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Effectiveness of artificial intelligence screening in preventing
vision loss from diabetes: a policy model
Roomasa Channa1✉, Risa M. Wolf 2, Michael D. Abràmoff 3 and Harold P. Lehmann 4

The effectiveness of using artificial intelligence (AI) systems to perform diabetic retinal exams (‘screening’) on preventing vision loss
is not known. We designed the Care Process for Preventing Vision Loss from Diabetes (CAREVL), as a Markov model to compare the
effectiveness of point-of-care autonomous AI-based screening with in-office clinical exam by an eye care provider (ECP), on
preventing vision loss among patients with diabetes. The estimated incidence of vision loss at 5 years was 1535 per 100,000 in the
AI-screened group compared to 1625 per 100,000 in the ECP group, leading to a modelled risk difference of 90 per 100,000. The
base-case CAREVL model estimated that an autonomous AI-based screening strategy would result in 27,000 fewer Americans with
vision loss at 5 years compared with ECP. Vision loss at 5 years remained lower in the AI-screened group compared to the ECP
group, in a wide range of parameters including optimistic estimates biased toward ECP. Real-world modifiable factors associated
with processes of care could further increase its effectiveness. Of these factors, increased adherence with treatment was estimated
to have the greatest impact.
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INTRODUCTION
Digital Technology, including autonomous Artificial Intelligence
(AI), has the potential to improve patient outcomes, reduce health
disparities, improve access to care, and lower health-care costs1–5.
Typical metrics for evaluation of new technology focus on
efficacy6,7. In the case of diagnostic AI systems these efficacy
metrics translate into diagnostic-accuracy measures, such as
sensitivity and specificity, compared to an agreed upon reference
standard8. Multiple AI systems have been shown to be safe and
efficacious using such metrics, resulting in FDA De Novo clearance
and clinical use9–11. While these diagnostic-accuracy metrics
correctly estimate the efficacy of the diagnostic AI system, they
do not give information on the overall impact (effectiveness) of
the AI system on patient outcomes6.
Instead, the impact of implementing AI on patient outcome is

dependent on many factors beyond the diagnostic accuracy of
AI7. These factors include characteristics of the disease, such as
prevalence, and natural history, as well as potential frictions in the
care process, including access to care, adherence with a
recommended referral, and adherence with treatment and
management recommendations. In addition, treatment itself
where indicated is unlikely to be perfect, and may itself lead to
imperfect outcomes. Therefore, even if a diagnostic AI with perfect
accuracy is implemented, outcomes will be affected by these
frictions associated with processes of care, as will potential
efficiency gains, and differential effects on health inequities. These
processes of care frictions/imperfections may be less obvious, as
they cannot be determined from inspection of the standalone AI
system, but instead depend greatly on how the AI system is
integrated into the care process as well as the health delivery
network. While some AI systems, such as those used in the critical
care environment may affect patient outcome in real time, in
many cases, AI systems are designed for chronic conditions, where

a difference in outcome may take years or even decades to
manifest. Thus, process-of-care metrics need to be considered in
addition to outcomes to determine whether it is worth designing,
developing, validating, implementing, regulating and reimbursing
such AI systems6.
An example of an AI system that has the potential to affect real-

world outcomes is the first diagnostic autonomous AI (IDx-DR,
Digital Diagnostics Inc, Coralville, Iowa). It received US FDA De
Novo clearance in 2018 to autonomously, that is without human
oversight, diagnose diabetic retinopathy and macular edema—
Diabetic Retinal Disease (DRD)12. Clearance was based on efficacy,
as determined in a preregistered clinical trial11, which provided
information on the diagnostic-accuracy metrics of sensitivity and
specificity, but not on effectiveness or impact on patient
outcomes. As diabetes is a chronic disease, it will take years to
determine this impact, requiring following each patient that
interacted with the AI system to a disease endpoint for years.
Given the lack of such empirical data of the impact on patient
outcome (vision loss), we modeled screening strategies and the
downstream care process, as the Care Process for Preventing
Vision Loss from Diabetes (CAREVL) policy model, to estimate the
impact on patient outcome (vision loss).
The primary purpose of this study was to develop the CAREVL

model and leverage it to determine the differential impact of
autonomous AI-based diabetic retinal exams (‘screening’) vs
screening performed in the clinic by an eye care provider (ECP).
Secondarily, its purpose was to explore how processes of care
modulate the effectiveness of screening strategies.

