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A standardized framework for risk-based assessment of
treatment effect heterogeneity in observational healthcare
databases
Alexandros Rekkas 1✉, David van Klaveren2,3, Patrick B. Ryan4,5, Ewout W. Steyerberg 6, David M. Kent 3 and Peter R. Rijnbeek1

Treatment effects are often anticipated to vary across groups of patients with different baseline risk. The Predictive Approaches to
Treatment Effect Heterogeneity (PATH) statement focused on baseline risk as a robust predictor of treatment effect and provided
guidance on risk-based assessment of treatment effect heterogeneity in a randomized controlled trial. The aim of this study is to
extend this approach to the observational setting using a standardized scalable framework. The proposed framework consists of
five steps: (1) definition of the research aim, i.e., the population, the treatment, the comparator and the outcome(s) of interest; (2)
identification of relevant databases; (3) development of a prediction model for the outcome(s) of interest; (4) estimation of relative
and absolute treatment effect within strata of predicted risk, after adjusting for observed confounding; (5) presentation of the
results. We demonstrate our framework by evaluating heterogeneity of the effect of thiazide or thiazide-like diuretics versus
angiotensin-converting enzyme inhibitors on three efficacy and nine safety outcomes across three observational databases. We
provide a publicly available R software package for applying this framework to any database mapped to the Observational Medical
Outcomes Partnership Common Data Model. In our demonstration, patients at low risk of acute myocardial infarction receive
negligible absolute benefits for all three efficacy outcomes, though they are more pronounced in the highest risk group, especially
for acute myocardial infarction. Our framework allows for the evaluation of differential treatment effects across risk strata, which
offers the opportunity to consider the benefit-harm trade-off between alternative treatments.
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INTRODUCTION
Treatment effects often vary substantially across individual
patients, causing overall effect estimates to be inaccurate for a
significant proportion of the patients at hand1,2. Understanding
this heterogeneity of treatment effects (HTE) has been crucial for
both personalized (or precision) medicine and comparative
effectiveness research, giving rise to a wide range of approaches
for its discovery, evaluation and application in clinical practice. A
common approach to evaluating HTE in clinical trials is through
subgroup analyses. However, as these analyses are rarely
adequately powered, they can lead to false conclusions of
absence of HTE or exaggerate its presence3,4. In addition, patients
differ in multiple characteristics simultaneously, resulting in much
richer HTE compared to the heterogeneity explored with regular
one-variable-at-a-time subgroup analyses.
Baseline risk is a summary score inherently related to treatment

effect that can be used to represent the variability in patient
characteristics3,5–8. For example, an invasive coronary procedure—
compared to medical treatment—improves survival in patients
with myocardial infarction at high (predicted) baseline risk but not
in those at low baseline risk9. It has also been shown that high-risk
patients with pre-diabetes benefit substantially more from a
lifestyle modification program than low-risk patients10.
The recently proposed Predictive Approaches to Treatment effect

Heterogeneity (PATH) statement provides systematic guidance on
the application of risk-based methods for the assessment of HTE in

randomized controlled trial (RCT) data11,12. After risk-stratifying
patients using an existing or an internally derived prediction model,
risk stratum-specific estimates of relative and absolute treatment
effect are evaluated. Several methods for predictive HTE analysis
have been adapted for use in observational data, but risk-based
methods are still not readily available and have been highlighted as
an important future research need12.
The Observational Health Data Science and Informatics (OHDSI)

collaborative has established a global network of data partners and
researchers that aim to bring out the value of health data through
large-scale analytics by mapping local databases to the Observational
Medical Outcomes Partnership (OMOP) Common Data Model
(CDM)13,14. A standardized framework applying current best practices
for comparative effectiveness studies within the OHDSI setting has
been proposed15. This framework was successfully implemented in
the Large-scale Evidence Generation and Evaluation across a
Network of Databases for Hypertension (LEGEND-HTN) study. In this
study, average effects of all first-line hypertension treatment classes
were estimated for a total of 55 outcomes across a global network of
nine observational databases16.
LEGEND-HTN found benefit for patients treated with thiazide or

thiazide-like diuretics compared to angiotensin-converting
enzyme (ACE) inhibitors in terms of three main outcomes of
interest, i.e., acute myocardial infarction (MI), hospitalization with
heart failure, and stroke. Thiazide or thiazide-like diuretics also had
a better safety profile compared to ACE inhibitors which,
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according to that study, makes them an attractive option for first-
line treatment of hypertension. However, as already pointed out,
overall (average) effect estimates may not be applicable to large
portions of the target population due to strong variability of
important patient characteristics. A risk-based analysis of treat-
ment effect heterogeneity can add further insights to the results
of LEGEND-HTN, both in understanding how treatment effects
evolve with increasing baseline outcome risk and in identifying
patient subgroups, which could be targeted with a certain
treatment.
Hereto, we focus on the three main outcomes of LEGEND-HTN

(acute MI, hospitalization with heart failure, and stroke) and nine
safety outcomes (hyponatremia, hypotension, acute renal failure,
angioedema, kidney disease, cough, hyperkalemia, hypokalemia, and
gastrointestinal bleeding). For our analyses, we develop a systematic
framework for risk-based assessment of treatment effect hetero-
geneity in observational healthcare databases, extending the existing
methodology from the RCT setting. The suggested framework is also
implemented in an open-source, publicly available R-package. It is
highly scalable and can be easily implemented across a network of
observational databases mapped to OMOP-CDM.

