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Association of accelerometer-derived circadian abnormalities
and genetic risk with incidence of atrial fibrillation
Lulu Yang 1, Hongliang Feng1,2, Sizhi Ai3,4,5, Yue Liu1, Binbin Lei1, Jie Chen2, Xiao Tan6,7, Christian Benedict 8, Ningjian Wang9,
Yun Kwok Wing 2, Lu Qi 10,11✉ and Jihui Zhang 3,5,12,13✉

Evidence suggests potential links between circadian rhythm and atrial fibrillation (AF). However, whether circadian disruption can
predict the onset of AF in the general population remains largely unknown. We aim to investigate the association of accelerometer-
measured circadian rest-activity rhythm (CRAR, the most prominent circadian rhythm in humans) with the risk of AF, and examine
joint associations and potential interactions of CRAR and genetic susceptibility with AF incidence. We include 62,927 white British
participants of UK Biobank without AF at baseline. CRAR characteristics, including amplitude (strength), acrophase (timing of peak
activity), pseudo-F (robustness), and mesor (height), are derived by applying an extended cosine model. Genetic risk is assessed
with polygenic risk scores. The outcome is the incidence of AF. During a median follow-up of 6.16 years, 1920 participants
developed AF. Low amplitude [hazard ratio (HR): 1.41, 95% confidence interval (CI): 1.25–1.58], delayed acrophase (HR: 1.24, 95% CI:
1.10–1.39), and low mesor (HR: 1.36, 95% CI: 1.21–1.52), but not low pseudo-F, are significantly associated with a higher risk of AF.
No significant interactions between CRAR characteristics and genetic risk are observed. Joint association analyses reveal that
participants with unfavourable CRAR characteristics and high genetic risk yield the highest risk of incident AF. These associations
are robust after controlling for multiple testing and in a series of sensitivity analyses. Accelerometer-measured CRAR abnormalities,
characterized by decreased strength and height, and later timing of peak activity of circadian rhythm, are associated with a higher
risk of AF in the general population.
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INTRODUCTION
Atrial fibrillation (AF), one of the most common cardiac
arrhythmias, is a major cause of morbidity, mortality, and health
care expenditure1. Thus, the prevention of AF is an urgent public
health priority. Intensive research over the previous decades has
identified multiple modifiable risk factors for AF, such as smoking,
excessive alcohol use, obesity, hypertension, and diabetes
mellitus2. However, the prevalence and incidence of AF are
increasing rapidly3,4, and therefore more efforts should be
undertaken to identify novel risk factors.
In recent years there has been growing interest in the

association between circadian rhythm and AF. Circadian rhythm
refers to physiological and behavioural cycles with approximately
24 h related to the light-dark cycle of earth5. Compelling evidence
demonstrates that almost all cardiovascular variables in humans
exhibit circadian fluctuations, including blood pressure6, heart
rate6, circulating catecholamines7, and vascular endothelial func-
tion8. Epidemiological data also revealed a prominent circadian
variation in the occurrence of AF episodes9. In addition, animal
studies have proven the important role of circadian rhythm in
arrhythmia pathogenesis10,11. Recently, a case-control study12 with

a small sample size observed circadian rhythm changes among
patients with AF, and our team identified that night shift workers
exhibited an increased AF risk, further suggesting a link between
circadian rhythm and AF13. However, to date, whether circadian
rhythm disruption can predict the onset of AF in the general
population remains largely unknown, as studying circadian
rhythms in humans is hampered by difficulty in collecting serial
samples across different time points. Furthermore, AF is a complex
disease with shared environmental and genetic factors that
contribute to disease pathogenesis14. However, it remains
unknown whether genetic risk may modify the effect of circadian
rhythm on AF risk.
The UK Biobank has collected 7-day activity data from over

100,000 participants with wrist-worn accelerometers that can
continuously measure human rest and activity cycles with a
good estimate of the circadian rest-activity rhythm (CRAR, the
most prominent circadian rhythm in humans)15. In addition, in-
depth genetic data are available for UK Biobank participants.
Therefore, the UK Biobank provides an unprecedented oppor-
tunity to test the association of disrupted circadian rhythm and
genetic risk with AF. Based on the UK Biobank study, we aim: 1)
to investigate the association of a series of CRAR parameters,
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including amplitude (strength), acrophase (timing of peak
activity), pseudo-F (robustness), and mesor (height), with
incident AF; and 2) to assess their joint associations and
potential interactions between CRAR and genetic susceptibility
with the risk of AF. Our results demonstrate that CRAR
abnormalities, hallmarked by low amplitude, delayed acro-
phase, and low mesor, but not pseudo-F, were strongly
associated with AF risk. No significant interactions between
CRAR characteristics and genetic risk are observed. Joint
association analyses reveal that participants with unfavourable
CRAR characteristics and high genetic risk yield the highest risk
of incident AF.