RESULTS
All analytical inputs are listed in Table 1 and detailed in the
Supplementary.
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Base-case and sensitivity analysis
For the base case, in the no-screening strategy the proportion of
adults with DM who are estimated to develop any vision loss at
5 years is 1637/100,000; it is 1625/100,000 for the ECP screening
strategy, and 1535/100,000 for the AI screening strategy. Thus,
the proportion of DM participants who develop vision loss in the
model with AI-based screening (1535/100,000) is estimated to be
102/100,000 lower compared with no-screening (1535/100,000)
and 90/100,000 lower compared with ECP-based screening (1625/
100,000). The difference between no-screening and ECP is 12/
100,000. Thus, CAREVL suggests that introduction of an AI-based
screening strategy is 8.6 times more effective at preventing vision
loss than ECP, under base-case assumptions. No meaningful

thresholds were found in one-way or two-way sensitivity analyses
(See Table 2, supplementary Table 1 and supplementary Fig. 2 in
Supplementary). The results of the two-way sensitivity analysis
(supplementary Table 1) showed that across the broad range of
sensitivity values AI dominated over ECP across all ranges for the
following two-way comparisons: sensitivity and specificity of AI vs
ECP screening, and accepting AI vs ECP screening. For the
comparison regarding accepting referral after AI vs ECP screening,
AI dominated except in the unlikely scenario of low probability of
accepting referral after AI and a high probability of accepting
referral after ECP. This scenario is far from the base-case, for
further clarification, the output of this two-sensitivity analysis is
shown in supplemental Fig. 3. In 2019, an estimated 37.3 million
Americans had diabetes. If we use a conservative estimate of
30 million Americans with diabetes, based on the numbers above
we anticipate that AI-based screening strategy is expected to
prevent vision loss in over 27,000 more Americans at 5 years as
compared to ECP-based strategy, under base-case assumptions.

Maximal scenarios
The scenario analyses show that, if adherence to recommended
metabolic and ophthalmic treatment were maximized, the
estimated total number with any vision loss at 5 years would be
lower for both AI and ECP strategies when compared to the base
case, with a higher reduction noted for the AI strategy. In the
scenario that maximizes adherence to recommended treatment,
the number with any vision loss by 5 years is estimated to be
1167/100,000 for the AI strategy, an additional reduction of 367/
100,000 from the AI base case. In this scenario, the estimated total
number with any vision loss for the ECP strategy instead is 1488/
100,000, an additional reduction of 137/100,000 from the ECP base
case. In all scenarios tested, the number with vision loss per
100,000 is lower with the AI strategy compared with the ECP
strategy. Figure 1 shows the relative impact of increasing the
probability of adhering with metabolic and ophthalmic treatments
on projected vision loss for each screening strategy. Figure 2
shows the impact of maximizing diagnostic and process-of-care
metrics on vision loss when using the AI screening strategy. The
largest impacts are when adherence with recommended meta-
bolic or ophthalmic treatments is maximized. The scenario with
maximum adherence to metabolic treatment (100%) results in
110/100,000 fewer patients progressing to vision loss. The
scenario with maximum adherence to ophthalmic treatment
(100%), results in 294/100,000, fewer patients progressing, and
maximizing both results in 367/100,000 fewer patients progres-
sing. These numbers suggest an accretive effect of adherence to
both metabolic and ophthalmic treatment. Using a conservative
estimate of 30 million Americans with diabetes this translates into
vision loss prevented in over 110,000 additional Americans with
diabetes when AI-based screening is introduced, and treatment
adherence is maximized. Maximizing the effectiveness of meta-
bolic and ophthalmic treatments themselves, namely more
effective drugs or procedures—does have a marginal impact of
25–28/100,000 fewer progressing, but this is only 6.8–7.6% of the
benefit achieved by maximizing adherence to therapies that are
currently available.

DISCUSSION
Using CAREVL, we conclude that autonomous AI is expected to be
more effective than ECP-based screening at preventing vision loss
among patients with diabetes. This effectiveness can be
maximized by improving processes of care, particularly adherence
with recommended treatments. Under base-case assumptions,
introducing AI in a no-DRD-screening scenario is estimated to be
8.6 times more effective at preventing vision loss from DRD
compared with introducing ECP-based screening. The expected

Table 1. Parameters for the decision model.

