualization of images
To interpret the local phenotypes, cellular neighborhoods and the
tissue area composition of the different regions in a given tissue
image, we computed and saved the normalized assignment
scores (after they were converted to a probability distribution by
applying the softmax function) for all the patches extracted from a
tissue image. The normalized assignment scores for each element
from the tumor microenvironment (local phenotypes, cellular
neighborhoods, and tissue areas) were converted to an RGB scale
using a diverging color map and displayed on top of their
respective spatial locations in the image to visually identify and
interpret microenvironmentally distinct regions that were asso-
ciated with recurrence. Patches with high confidence values are
displayed in yellow, and patches with low-confidence values are
displayed in black (Fig. 6, top right images).

Molecular subtype characterization
Mismatch repair protein (MMRP) status and p53 expression
pattern were determined by IHC as described previously46,47.
Briefly, immunohistochemistry was performed on TMA sections
using the following primary antibodies: MLH1 (prediluted, ES05,
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Dako-Agilent), PMS2 (prediluted, EP51, Dako-Agilent), MSH2
(prediluted, FE11, Dako-Agilent), MSH6 (prediluted, EP49, Dako-
Agilent), and p53 (prediluted, DO-7, Dako-Agilent). For mismatch
repair proteins, a partial or complete absence of nuclear
expression of any of the markers was considered abnormal. For
p53 pattern determination, either diffuse intense nuclear expres-
sion, absent nuclear expression, or cytoplasmic staining was
considered abnormal. Mutations in the POLE exonuclease domain
(exons 9, 11, 13, and 14) were detected by Sanger sequencing as
described previously in ref. 46.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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