RESULTS
Population Characteristics
From the 92,614 participants with valid data on circadian rest-
activity parameters, 27,953 participants were excluded because of
failure in genetic quality control, and 1734 were excluded because
they were diagnosed with AF before wearing the accelerometer
(Supplementary Fig. 1), leaving 62,927 participants for the main
analyses. The mean (standard deviation, SD) age was 62.48 (7.75)
years, and 35,323 (56.13%) participants were female. During a
median (interquartile range) follow-up of 6.16 (5.60–6.68) years,
1920 participants (3.05%) developed AF.
Baseline characteristics of the study population according to

incident AF are provided in Table 1. Compared with participants
without incident AF, those with incident AF were more likely to
be older, male, materially deprived, and English. They also
tended to be more obese, smokers, have lower education
levels, have a less healthy diet, consume more coffee and tea,
and were more likely to have hypertension, diabetes, and
dyslipidaemia. Regarding the alcohol consumption, participants
with incident AF more rarely consumed alcohol two or fewer
times per week but more often reported drinking alcohol at
least three times per week compared to those without incident
AF. In addition, participants with incident AF appeared to have
lower sleep efficiency and abnormal sleep duration (<7 h/day or
>8 h/day).

Associations of genetic risk with incident atrial fibrillation
As shown in Table 2, AF risk increased monotonically across
genetic risk categories. Participants with a high genetic risk had a
2.52-fold increase in AF risk compared with those with a low
genetic risk (HR: 2.52, 95% CI: 2.25–2.83). Additional adjustment
for circadian rest-activity parameters did not change these results,
indicating that genetic risk for AF was statistically independent of
CRAR.

Associations of circadian rest-activity rhythm with incident
atrial fibrillation
Supplementary Fig. 2 shows the acceleration level during 7-day
monitoring, with fitted curves for CRAR parameters for
participants without and with incident AF. As shown in Fig. 1
and Supplementary Table 1, participants with low amplitude
exhibited a higher risk of AF than those with high amplitude
(HR: 1.41, 95% CI: 1.25–1.58). Similarly, delayed acrophase and
low mesor were also strongly associated with a higher risk of
AF (delayed vs. advanced acrophase: HR: 1.24, 95% CI:
1.10–1.39; low vs. high mesor: HR: 1.36, 95% CI: 1.21–1.52).
However, no significant association between pseudo-F and the
risk of AF was observed. These associations remained
consistent even after false-discovery rate (FDR) correction.
Those results with additional adjustment for genetic risk
demonstrated that the associations of amplitude, acrophase,
and mesor with the risk of AF were statistically independent of

genetic risk. In addition, subgroup analyses stratified by age
and sex categories revealed similar results, indicating that the
findings were consistent across age and sex (Supplementary
Tables 2 and 3).

Table 1. Characteristics of participants at baseline.

Characteristic No. (%)

All (n= 62,927) Participants
without AF
(N= 61,007)

Participants
with AF
(n= 1920)

Age at accelerometer,
mean (SD), y

62.48 (7.75) 62.31 (7.73) 67.90 (5.94)

Female 35,323 (56.13) 34,594 (56.70) 729 (37.97)

Townsend deprivation
indexa, mean (SD)

−1.91 (2.71) −1.91 (2.71) −1.86 (2.69)

Recruitment regions

England 56,207 (89.32) 54,408 (89.18) 1799 (93.70)

Wales 2489 (3.96) 2469 (4.05) 20 (1.04)

Scotland 4231 (6.72) 4130 (6.77) 101 (5.26)

Education level

Degree or above 26,998 (42.90) 26,280 (43.08) 718 (37.40)

Any other
qualification

30,723 (48.82) 29,774 (48.80) 949 (49.43)