Parameter Description Base-case
estimate

For
sensitivity
analysis

Low High

Population-metrics: Prevalence and natural history of disease

Prevalence of Metabolic DRD11 0.22 0 0.40

Prevalence of Ophthalmic DRD11 0.0088a 0 0.10

Prevalence of DRD with Vision Loss42,43 0.01 0 0.05

No DRD to metabolic DRD44 0.05 0 0.15

Metabolic DRD to ophthalmic DRD44 0.02 0 0.20

Ophthalmic DRD to vision loss39,40 0.075 0 0.20

Vision loss to irreversible vision loss45 0.37 0 0.50

Diagnostic-accuracy metrics: Sensitivity and Specificity of Screening
Strategies

Sensitivity of screening for DRD with
AI11,13,17

0.87 0 1

Sensitivity of screening for DRD with
ECP46

0.33 0 1

Specificity of screening for DRD with
AI11,13,17

0.91 0 1

Specificity of screening for DRD with
ECP46

0.99 0 1

Process-of-care metrics: Screening and Referral for Appropriate Care

Probability that patient follows up for eye
care after AI screen positive4,47–49

0.75 0 0.95

Probability that patient follows up for eye
exams after ECP screen positive47

0.29 0 1

Probability of patient Accepting Screening
by AI50

0.95 0 1

Probability of patient Accepting Screening
by ECP4,5,27,47,51,52

0.20 0 0.80

Probability that patient with Vision Loss
Accepts referral to ECP28

0.58 0 0.75

Process-of-care metrics: Effectiveness of treatments for DRD(Progression of
treated disease)

Metabolic DRD to ophthalmic DRD44 0.01 0 0.05

Ophthalmic DRD to vision loss39,41,53 0.02 0 0.50

Vision loss to irreversible vision loss54 0.034 0 0.05

Process-of-care metrics: Probability of Adherence to Treatment

Adhering to metabolic
management24,25,55

0.24 0 1

Adhering to ophthalmic management26,28 0.26a 0 1

Adhering to DRD vision loss
management28

0.41a 0 1

aCalculated values: see Supplementary.
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differences between ECP and autonomous AI screening strategies
are likely due to a combination of factors. While the efficacy of AI
screening systems in detecting referrable DRD has been
established in prospective trials11,13, the main drivers of higher
effectiveness are likely the point-of-care availability of AI and
immediate diagnostic output which make it more likely for a
patient to accept screening and the recommended referral4,14.
The CAREVL model is novel in that it allows evaluating the

effectiveness of AI algorithms within the context of real-world
patient workflow and the health-care system. Our approach is
based on standards for performing and reporting modeling of
expected impact of digital health technologies7,15,16.Studies
evaluating AI have traditionally focused on its diagnostic-
accuracy metrics for a given task11,17–19. However, as we have
shown, to evaluate the effectiveness of AI in the real-world we
need to know not only its diagnostic accuracy or how it performs
in controlled research settings, but its impact on patient
outcomes7. This is important because many digital and non-
digital health interventions may work well in an ideal ‘model’
setting, but real-world evaluation often reveals outcomes that are

much less compelling compared to what can be achieved in a
clinical trial setting6,20–22.
The CAREVL model further allows us to study the expected

impact of adjusting process-of-care metrics on patient outcomes
and to identify which metrics may be most important in
maximizing the effectiveness of AI within a health-care system,
given a chosen strategy. This effort has immediate real-world
implications for the implementation of AI-enabled patient-
centered care. The CAREVL model suggests that the full potential
of AI algorithms in preventing vision loss can be achieved by
optimizing processes of care. Among the process-of-care metrics
evaluated in the model, adherence with recommended metabolic
and ophthalmic treatments had the largest impact on preventing
vision loss. Prior studies such as the one by Rohan, et al., have
estimated that screening and early treatment of DRD can prevent
vision loss and reduce risk of blindness by an estimated 56%23.
However, this estimate is predicated on perfect-world assump-
tions of 100% of patients accepting screening, high sensitivity of
detecting referrable disease (88%), and 100% complying with
recommended treatments. Real-world data from the US regarding
adherence to metabolic management show that, on average, only

Table 2. One-way sensitivity analyses.