RESULTS
Overview
The proposed framework defines 5 distinct steps: (1) definition of
the research aim; (2) identification of the databases within which
the analyses will be performed; (3) prediction of outcomes of
interest; (4) estimation of absolute and relative treatment effects
within risk strata; (5) presentation of the results. We developed an
open-source R-package for the implementation of the proposed
framework and made it publicly available (https://github.com/
OHDSI/RiskStratifiedEstimation). An overview of the entire frame-
work can be found in Fig. 1.
As a demonstration, we evaluated treatment effect hetero-

geneity of thiazide or thiazide-like diuretics compared to ACE
inhibitors using acute MI risk quarter-specific effect estimates,
both on the relative and on the absolute scale. We focused on
three efficacy outcomes (acute MI, hospitalization with heart
failure, and ischemic or hemorrhagic stroke) and nine safety
outcomes (acute renal failure, kidney disease, cough, hyperkale-
mia, hypokalemia, gastrointestinal bleeding, hyponatremia, hypo-
tension, and angioedema). We used data from three US-based
claims databases.

Fig. 1 Framework overview. Illustration of the framework’s application on two observational databases, preferably mapped to OMOP-CDM.
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Step 1: General definition of the research aim
We considered the following research aim: “compare the effect of
thiazide or thiazide-like diuretics (T ) to the effect of ACE inhibitors
(C) in patients with established hypertension with respect to 12
outcomes (O1; ¼ ;O12)”. The required cohorts are:

● Treatment cohort: Patients receiving any drug within the class
of thiazide or thiazide-like diuretics with at least one year of
follow-up before treatment initiation and a recorded hyper-
tension diagnosis within that year.

● Comparator cohort: Patients receiving any drug within the ACE
inhibitor class with at least one year of follow-up before
treatment initiation and a recorded hypertension diagnosis
within that year.

● Outcome cohorts: We considered three efficacy and nine safety
outcome cohorts. These were patients in the database with a
diagnosis of: acute MI; hospitalization with heart failure; ischemic
or hemorrhagic stroke (efficacy outcomes); acute renal failure;
kidney disease; cough; hyperkalemia; hypokalemia; gastrointest-
inal bleeding; hyponatremia; hypotension; angioedema (safety
outcomes).

All cohort definitions were identical to the ones used in the
multinational LEGEND-HTN study16. More information can be
found in the Supplementary Results (Sections A and B) and
Supplementary Tables 1–19.

Step 2: Identification of the databases
For our demonstration we used data from three US claims databases,
namely IBM® MarketScan® Commercial Claims and Encounters
(CCAE), IBM® MarketScan® Multi-State Medicaid (MDCD), and IBM®
MarketScan® Medicare Supplemental Beneficiaries (MDCR). More
information on the included databases can be found in Supplemen-
tary Results Section D. Our analyses included a total of 355,826 (CCAE),
54,835 (MDCD), and 37,882 (MDCR) patients initiating treatment with
thiazide or thiazide-like diuretics and 930,629 (CCAE), 106,492 (MDCD),
and 105,852 (MDCR) patients initiating treatment with ACE inhibitors
(Table 1). Patient characteristics are available in Supplementary Tables
20–22. Adequate numbers of patients were included in all strata of
predicted acute MI risk (Supplementary Table 23).

Step 3: Prediction
We internally developed separate prediction models for 2-year
acute MI risk in each of the three databases. The prediction
models were fitted on the propensity score-matched (1:1) subset
of the entire study population, using a caliper of 0.2 and after
excluding patients having the outcome at any time prior to
treatment initiation. We considered a large set of candidate
predictors containing patients’ demographic information (age,
sex), disease and medication history, and the Charlson comorbid-
ity index (Romano adaptation) measured in the year prior to
treatment initiation. As all three databases are mapped to OMOP-
CDM, coding of all predictors was uniform across databases. This
enables the development of the prediction models for acute MI
risk in a uniform fashion across databases. However, due to the
differences in data capture among databases, we cannot expect
that all covariates will be present in all databases. We developed
the prediction models using LASSO logistic regression with 3-fold
cross validation for hyper-parameter selection. In Supplementary
Table 24 we show the available sample sizes on which the
prediction models were developed, while in Supplementary
Tables 25–27 we show the 20 selected covariates with the largest
coefficients in each database.
The models had moderate discriminative ability (internally

validated) in CCAE and MDCD and lower discriminative ability in
MDCR (Table 2).