No qualification 5206 (8.27) 4953 (8.12) 253 (13.18)

Season of accelerometer wear

Spring 14,316 (22.75) 13,899 (22.78) 417 (21.72)

Summer 16,430 (26.11) 15,906 (26.07) 524 (27.29)

Autumn 18,737 (29.78) 18,147 (29.75) 590 (30.73)

Winter 13,444 (21.36) 13,055 (21.40) 389 (20.26)

Body mass indexb categories

Normal/Underweight
(<25 kg/m2)

25,072 (39.84) 24,509 (40.17) 563 (29.32)

Overweight
(25–30 kg/m2)

25,863 (41.10) 52,067 (41.09) 796 (41.46)

Obese (≥30 kg/m2) 11,992 (19.06) 11,431 (18.74) 561 (29.22)

Healthy diet score,
mean (SD)

2.67 (1.17) 2.67 (1.17) 2.66 (1.17)

Smoking status

Never 36,530 (58.05) 35,598 (58.35) 932 (48.54)

Previous 22,515 (35.78) 21,647 (35.48) 868 (45.21)

Current 3882 (6.17) 3762 (6.17) 120 (6.25)

Alcohol consumption

Not current 3333 (5.30) 3223 (5.28) 110 (5.73)

Two or less times a
week

28,621 (45.48) 27,812 (45.59) 809 (42.14)

Three or more times a
week

30,973 (49.22) 29,972 (49.13) 1001 (52.14)

Coffee
consumption (Yes)

51,339 (81.59) 49,753 (81.55) 1586 (82.60)

Tea consumption (Yes) 53,906 (85.67) 52,250 (85.65) 1656 (86.25)

Hypertension history 16,750 (26.62) 15,886 (26.04) 864 (45.00)

Diabetes history 2833 (4.50) 2650 (4.34) 183 (9.53)

Dyslipidaemia history 8504 (13.51) 8055 (13.20) 449 (23.39)

Sleep efficiency,
mean (SD)

0.76 (0.07) 0.76 (0.07) 0.75 (0.08)

Sleep duration

< 7 h/day 21,076 (33.49) 20,354 (33.36) 722 (37.60)

7–8 h/day 29,075 (46.20) 28,272 (46.34) 803 (41.82)

> 8 h/day 12,776 (20.30) 12,381 (20.29) 395 (20.57)

aTownsend deprivation index was calculated based on the preceding
national census output areas prior to participants joining UK Biobank.
bBody mass index is calculated as weight in kilograms divided by height in
meters squared.
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Joint association and interaction of genetic risk and circadian
rest-activity rhythm with incident atrial fibrillation
Figure 2 and Supplementary Table 4 show the risk of incident AF
for the combined genetic risk and CRAR categories. For amplitude,
the highest risk of incident AF was observed among participants
with high genetic risk and low amplitude (HR: 3.87, 95% CI:
3.07–4.87). Participants with high genetic risk and delayed
acrophase had a 2.69-fold higher risk of AF than those with low
genetic risk and advanced acrophase (HR: 2.69, 95% CI: 2.18–3.33).

Participants with high genetic risk and low pseudo-F exhibited a
2.55-fold increase in AF risk compared to participants with low
genetic risk and high pseudo-F (HR: 2.55, 95% CI: 2.04–3.18).
Participants with high genetic risk and low mesor had a 3.67-fold
higher risk of incident AF compared to participants with low
genetic risk and high mesor (HR: 3.67, 95% CI: 2.97–4.54). These
associations were statistically significant upon FDR correction.
Cumulative incidence curves of incident AF according to genetic
risk and CRAR categories are shown in Supplementary Figs. 3–6.

Table 2. Risk of incident atrial fibrillation according to genetic risk.