Population, diagnostic-accuracy, and process-of-care metrics Type of metric Base Case (minimum, maximum
value for sensitivity analysis)a

Thresholdd

ECP AI

Prevalence of Metabolic DRD Population 0.22 (0, 0.4) 0.22 (0,0.4) AI dominates

Offered and accepts screening for DRD Process of care 0.2 (0,0.8) 0.95 (0,1) AI dominates

Sensitivity of the DRD screening strategy Diagnostic accuracy 0.33 (0,1) 0.87 (0,1) AI dominates

Specificity of DRD screening strategy Diagnostic accuracy 0.99 (0,1) 0.91 (0,1) AI dominates

Accepts referral for eye care after a positive screen Process of care 0.29 (0,1) 0.75 (0, 0.95) 0.08b

Probability of adhering with treatment Process of care 0.24 (0,1) 0.24 (0,1) AI dominates

Effectiveness of ophthalmic treatments Process of care 0.02 (0,0.5) 0.02 (0,0.5) 0.1c

Effectiveness of metabolic treatments Process of care 0.01 (0,0.05) 0.01 (0,0.05) AI dominates

DRD diabetic retinal disease, ECP eye care provider, AI artificial intelligence.
aThe no-screening option is dominated by AI or ECP in all scenarios and has therefore not been included in this table.
bFar from base case value of 0.75.
c Far from base case value of 0.02.
dAI dominates refers to the finding that AI is the preferred strategy on each of the one-way sensitivity analyses (across the range of the minimum and
maximum values for the parameter specified in parenthesis next to the base-case value).

Fig. 1 Expected vision loss per 100,000 vs probability of adhering with treatment for each screening strategy. a, b Show that as the
adherence with recommended metabolic and ophthalmic treatments increases the number of patients with vision loss per 100,000 decreases
for both the eye care provider (ECP) and artificial intelligence (AI) screening strategies. However, the decrease in number with vision loss is
more marked for the AI vs ECP screening strategy.
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about 22% of patients with diabetes achieve the recommended
lipid, blood pressure and glucose control and only about 24% of
patients with Type 2 DM achieve a glycated-hemoglobin level of
<8%24,25. Adherence with recommended screening eye exams for
DRD and follow-up eye care is similarly low26. Analysis of insured
patients with diabetes showed that only about 15%27 met the
American Diabetes Association’s recommendation for annual DRD
screening and data from the National Health Interview Survey
showed that only about a third of insured adults in the US
followed up for eye care in the absence of visual impairment28.
These low rates are concerning, as DRD is asymptomatic until late
stages, hence the existence of Healthcare Effectiveness Data and
Information Set (HEDIS) and Merit-based Incentive Payment
System quality measures that incentivize diabetic retinal exams
to be performed early and regularly29.
The CAREVL model confirms that improving adherence with

both the current metabolic and ophthalmic treatments is key to
maximizing the success of implementing DRD screening strate-
gies. The model suggests that when autonomous AI is used as a
screening strategy, maximizing adherence with metabolic and
ophthalmic treatments prevents vision loss in an additional
367 patients/100,000. This reduction is ~4 times more than just
introducing AI without improving the process of care. While it
remains important to develop increasingly effective treatments for
metabolic and ophthalmic DRD, CAREVL suggests that its
population impact on vision loss is much lower (~one-tenth) than
that of maximizing adherence with existing treatments. This
projected impact has important clinical and public health
implications. Diabetes is a chronic disease that currently affects
almost 37 million adults in the U.S30,31, thus introducing AI-based
screening could potentially prevent vision loss in an additional
27,000 patients with diabetes over the current ECP-based standard
of care. Introducing AI and optimizing processes of care,
particularly adherence with recommended treatment, could
potentially prevent vision loss in an additional 110,000 patients.
These benefits are expected to accrue as the prevalence of
diabetes continues to rise. A more nuanced estimate would
require further modeling to account for age distributions, annual
incidence of diabetes and patient mortality.

The strength of our study is that we developed a real-world
model, CAREVL, defining how to evaluate the effectiveness of an
AI-based technology on patient outcomes. CAREVL is a relatively
novel and more patient-centered approach to evaluating AI
technologies as opposed to the overwhelming focus on evaluat-
ing diagnostic accuracy. Evaluating the impact of AI and digital
health technologies on patient outcomes is an evolving area of
research and we have made the model publicly available and
invite others to contribute to it. The CAREVL model and this study
have limitations. We relied on available, published and peer-
reviewed data for the various metrics. It is important to collect
real-world data over time, particularly with regards to ECP
parameters, to further validate this model. This model does not
address costs or utilities. As we are focused on effectiveness, we
have considered vision loss in either eye. In future analyses
focused on cost and disability benefits it may be better to consider
vision loss in the worse seeing eye32,33. We did not compare the
effectiveness of AI-based screening strategies with telemedicine
programs as there is considerable variation between programs but
once the relevant metrics identified in the model are collected, the
relative effectiveness of telemedicine programs can be deter-
mined. One of the limitations of the study is that we did not
model the benefit of ophthalmic encounters with an ECP as
opposed to AI in potentially detecting diseases other than DRD
(e.g., cataracts, macular degeneration, glaucoma). Our rationales
for this decision were that (a) patients with visually significant
cataract will have vision impairment (by definition) and will visit
eye care instead of entering the screening pathway; (b) the
number of potential missed cases is small: the pivotal trial that led
to FDA approval of autonomous AI estimated that 0.2% of
participants with glaucoma and 1.6% with non-exudative age-
related macular degeneration may be missed by AI-based
screening, no cases of neovascular age-related macular degenera-
tion were noted11. Furthermore, the United States Preventive
Services Task Force has determined that there is insufficient
evidence to recommend screening for impaired vision from age-
related changes such as age-related macular degeneration and
glaucoma at this point34,35. We have analyzed the overall impact
of autonomous AI in the US, and not the outcomes of specific