Step 4: Estimation
In each database, we used patient-level predictions of the
internally derived acute MI risk prediction model to stratify the
patients into three acute MI risk groups RG-1, RG-2, and RG-3

Table 1. Sample sizes. Number of patients, person years and events for the three efficacy outcomes of the study across the three databases after
excluding patients with prior outcomes.

Thiazides or thiazide-like diuretics Ace inhibitors

Outcome Patients Person years Outcomes Patients Person years Outcomes

CCAE

Acute myocardial infarction 355,826 204,593 405 930,369 584,167 1813

Hospitalization with heart failure 355,528 204,451 389 930,629 584,541 1492

Stroke 354,446 203,792 425 923,604 579,736 1636

MDCD

Acute myocardial infarction 54,835 21,440 76 106,492 51,481 440

Hospitalization with heart failure 54,354 21,290 212 105,005 50,878 835

Stroke 54,259 21,179 149 104,410 50,334 562

MDCR

Acute myocardial infarction 37,882 24,642 161 105,852 74,990 732

Hospitalization with heart failure 37,617 24,509 277 105,134 74,654 1196

Stroke 37,248 24,267 261 102,502 72,705 977

Table 2. Prediction performance. Discriminative ability (c-statistic) of
the derived prediction models for acute MI in the matched set
(development set), the treatment cohort, the comparator cohort, and
the entire population in CCAE, MDCD, and MDCR. Values in
parentheses are cross-validated 95% confidence intervals. Matched
population is the propensity score-matched subset in each database
on which the prediction models were developed. Treatment
population is the set of patients receiving thiazide or thiazide-like
diuretics in each database, while comparator population is the set of
patients receiving ACE inhibitors. Finally, entire population refers to
the combined set of treatment and comparator patients.

Population CCAE MDCD MDCR

Matched 0.73 (0.71, 0.74) 0.76 (0.73, 0.79) 0.65 (0.62, 0.68)

Treatment 0.73 (0.71, 0.75) 0.82 (0.77, 0.86) 0.66 (0.62, 0.70)

Comparator 0.70 (0.67, 0.71) 0.74 (0.71, 0.76) 0.66 (0.64, 0.68)

Entire population 0.71 (0.70, 0.72) 0.76 (0.74, 0.78) 0.66 (0.64, 0.68)
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(patients below 1% risk, patients between 1% and 1.5% risk, and
patients above 1.5% risk). Within risk groups, in order to account
for observed confounding, we further stratified the patients into
five propensity score strata. Propensity score models were
developed within each risk group separately using the same
approach as in step 3 (LASSO logistic regression with a large set of
predefined covariates). Risk group-specific relative treatment
effects were estimated by averaging over the hazard ratio
estimates derived from Cox regression models fitted in each
propensity score stratum. Similarly, risk group-specific absolute
treatment effects were estimated by averaging over the differ-
ences in Kaplan-Meier estimates in each propensity score stratum
at 2 years after treatment initiation.
In all databases we found adequate overlap of the propensity

score distributions across the risk groups, except for high-risk
patients in CCAE (acute MI risk above 1.5%). Hence, the propensity
scores should be able to adjust for observed confounding, except
for high-risk CCAE patients (Fig. 2). The covariate balance plots
comparing covariate standardized mean differences before and
after adjustment with the propensity scores confirmed strong
imbalances for CCAE patients with acute MI predicted risk above
1.5% (Fig. 3). Owing to very limited overlap of the preference score
distributions (Fig. 2) and persisting imbalances after stratification
on the propensity scores (Fig. 3), we do not present the results for
patients at risk above 1.5% for acute MI in CCAE. Additionally, a
small number of characteristics remained slightly imbalanced
even after stratification on the propensity scores for the two lower
acute MI risk groups of MDCD (Fig. 3). Therefore, results from
analyses in this database should be interpreted with caution.
Finally, the distribution of the estimated relative risks with

regard to a total of 76 negative control outcomes (Supplementary
Results, Section C) showed no evidence of residual confounding,
except for CCAE (Fig. 4)17–19. Hazard ratios for CCAE (Fig. 4, panel
a) were often significantly larger than 1 (true effect size). This
suggests significant negative effects of thiazide or thiazide-like
diuretics compared to ACE inhibitors on causally unrelated
outcomes, indicating unresolved differences between the two
treatment arms. Therefore, results from CCAE should be inter-
preted with caution, as residual confounding may still be present,
despite our propensity score adjustment. The results of the risk-
stratified negative control analyses for each database can be
found in Supplementary Figs. 1–3.