Genetic risk No. of AF cases/
person-years

Model 1
HR (95% CI); P

Model 2
HR (95% CI); P

Model 3
HR (95% CI); P

Model 4
HR (95% CI); P

Low genetic risk (N= 21,274) 410/129,366 1[Reference] 1[Reference] 1[Reference] 1[Reference]

Intermediate genetic risk
(N= 21,091)

561/127,971 1.41 (1.24, 1.60);
<0.001

1.41 (1.24, 1.60);
<0.001

1.40 (1.24, 1.59);
<0.001

1.40 (1.23, 1.59);
<0.001

High genetic risk (N= 20,562) 949/123,673 2.52 (2.25, 2.83);
<0.001

2.52 (2.25, 2.83);
<0.001

2.54 (2.26, 2.85);
<0.001

2.54 (2.26, 2.85);
<0.001

P value for trend <0.001 <0.001 <0.001 <0.001

Analyses were conducted using Cox proportional hazard models. Model 1 was adjusted for age, sex, and first 10 principal components of ancestry. Model 2
was adjusted as in model 1 and for Townsend deprivation index, recruitment centre, education level, and season of accelerometer wear. Model 3 was adjusted
as in model 2 and for BMI categories, healthy diet score, smoking status, alcohol intake, coffee consumption, tea consumption, hypertension, diabetes, and
dyslipidemia. Model 4 was adjusted as in model 3 and for sleep efficiency, sleep duration, amplitude, acrophase, F-Pseudo, and mesor. Participants with
prevalent AF were excluded.
AF atrial fibrillation, BMI body mass index, CI confidence interval, HR hazard ratio.

0.5 1.0 1.5 2.0

Hazard Ratio (95%CI)

Circadian rest-activity 
characteristics

Total No. of 
Participants

No. of Cases 
of AF/ Person-
Years

Hazard Ratio 
(95%CI)

Amplitude

High 21,137 466/128,994 1 [Reference]

Intermediate 22,656 630/137,630 1.22 (1.08, 1.38) a

Low 19,134 824/114,387 1.41 (1.25, 1.58) a

Acrophase

Advanced 12,743 421/76,728 1[Reference]

  Intermediate         20,026 635/121,026 1.22 (1.08, 1.39) a

Delayed 30,158 864/183,256 1.24 (1.10, 1.39) a

Pseudo-F

High 15,007 439/91,306 1 [Reference]

Intermediate 20,884 645/126,353 0.99 (0.88, 1.12) 

Low 27,036 836/163,351 1.01 (0.90, 1.13) 

Mesor

High 23,755 558/144,836 1 [Reference]

Intermediate 19,756 601/119,818 1.26 (1.12, 1.41) a

Low 19,416 761/116,355 1.36 (1.21, 1.52) a

Fig. 1 Risk of incident atrial fibrillation according to circadian rest-activity characteristics. AF atrial fibrillation, BMI body mass index, CI
confidence interval, FDR false-discovery rate, HR hazard ratio. aP values remained significant after multiple testing with FDR method. Data are
presented as HRs and 95% CI. Cox proportional hazards models were adjusted for age, sex, Townsend deprivation index, risk, recruitment
centre, education level, season of accelerometer wear, BMI categories, healthy diet score, smoking status, alcohol intake, coffee consumption,
tea consumption, hypertension, diabetes, dyslipidemia, sleep efficiency, sleep duration, genetic risk, and first 10 principal components of
ancestry for AF. Participants with prevalent AF were excluded.
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All results were robust in a series of sensitivity analyses by using
competing risk regression or restricted to participants without any
missing covariate data, or by excluding events that occurred
within the first year of follow-up, or by censoring up to December
31, 2019, or by excluding those with a self-report history of shift
work (Supplementary Tables 5–9).
There was no significant interaction between CRAR and the

genetic risk score (overall P for interaction >0.05, Cox regression
analysis), indicating that the associations with CRAR did not vary
substantially according to genetic risk. Further analyses stratified
by genetic risk category with strong CRAR (i.e., high amplitude,
advanced acrophase, high pseudo-F, and high mesor) as the
reference groups suggested that low amplitude, delayed acro-
phase, and low mesor were associated with a higher AF risk across
genetic groups, especially intermediate and high genetic risk
groups. However, no significant associations were detected
between pseudo-F and the risk of AF among different genetic
groups (Supplementary Table 10).