Fig. 2 Additional vision loss prevented beyond AI base-case when maximizing processes of care. Figure 2 shows the additional impact on
vision loss prevented beyond the base-case scenario when each of the processes of care are maximized. The largest impact on vision loss is
estimated to be from maximizing adherence with ophthalmic treatment, followed by adherence with metabolic treatments. Maximizing
effectiveness of current metabolic and ophthalmic treatments has a lower impact.
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sub-groups within a population—these require more sophisti-
cated models that we are currently developing. Nevertheless, we
expect that CAREVL can be extended in well-established ways to
help in answering questions regarding the impact of new
technology on real-world outcomes from multiple perspectives
(healthcare system, payor, or society).
In summary, our novel CAREVL model suggests that AI-based

DRD screening is more effective at preventing vision loss from
diabetes than ECP-based screening, and that this effectiveness
can be further enhanced by optimizing processes of care. As
use of digital health technology and AI increases in the health-
care system, this comprehensive model may serve as a
framework for evaluating and estimating the real-world impact
of digital technologies on patient outcomes in other chronic
disease scenarios.

METHODS
Model structure
CAREVL is implemented as a computer-simulation based on a state-
transition Markov model decision tree (one Markov model for each
screening strategy). The model considers population-metrics,
namely, community prevalence of the multiple severity stages of
DRD, natural history of disease; diagnostic-accuracy metrics namely
sensitivity and specificity; and process-of-care metrics, namely, the
probability of accepting screening, of follow-up in case of a positive
screen, of adherence with metabolic and ophthalmic management
of DRD, and the effectiveness of metabolic and ophthalmic
treatment. Figure 3 shows the states considered and the transitions

between states permitted in the Markov model. The parameters of
the model are probabilities and related quantities for states and
transitions defined by the structure of the decision tree. The
parameter values were derived from peer-reviewed published
literature, and the base-case estimates are presented. Where
choices for the base-case values were required, we biased the
model against autonomous AI. Where relevant, the probabilities
extracted from the literature were converted to transition
probabilities36. The 12 model assumptions are detailed in the
Supplementary. The models were built in TreeAge software
(TreeAge Pro Healthcare version 2021 R1.1, Williamstown, MA),
and we have made a spreadsheet version of the model available in
the supplementary materials via Figshare (https://figshare.com/s/
ad7809b8f7010fdf83c9). The parameters used in CAREVL are
summarized in Table 1 and detailed in the Supplement. Fig.
3 shows the Markov-model structure used for each screening
strategy. The full decision tree is in the Supplementary Fig. 1.

Target population
The target population is adults with Type 1 or 2 DM (age > 21
years) under regular care by a primary care physician, endocri-
nologist or other licensed provider. The base-case assumption of
prevalence of DRD and its stages in primary care was estimated
from a representative sample, as this population was drawn from
adult patients with diabetes presenting to primary care settings
with a racial and ethnic distribution that is representative of the
37 million people with diabetes in the US11,30,31. People with
diabetes eligible for screening were categorized into three states:
no DRD, metabolic DRD or ophthalmic DRD, defined as follows:

Fig. 3 Markov model showing the states and transitions relevant to diabetic retinal disease used in the current analysis. ❶Patients with
diabetes mellitus presenting to the primary care or endocrine clinic with each of the following states: No Diabetic Retinal Disease, Metabolic
Diabetic Retinal Disease, or Ophthalmic Diabetic Retinal Disease. ❷Natural history transitions of diabetic retinal disease. ❸Transitions from
untreated to treated diabetic retinal disease. ❹Transitions of treated diabetic retinal disease. The transitions take into account process-of-care
metrics i.e., probability of accepting screening and referral in case of a positive screen, probability of disease progression, probability of
adhering with recommended treatments. The structure of the Markov model is the same for both screening strategies. Table 1 shows the
base-case probabilities and limits of sensitivity analysis for each parameter that are specific to the AI and ECP screening strategies. The details
of the transitions specific to each strategy are represented in the decision tree in the supplement (Fig. 3 is preserved and shared on Figshare
(https://figshare.com/s/ad7809b8f7010fdf83c9).
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mild, moderate and severe non-proliferative DRD (ETDRS levels
35–53) primarily require metabolic control and are categorized as
“metabolic DRD”; “ophthalmic DRD” is defined as DRD requiring
ophthalmic treatment in addition to metabolic treatment and is
taken as equivalent to ETDRS level 60 and higher (i.e.,
proliferative diabetic retinopathy (PDR)) or having clinically
significant macular edema or center-involved macular edema,
without symptoms of vision loss. The prevalences of these states
were varied in sensitivity analyses. Patients with known vision
loss, are recommended to go directly for eye care as opposed to
first going through a screening exam and were not included in
the model37,38.

Screening strategies
The CAREVL model is designed and built from the patient’s
perspective. Three alternative strategies for the diabetic eye exam
were modeled: (1) no screening; (2) ECP strategy, where all patients
are referred by the diabetes or primary care provider to an
ophthalmologist or optometrist—referred to as ECP—for dilated
diabetic eye exams in the clinic; (3) autonomous AI strategy, where
the a digital fundus photograph is acquired and an autonomous
artificial intelligence (AI) algorithm is used to analyze the image, real
time result is provided, and only those diagnosed as having diabetic
retinopathy or diabetic macular edema (DME) are referred for
further management to ECP. The no-screening strategy was
included to assess the relative impact of the other two screening
strategies on expected visual outcome.

Main outcomes and measures
The model is focused on clinical outcome—any vision loss
experienced by the patient. Specifically, outcome is quantified
as the probability of severe vision loss by 5 years. Because of the
established benefit of treatments for PDR and DME, today, it is
impossible to ethically collect natural history outcome data on
untreated PDR or DME. Therefore, we used the most recent data
from landmark randomized clinical trials for treatment that still
had natural-history arms for PDR and DME39,40. In these studies,
severe vision loss was defined as worse than 5/20039 and loss of
15 or more letters40 on a standardized visual acuity chart. For
visual outcomes of treated DME we used data from the anti-
vascular endothelial growth factor (VEGF) treated arm of diabetic
retinopathy clinical research network’s protocol I41, a landmark
clinical trial which established the effectiveness of anti-VEGF
agents for DME treatment. In that study, vision loss was defined as
visual acuity of 20/200 or worse. Irreversible vision loss was the
probability of visual acuity of 20/200 or worse at 2 years with or
without treatment in either eye.

Sensitivity and scenario analyses
To evaluate the outcome under varying scenarios, and to account for
uncertainty in base-case estimates, one-way sensitivity analyses were
performed by varying one parameter at a time, while holding the
others constant at their base-case estimates. Sensitivity analysis in
decision analysis, to address uncertainty in model parameters, plays
the same role as confidence intervals do in empirical statistical
studies, to address uncertainty due to sampling. For those
parameters that had different base-case values for AI vs ECP i.e.,
sensitivity and specificity of both strategies; accepting screening and
accepting referral after screening, multiple two-way sensitivity
analyses were conducted to determine if there were any scenarios
where a strategy other than that identified in the base-case would be
preferred. The relative impact of varying the values of key parameters
on vision loss using either one of the screening strategies was
evaluated. The key parameters included (1) population metrics; (2)
diagnostic-accuracy metrics; (3) process-of-care metrics (see Table 1).
We additionally created a series of maximal scenarios where

individual parameters of process of care were set to each one’s
maximum value and assessed the marginal impact of each maximum
scenario over the base-case dominant strategy. The goal of the
maximal-scenario analysis was to estimate the potential impact of
maximizing process-of-care metrics on expected vision loss.
The manuscript complies with the Consolidated Health

Economic Evaluation Reporting Standards 2022 (CHEERS) check-
list15; this checklist was chosen because, while ours is not an
economic evaluation, this checklist comes closest to governing
the type of study we present.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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