Step 5: Presentation of results
On average, thiazide or thiazide-like diuretics were beneficial
compared to ACE inhibitors for all outcomes, except for
hospitalization with heart failure in CCAE and stroke in MDCD
(Table 3). The hazard ratios are in line with, but not equal to, those
reported in the LEGEND-HTN study, mainly because of restricting
time at risk to two years.
For the primary outcomes (acute MI, hospitalization with heart

failure and stroke) relative treatment effect estimates of thiazide
or thiazide-like diuretics versus ACE inhibitors varied substantially
across risk groups, but no clear trends indicating an association
between risk and relative treatment effect estimates were
observed (Fig. 5).
For acute MI, hazard ratios showed an increasing trend with

increasing baseline acute MI risk in MDCD and CCAE, implying
larger benefit on the relative scale for patients in the lower risk
groups. This was less pronounced in MDCR (Fig. 5; panel a). For
hospitalization with heart failure, hazard ratios were similar across
all acute MI risk strata in MDCD, with a slightly decreasing trend
favoring thiazide or thiazide-like diuretics (Fig. 5; panel b). In
MDCR, these hazard ratios were very similar to MDCD for patients
at acute MI risk higher than 1%. For patients below 1% acute MI
risk, hazard ratios were close to 1 (negligible relative treatment
effects) in all three databases. Finally, for stroke, the hazard ratios

indicated a beneficial effect of thiazide or thiazide-like diuretics in
all databases, but we found no clear trends in hazard ratios across
acute MI risk groups (Fig. 5; panel c).
Absolute treatment effects (risk reduction) for acute MI and

hospitalization with heart failure tended to increase with
increasing acute MI risk (Fig. 6; panels a and b). This was most
evident in MDCD, where the absolute benefits for acute MI were
0.25% (0.03% to 0.48%; 95% CI) and 1.57% (0.49% to 2.65%; 95%
CI) in the lowest and the highest acute MI risk group, respectively.
Similarly, in MDCR these absolute benefits were −0.04% (−0.40%
to 0.32%; 95% CI) and 0.70% (0.04% to 1.37%; 95% CI),
respectively. For hospitalization with heart failure, these absolute
benefits were −0.07% (−0.50% to 0.36%; 95% CI) and 2.31%
(0.22% to 4.39%; 95% CI), respectively, in MDCD and −0.05%
(−0.59% to 0.49%; 95% CI) and 0.97% (−0.16% to 2.09%; 95% CI),
respectively, in MDCR. In CCAE, we found negligible treatment
effects on the absolute scale for all three outcomes. Finally, for
stroke, the differences on the absolute scale were small in all risk
groups and databases (Fig. 6; panel c).
Across all databases and all risk groups (Fig. 7), thiazide or

thiazide-like diuretics reduced the risk for angioedema, cough,
hyperkalemia, and hypotension, but were associated with
increased risk of hypokalemia and hyponatremia. For cough and
hypokalemia, the relative treatment effect tended to decrease
with increasing MI risk (hazard ratios moving closer to 1).
The absolute benefit for angioedema of thiazide or thiazide-like

diuretics was negligible, despite the large treatment effect
estimated on the relative scale (Fig. 8; panel b). The absolute risk
increase of hypokalemia was large with thiazide or thiazide
diuretics—as expected based on the effect estimates on the
relative scale—across all risk strata (Fig. 8; panel f). This effect
remained relatively constant across acute MI risk groups in MDCR,
fluctuating between −4.13% and −3.25%. Similar effects on the
absolute scale were observed in CCAE, where effect estimates
were close to −5% for all patients below 1.5% risk of acute MI. A
much larger hypokalemia risk increase with thiazide or thiazide-
like diuretics was observed in MDCD, where the absolute effect
estimates evolved from −9.89% (−11.23% to −8.54%; 95% CI) in
patients below 1% acute MI risk to −15.58% (−23.78% to −7.38%;
95% CI) in patients above 1.5% acute MI risk. The absolute benefit
estimates of thiazide or thiazide-like diuretics for cough ranged
between 3.05% and 3.77% in CCAE, and between 2.32% and
3.73% in MDCR (Fig. 8; panel c). In MDCD, we observed a small risk
increase of cough with thiazide or thiazide-like diuretics in
patients at high acute MI baseline risk (−1.82% with a 95% CI
from −7.82% to 4.17%). Finally, we observed a small risk increase
of hyponatremia with thiazide or thiazide diuretics, which was
more substantial in patients with high acute MI risk in MDCR
(−1.91% with a 95% CI from −3.43% to −0.38%).