DISCUSSION
In this large population-based cohort, we found that CRAR
abnormalities, hallmarked by low amplitude, delayed acrophase,
and low mesor (but not pseudo-F), were strongly associated with
AF risk. When examining the joint associations of CRAR and

genetic risk with AF incidence, high genetic risk in combination
with CRAR abnormalities was associated with a more than 2.5-fold
greater risk of AF compared with low genetic risk and normal
CRAR. These associations were rather consistent and robust even
after controlling for multiple testing and in a series of sensitivity
analyses. There was no evidence of interactions between CRAR
and genetic risk, and the CRAR abnormalities were associated with
a higher risk of AF regardless of genetic risk.
Our findings add to a growing body of literature suggesting a

close link between disrupted circadian rhythm and AF. For
instance, Chen et al.12 found decreased expression of circadian
clock genes among patients with AF and observed a significant
correlation between the decreased expression of circadian clock
genes and higher atrial high-rate episodes. Furthermore, recent
research among nurses suggested that shift work was associated
with similar circadian abnormalities, including low amplitude,
delayed phase, and low mesor16. In this regard, night shift
workers, had an elevated risk of AF, regardless of genetic AF risk13,
further echoing the findings of the current study. More
importantly, our study further extends the published reports by
providing evidence of the strong associations of the objectively
measured circadian rhythm abnormalities with AF onset regard-
less of genetic risk, highlighting the important role of circadian
rhythm in the development of AF in the general population.

a Amplitude b Acrophase

c Pseudo-F d Mesor

0.5 2.0 3.5 5.0

Hazard Ratio (95%CI)

1.0

Subgroup
Total No. of 
Participants

No. of Cases 
of AF/ 
Person-Years

Hazard Ratio 
(95%CI)

Low genetic risk

High 7121 89/43,571 1 [Reference]

Intermediate 7673 134/46,802 1.34 (1.03, 1.76) a

Low 6480 187/38,993 1.64 (1.27, 2.11) a

Intermediate genetic risk

High 6976 134/42,643 1.59 (1.22, 2.08) a 

Intermediate 7667 183/46,750 1.86 (1.44, 2.39) a

Low 6448 244/38,578 2.16 (1.69, 2.76) a

High genetic risk

High 7040 243/42,780 2.87 (2.25, 3.66) a

Intermediate 7316 313/44,078 3.47 (2.74, 4.39) a

Low 6206 393/36,816 3.87 (3.07, 4.87) a

0.5 2.0 3.5 5.0

Hazard Ratio (95%CI)

1.0

Subgroup
Total No. of 
Participants

No. of Cases 
of AF/ 
Person-Years

Hazard Ratio 
(95%CI)

Low genetic risk

Advanced 4386 109/26,489 1 [Reference]

Intermediate 6830 133/41,374 1.03 (0.80, 1.33)

Delayed 10,058 168/61,503 1.01 (0.79, 1.29) 

Intermediate genetic risk

Advanced 4291 113/25,949 1.11 (0.85, 1.45)

Intermediate 6613 180/40,071 1.46 (1.15, 1.85) a

Delayed 10,187 268/61,950 1.59 (1.27, 1.99) a

High genetic risk

Advanced 4066 199/24,289 2.16 (1.71, 2.73) a

Intermediate 6583 322/39,582 2.75 (2.21, 3.43) a

Delayed 9913 428/59,802 2.69 (2.18, 3.33) a

0.5 2.0 3.5 5.01.0

Hazard Ratio (95%CI)

Subgroup
Total No. of 
Participants

No. of Cases 
of AF/ 
Person-Years

Hazard Ratio 
(95%CI)

Low genetic risk

High 5026 96/30,676 1 [Reference]

Intermediate 7092 141/43,111 0.99 (0.76, 1.28)

Low 9156 173/55,579 0.97 (0.76, 1.25) 

Intermediate genetic risk

High 5082 136/30,905 1.44 (1.11, 1.88) a

Intermediate 6959 181/42,269 1.33 (1.04, 1.70) a

Low 9050 244/54,797 1.39 (1.10, 1.76) a

High genetic risk

High 4899 207/29,725 2.42 (1.90, 3.08) a

Intermediate 6833 323/40,972 2.49 (1.99, 3.13) a

Low 8830 419/52,976 2.55 (2.04, 3.18) a

0.5 2.0 3.5 5.01.0

Hazard Ratio (95%CI)

Subgroup
Total No. of 
Participants

No. of Cases 
of AF/ 
Person-Years

Hazard Ratio 
(95%CI)

Low genetic risk

High 8028 112/49,093 1 [Reference]

Intermediate 6664 125/40,575 1.32 (1.02, 1.70) a

Low 6582 173/39,698 1.54 (1.21, 1.95) a

Intermediate genetic risk

High 7875 156/48,094 1.47 (1.16, 1.88) a

Intermediate 6707 189/40,769 2.01 (1.59, 2.54) a

Low 6509 216/39,107 1.94 (1.54, 2.44) a

High genetic risk

High 7852 290/47,649 2.81 (2.26, 3.49) a

Intermediate 6385 287/38,474 3.30 (2.65, 4.11) a

Low 6325 372/37,551 3.67 (2.97, 4.54) a

Fig. 2 Risk of incident atrial fibrillation according to genetic and circadian rest-activity characteristics. AF atrial fibrillation, BMI body mass
index, CI confidence interval, FDR false-discovery rate, HR hazard ratio. aP values remained significant after multiple testing with FDR method.
Data are presented as HRs and 95% CI. The joint associations of amplitude (a), acrophase (b), Pseudo-F (c), and mesor (d) as well as genetic risk
with incidence of AF among 62,927 participants from UK Biobank. Cox proportional hazards models were adjusted for age, sex, Townsend
deprivation index, recruitment centre, education level, season of accelerometer wear, BMI categories, healthy diet score, smoking status,
alcohol intake, coffee consumption, tea consumption, hypertension, diabetes, dyslipidemia, sleep efficiency, sleep duration, and first 10
principal components of ancestry. Participants with prevalent AF were excluded.
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Our findings are also supported by several previous studies that
assessed the relationship of physical activity and sleep with
AF17–19, as physical activity and sleep are known to be regulated
by circadian rhythm20. Specifically, Khurshid et al.17 found that
physical activity, which is linked to the strength and height of
CRAR, was strongly associated with a lower risk of AF.
Furthermore, by using continuous monitoring for AF episodes
and accelerometer-measured physical activity for approximately
3.5 years, Bonnesen et al. found that a within-individual decrease
in daily physical activity can also predict the onset of AF episodes
among high-risk populations18. In addition, Li et al. found that
early chronotype, was associated with a decrease in AF risk, which
is in line with our findings of the association between acrophase
and AF onset19,21. Our findings suggest that the role of circadian
disruption in the development of AF adds value to traditional
sleep and physical activity indices.
The precise mechanisms by which circadian rhythm abnorm-

alities increase the risk for AF remain unclear. Accumulating
studies have identified a direct role of the biological clock in
regulating cardiac metabolism, growth, and response to injury22.
Notably, evidence also suggests that circadian rhythm regulates
the activity of the autonomic nervous system and the various
cardiac ion channels, which are associated with the pathophysio-
logic mechanism of AF10,22,23. In addition, a broad range of
metabolic changes, such as cortisol, vascular inflammation, and
oxidative stress, may explain the observed link between circadian
disruption and AF24–26. Nonetheless, more evidence is warranted
to identify a complete profile of circadian rhythm disruption and
genetic risk in the development of AF.
This is a large prospective analysis to examine the combined

role of objectively measured circadian rhythm abnormalities and
genetic risk on the risk of AF in the general population. Our study
has several public health implications for AF prevention. First, the
current study found that accelerometer-measured circadian
abnormalities predicted the occurrence of AF. Rapid advances in
documenting circadian rest-activity patterns by mobile technol-
ogy such as accelerometers, may therefore provide valuable
screening tools to identify at-risk individuals. Second, the results of
the current study, together with prior evidence, emphasize the
importance of improving circadian function in the prevention of
AF, and lend support to potential interventions targeting the
improvement of circadian rhythm in the prevention of AF risk in
the general population.
The major strengths of this study include the large sample size,

the prospective and population-based study design, and a careful
consideration of potential confounding factors. In addition, the
circadian rhythm as the exposure was objectively measured using
accelerometers. Our study also has several limitations. First, the UK
Biobank is not representative of the population in other respects
with evidence of a ‘selection’ or ‘healthy volunteer’ bias27,28.
However, the valid estimates and comparisons of exposure-
disease relationships are widely generalizable in this sample29.
Second, some covariates such as lifestyle were not collected at the
present study baseline (accelerometer mail-out) but the physical
visits to the UK Biobank assessment centres, a median of 5.7 years
prior. Nonetheless, the responses were generally stable over
time30. In addition, despite including a wide range of confounders
in the analyses, residual or unmeasured confounding could not be
ruled out in our study, such as sleep medication (e.g.,
benzodiazepines). Third, as with any observational study, causal
inference cannot be made in our study. Despite this, we
attempted to minimize this risk by adjusting for potential
confounding factors and the results also remained unchanged
when we excluded participants with outcome events that
occurred during the first year of follow-up. Fourth, incident AF
cases were ascertained through hospital inpatient records, surgical
records, and death registry only and some cases of AF were likely
to have been missed. Nevertheless, the AF rates we observed in