Interpretation
The overall benefits of thiazide or thiazide-like diuretics compared
to ACE inhibitors that were observed in MDCR, in terms of acute
MI and hospitalization with heart failure, were mainly driven by
patients with predicted acute MI risk above 1.5%. Even in MDCD,
where benefit on the absolute scale was observed across all acute
MI risk strata, treatment effects were much larger in patients with
predicted acute MI risk above 1.5%. In CCAE, where the majority of
the patients had a predicted acute MI risk below 1%, we found
negligible treatment effects. This provides further support for the
similarity of the effect of thiazide or thiazide-like diuretics
compared to ACE inhibitors in patients at low risk of acute MI.
Even though LEGEND-HTN found beneficial effects of thiazide

or thiazide-like diuretics over ACE inhibitors in terms of several
safety outcomes, there are still safety concerns when prescribing
thiazide or thiazide-like diuretics. The hypokalemia and hypona-
tremia risk increase with thiazide or thiazide-like diuretics was not
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Fig. 2 Preference score distributions within strata of predicted acute MI risk. RG-1 represents patients with acute MI risk lower than 1%; RG-
2 represents patients with acute MI risk between 1% and 1.5%; RG-3 represents patients with acute MI risk larger than 1.5%. The preference
score is a transformation of the propensity score that adjusts for prevalence differences between populations. The percentages in each figure
represent the amount of preference score overlap between treatment arms. Higher overlap of the preference score distributions indicates that
patients in the target and the comparator cohorts are more similar in terms of the predicted probability of receiving treatment (thiazide or
thiazide-like diuretics).

Fig. 3 Covariate balance. Patient characteristic balance for thiazide or thiazide-like diuretics and ACE inhibitors before and after stratification
on the propensity scores. RG-1 represents patients with acute MI risk lower than 1%; RG-2 represents patients with acute MI risk between 1%
and 1.5%; RG-3 represents patients with acute MI risk larger than 1.5%. Each point represents the standardized difference of means for a single
covariate before (x-axis) and after (y-axis) stratification. A commonly used rule of thumb suggests that standardized mean differences above
0.1 after propensity score adjustment indicate insufficient covariate balance.
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negligible in any of the acute MI risk strata. On the other hand,
ACE inhibitor-related cough risk increase was also present in all
databases and acute MI risk groups. Provided that absolute
benefits of thiazide or thiazide-like diuretics for the main
outcomes (acute MI, hospitalization with heart failure, and stroke)
were mainly observed in patients at high acute MI risk, the
prescribing physician has to carefully weigh benefits and harms
for individual patients.
Note that any conclusions drawn are for demonstration

purposes only and should be interpreted under this very limited
setting.

Sensitivity analyses
As a sensitivity analysis, we evaluated treatment effect hetero-
geneity of thiazide or thiazide-like diuretics compared to ACE
inhibitors in patients with or without prior cardiovascular disease.
We defined the set of patients without prior cardiovascular
disease as the patients that had no occurrence in their medical
history of any of the following conditions: heart valve disorder or
transplanted heart valve, coronary artery disease, cardiac dysfunc-
tion, heart block, unstable angina, atrial fibrillation, myocardial
infarction, ventricular arrhythmia or cardiac arrest, ischemic heart
disease, myocarditis or pericarditis, cardiomyopathy,

cardiomegaly, heart failure, or stroke (ischemic or hemorrhagic).
If patients had any of these conditions recorded in their medical
history, they were assigned to the group with prior cardiovascular
disease. We repeated our analyses using the exact same settings
for both groups of patients.
In patients without prior cardiovascular disease, the estimates of

the relative effect of thiazide or thiazide-like diuretics compared to
ACE inhibitors on acute MI were similar to the original analyses—
hazard ratios 0.90 (0.79 to 1.02; 95% CI), 0.52 (0.36 to 0.74; 95% CI),
and 0.83 (0.65 to 1.05; 95% CI) in CCAE, MDCD, and MDCR
respectively. In patients with prior cardiovascular disease the
effect of thiazide or thiazide-like diuretics was stronger in CCAE—
hazard ratio 0.73 (0.55 to 0.95; 95% CI)—but weaker in MDCD and
MDCR—hazard ratios 0.78 (0.51 to 1.16; 95% CI) and 0.88 (0.66 to
1.15; 95% CI), respectively. In both sets of sensitivity analyses, risk-
stratified results showed trends comparable to the original
analysis (Supplementary Figs. 4–11).

DISCUSSION
In this study we develop a risk-based framework for the
assessment of treatment effect heterogeneity in large observa-
tional databases. Our framework fills a gap identified in the
literature after the development of guidelines for performing such

Fig. 4 Systematic error. Effect size estimates for the negative controls (true hazard ratio= 1) in a CCAE, b MDCD, and c MDCR databases.
Estimates below the diagonal dashed lines are statistically significant (different from the true effect size; alpha= 0.05). A well-calibrated
estimator should include the true effect size within the 95% confidence interval, 95% of times.

Table 3. Relative effect estimates. Hazard ratio estimates for the overall treatment effect of thiazide or thiazide-like diuretics compared to ACE
inhibitors. Values in brackets are 95% confidence intervals.

Outcome CCAE MDCD MDCR

Acute myocardial infarction 0.86 (0.77, 0.97) 0.60 (0.46, 0.77) 0.82 (0.68, 0.98)

Hospitalization with heart failure 0.99 (0.88, 1.12) 0.84 (0.71, 0.99) 0.83 (0.72, 0.95)

Stroke 0.87 (0.78, 0.97) 0.87 (0.71, 1.06) 0.90 (0.78, 0.95)
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analyses in the RCT setting11,12. As an additional contribution we
provide the software for implementing this framework in practice
and make it publicly available. We made our software compatible
to databases mapped to OMOP-CDM, which allows researchers to
easily implement our framework in a global network of healthcare
databases. In our case study we demonstrate the use of our
framework for the evaluation of treatment effect heterogeneity of
thiazide or thiazide-like diuretics compared to ACE inhibitors on
three efficacy and nine safety outcomes. We propose that this
framework is implemented any time treatment effect estimation
in high-dimensional observational data is undertaken.
In recent years, several methods for the analysis of treatment

effect heterogeneity have been developed in the RCT setting20.
However, low power and restricted prior knowledge on the
mechanisms of variation in treatment effect are often inherent in
RCTs, which are usually adequately powered only for the analysis
of the primary outcome. Observational databases contain a large
amount of information on treatment assignment and outcomes of
interest, while also capturing key patient characteristics. They
contain readily available data on patient sub-populations of
interest on which no RCT has focused before either due to
logistical or ethical reasons. However, observational databases can
be susceptible to biases, poorly measured outcomes and
missingness, which may obscure true HTE or falsely indicate it
when there is none21. Therefore, inferences on both overall
treatment effect estimates and HTE need to rely on strong—often
unverifiable—assumptions, despite the advancements and gui-
dance on best practices. When evaluating treatment effect
heterogeneity using a risk-based approach these issues may be
compounded, mainly because of the risk of conflating confound-
ing and effect modification. Well-designed observational studies

on average replicate RCT results, even though often differences in
magnitude may occur22. Our framework is in line with the recently
suggested paradigm of high-throughput observational studies
using consistent and standardized methods for improving
reproducibility in observational research19. However, more empiri-
cal research comparing analyses of observational data and RCTs is
required to assess the conditions under which different
approaches for evaluating treatment effect heterogeneity provide
credible results. Our software package can help support this
research.
Our framework highlights the scale dependency of HTE and

how it relates to baseline risk. Treatment effect is mathematically
determined by baseline risk, if we assume a constant non-zero
effect size23. Patients with low baseline risk can only experience
minimal benefits, before their risk is reduced to zero. In contrast,
high-risk patients can potentially have much larger absolute
benefits. This becomes evident when evaluating the safety of
thiazide or thiazide-like diuretics on angioedema and cough, both
adverse events linked to treatment with ACE inhibitors. For
angioedema, the substantial relative risk increase with ACE
inhibitors only translated in a small risk increase on the absolute
scale due to the limited baseline angioedema risk. Conversely,
despite the small relative cough risk increase of ACE inhibitors, the
large baseline cough risk resulted in larger absolute risk
differences, compared to the other considered outcomes.
For patients with comorbidities the Guidelines of the American

College of Cardiology often recommend initiation of treatment
with ACE inhibitors, e.g., for patients with stable ischemic heart
disease or patients with preserved ejection fraction24. Since these
are patients with more severe medical conditions there may be a
potential interaction of baseline acute MI risk with the propensity

Fig. 5 Relative treatment effects for main outcomes. Treatment effect heterogeneity for the main outcomes on the relative scale (hazard
ratios) of thiazide or thiazide-like diuretics compared to ACE inhibitors within strata of predicted acute MI risk. In a we present treatment
effects on the relative scale for acute MI within groups of predicted acute MI risk across all three databases. In b we present treatment effects
on the relative scale for hospitalization with heart failure within groups of predicted acute MI risk across all three databases. In c we present
treatment effects on the relative scale for stroke (both ischemic and hemorrhagic) within groups of predicted acute MI risk across all three
databases. RG-1 represents the group of patients with acute MI risk below 1%; RG-2 represents the group of patients with acute MI risk
between 1% and 1.5%; RG-3 represents the group of patients with acute MI risk larger than 1.5%. Hazard ratios estimated in CCAE, MDCD, and
MDCR are represented by blue, green, and orange circles, respectively. The bars represent 95% confidence intervals. Values below 1 favor
thiazide or thiazide-like diuretics, while values above 1 favor ACE inhibitors.
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of receiving a thiazide or a thiazide-like diuretic. We do not
formally test for that interaction, however, we observed that with
increasing acute MI baseline risk, the overlap of the propensity
score distributions decreases and the propensity score distribu-
tions for each treatment arm become more skewed, especially in
CCAE and MDCD (Fig. 2). This could potentially result in
unobserved confounding being present even after propensity
score adjustment. Indeed, in CCAE, negative control analyses
showed evidence of residual confounding and therefore results
should be interpreted with caution. In risk-stratified negative
control analyses we observed more evidence of residual
confounding in patients with higher acute MI risk, which was,
however, not identified in the other two databases.
The application of our framework in the case study is for

demonstration purposes and there are several limitations to its
conclusions. First, risk groups defined in each database were not
defined using a universal prediction model, but using internally
developed prediction models in each database. Future research
could explore model combination or transfer learning methods for
the development of universal risk prediction models. Second,
death could be a competing risk. We could expand our framework
in the future to potentially support sub-distribution hazard ratios
and cumulative incidence reductions. Third, we only used the
databases readily available to us and not all the available
databases mapped to OMOP-CDM. Therefore, the generalizability
of our results still needs to be explored in future studies. These
studies should also address the particular aspects of the databases
at hand, such as their sampling frame, the completeness of the
data they capture and many other aspects that were not assessed
in our demonstration. Fourth, we did not correct for multiplicity
when presenting the results. We are interested in presenting

trends in the data rather than detecting specific subgroups with
significant treatment effects. The implementation of our frame-
work, however, generates all the relevant output required for a
researcher to correct for multiple testing, if that is required.
In conclusion, the case study demonstrates the feasibility of our

framework for risk-based assessment of treatment effect hetero-
geneity in large observational data. It is easily applicable and
highly informative whenever treatment effect estimation in high-
dimensional observational data is of interest.

METHODS
Step 1: General definition of the research aim
The typical research aim is: “to compare the effect of treatment to
a comparator treatment in patients with a disease with respect to
outcomes O1; ¼ ;On”.
We use a comparative cohort design. This means that at least

three cohorts of patients need to be defined at this stage of the
framework:

● A single treatment cohort (T ), which includes patients with
disease receiving the target treatment of interest.

● A single comparator cohort (C), which includes patients with
disease receiving the comparator treatment.

● One or more outcome cohorts (O1; ¼ ;On) that contain
patients developing the outcomes of interest

Step 2: Identification of the databases
Including in our analyses multiple databases representing the
population of interest potentially increases the generalizability of

Fig. 6 Absolute treatment effects for main outcomes. Treatment effect heterogeneity for the main outcomes on the absolute scale of
thiazide or thiazide-like diuretics compared to ACE inhibitors within strata of predicted acute MI risk. In a we present treatment effects on the
absolute scale for acute MI within groups of predicted acute MI risk across all three databases. In b we present treatment effects on the
absolute scale for hospitalization with heart failure within groups of predicted acute MI risk across all three databases. In c we present
treatment effects on the absolute scale for stroke (both ischemic and hemorrhagic) within groups of predicted acute MI risk across all three
databases. RG-1 represents the group of patients with acute MI risk below 1%; RG-2 represents the group of patients with acute MI risk
between 1% and 1.5%; RG-3 represents the group of patients with acute MI risk larger than 1.5. Absolute treatment effects estimated in CCAE,
MDCD, and MDCR are represented by blue, green, and orange circles, respectively. The bars represent 95% confidence intervals. Values above
0 favor thiazide or thiazide-like diuretics, while values below 0 favor ACE inhibitors.

A. Rekkas et al.

8

npj Digital Medicine (2023)    58 Published in partnership with Seoul National University Bundang Hospital



results. Furthermore, the cohorts should preferably have adequate
sample size with adequate follow-up time to ensure precise effect
estimation, even within smaller risk strata. Other relevant issues
such as the depth of data capture (the precision at which
measurements, lab tests, conditions are recorded) and the
reliability of data entry should also be considered.
In our analyses, we used data from IBM® MarketScan®

Commercial Claims and Encounters (CCAE), IBM® MarketScan®
Medicaid (MDCD), and IBM® MarketScan® Medicare Supplemental
Beneficiaries (MDCR). The New England Institutional Review Board
(IRB) has determined that studies conducted in these databases
are exempt from study-specific IRB review, as these studies do not
qualify as human subjects research.

Step 3: Prediction
For our risk-based approach to adequately evaluate treatment
effect heterogeneity, a well performing prediction model assign-
ing patient-level risk for the outcome of interest needs to be
available, either from literature or internally developed from the
data at hand. For internally developing a risk prediction model we
adopt a standardized framework focused on observational data
that ensures adherence to existing guidelines25–27. We use the
derived prediction model to separate the patient population into
risk strata, within which treatment effects on both the relative and
the absolute scale will be assessed.
For the development of the risk prediction model, we first need

to define a target cohort of patients, i.e., the set of patients on

whom the prediction model will be developed. In our case, the
target cohort is generated by pooling the already defined
treatment and comparator cohorts. We develop the prediction
model on the propensity score-matched (1:1) subset of the pooled
sample to avoid differentially fitting between treatment arms, thus
introducing spurious interactions with treatment28,29. We also
need to define a set of patients that experience the outcome of
interest, i.e., the outcome cohort. Finally, we need to decide the
time frame within which the predictions will be carried out, i.e.,
the patients’ time at risk. Subsequently, we can develop the
prediction model.
It is important that the prediction models display good

discriminative ability to ensure that risk-based subgroups are
accurately defined. A performance overview of the derived prediction
models including discrimination and calibration both in the
propensity score-matched subset, the entire sample and separately
for treated and comparator patients should also be reported.

Step 4: Estimation
We estimate treatment effects (both on the relative and the
absolute scale) within risk strata defined using the prediction
model of step 3. We often consider four risk strata, but fewer or
more strata can be considered depending on the available power
for accurately estimating stratum-specific treatment effects. Effect
estimation may be focused on the difference in outcomes for a
randomly selected person from the risk stratum (average
treatment effect) or for a randomly selected person from the

Fig. 7 Relative treatment effects for safety outcomes. Treatment effect heterogeneity for the safety outcomes on the relative scale (hazard
ratios) of thiazide or thiazide-like diuretics compared to ACE inhibitors within strata of predicted acute MI risk. Panels present treatment effects
on the relative scale for a acute renal failure, b angioedema, c cough, d gastrointestinal bleeding, e hyperkalemia, f hypokalemia,
g hyponatremia, h hypotension, and i kidney disease within groups of predicted acute MI risk across all three databases. RG-1 represents the
group of patients with acute MI risk below 1%; RG-2 represents the group of patients with acute MI risk between 1% and 1.5%; RG-3
represents the group of patients with acute MI risk larger than 1.5%. Hazard ratios estimated in CCAE, MDCD, and MDCR are represented by
blue, green, and orange circles, respectively. Bars represent 95% confidence intervals. Values below 1 favor thiazide or thiazide-like diuretics,
while values above 1 favor ACE inhibitors.
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treatment cohort within the risk stratum receiving the treatment
under study (average treatment effect on the treated).
Any appropriate method for the analysis of relative and

absolute treatment effects can be considered, as long as the this
is done consistently in all risk strata. Common statistical metrics
are odds ratios or hazard ratios for relative scale estimates and
differences in observed proportions or differences in Kaplan-Meier
estimates for absolute scale estimates, depending on the problem
at hand. We estimate propensity scores within risk strata which we
then use to match patients from different treatment cohorts or to
stratify them into groups with similar propensity scores or to
weigh each patient’s contribution to the estimation process30.
Prior to analyzing results, it is crucial to ensure that all diagnostics

are passed in all risk strata. The standard diagnostics we carry out
include analysis of the overlap of propensity score distributions and
calculation of standardized mean differences of the covariates before
and after propensity score adjustment. Finally, we use effect
estimates for a large set of negative control outcomes—i.e.,
outcomes known to not be related with any of the exposures under
study—to evaluate the presence of residual confounding not
accounted for by propensity score adjustment17–19.

Step 5: Presentation of results
In the presence of a positive treatment effect and a well-
discriminating prediction model we expect an increasing pattern

of the differences in the absolute scale, even if treatment effects
remain constant on the relative scale across risk strata. Owing
to this scale-dependence of treatment effect heterogeneity,
results should be assessed both on the relative and the
absolute scale.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from IBM® MarketScan®
but restrictions apply to the availability of these data, which were used under license
for the current study, and so are not publicly available. Data are however available
from the authors upon reasonable request and with permission of IBM®MarketScan®.
Please contact Peter R. Rijnbeek with any data-related requests.

CODE AVAILABILITY
Code for the extraction of the cohorts is available at https://github.com/ohdsi/
Legend. Source code or the execution of the study is available at https://github.com/
mi-erasmusmc/HteFramework. The source code for the R-package that implements
our framework is available at https://github.com/ohdsi/RiskStratifiedEstimation.

Fig. 8 Absolute treatment effects for safety outcomes. Treatment effect heterogeneity for the safety outcomes on the absolute scale of
thiazide or thiazide-like diuretics compared to ACE inhibitors within strata of predicted acute MI risk. Panels present treatment effects on the
absolute scale for a acute renal failure, b angioedema, c cough, d gastrointestinal bleeding, e hyperkalemia, f hypokalemia, g hyponatremia,
h hypotension, and i kidney disease within groups of predicted acute MI risk across all three databases. RG-1 represents the group of patients
with acute MI risk below 1%; RG-2 represents the group of patients with acute MI risk between 1% and 1.5%; RG-3 represents the group of
patients with acute MI risk larger than 1.5%. Absolute treatment effects estimated in CCAE, MDCD, and MDCR are represented by blue, green,
and orange circles, respectively. The bars represent 95% confidence intervals. Values above 0 favor thiazide or thiazide-like diuretics, while
values below 0 favor ACE inhibitors.
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