our sample were generally consistent with population-based
estimates within similar age groups31,32, suggesting that the
selection bias was minimal. Furthermore, misclassification errors
were likely to have biased these findings towards the null and
would underestimate the risk associated with the CRAR profile.
Fifth, although an accelerometer allows us to continuously
measure circadian rhythm of rest-activity in the free-living
environment among a scalable population, it should be noted
that CRAR is susceptible to masking effects from imposed social
schedules, and so it may be less stable than other typical
measures of rhythms, such as dim light melatonin secretion and
core body temperature. It is important to study the role of
circadian rhythm in the onset of AF by further investigation with
more reliable circadian markers. Sixth, the duration of acceler-
ometer monitoring was limited, and it is still unclear whether a
seven-day measurement is representative of long-term behaviour,
especially CRAR parameters, although previous evidence demon-
strates that a seven-day monitoring period has been routinely
used in activity monitoring studies and provides a sufficiently
large number of days to achieve a high level of intra-class
correlations in most populations33. Further investigation with
repeated or long-term accelerometer monitoring is of great
importance in understanding the associations between CRAR and
AF. Finally, as those AF-related SNPs were selected from
individuals of European descent, the generalizability of the study
findings to other populations should be evaluated in future
studies.
In sum, we found that accelerometer-measured CRAR abnorm-

alities, characterized by decreased strength and height, and later
timing of peak activity of circadian rhythm, were significantly
associated with the future risk of AF in the general population. Our
findings highlight the potential of circadian intervention to reduce
the risk of AF.

METHODS
Study population
The UK Biobank is a population-based prospective study with over
500,000 participants aged 40–73 years recruited in 2006–201034.
Participants underwent detailed baseline assessments including
various sociodemographic, lifestyle, health, and physical assess-
ments through touch-screen questionnaires and physical mea-
surements. Further details of the study are available online
(www.ukbiobank.ac.uk). Between February 2013 and December
2015 (on average, approximately 5.5 years after their baseline
recruitment), 236,519 UK Biobank participants were invited to
participate in an accelerometer study. A total of 106,053 (44.8%)
participants agreed to take part and were provided with a wrist-
worn Axivity AX3 accelerometer (Axivity, Newcastle upon Tyne,
UK). Finally, 103,712 raw accelerometer datasets were received for
data analysis35. Participants who accepted to undergo acceler-
ometer measurement showed similar baseline demographic and
health-related characteristics as those who declined the
measurement17.
Using the raw accelerometer data, the UK Biobank acceler-

ometer expert working group conducted data processing and
generated the physical activity intensity data in 5-s epochs for
103,682 participants. The flowchart of participant selection of the
current study is shown in Supplementary Fig. 1. Based on the data
quality metrics provided by the UK Biobank accelerometer
working group, the exclusion criteria were as follows: 1) those
data flagged by the UK Biobank as being unreliable due to
unexpectedly small or large size; 2) those with accelerometer data
for less than 72 h or did not provide data for all 1-h periods within
a 24-h cycle during the 7-day data collection; 3) those data
identified by the UK Biobank as not being well-calibrated; 4) those
data were recalibrated using the previous accelerometer record
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from the same device worn by a different participant; 5) those
data with a non-zero count of interrupted recording periods; and
6) those data with more than 768 (Q3+ 1.5 × IQR) data recording
errors. Furthermore, during the quality control process of genetic
data, participants with missingness (>10%), outliers for hetero-
zygosity, biologically related, and those whose reported sex was
inconsistent with sex inferred from the genetic data as well as
those with sex chromosome aneuploidy, those who were
genetically defined as not white British, and those with prevalent
AF based on self-report or medical records were also excluded.
Finally, 62,927 participants were included in our study.
The UK Biobank received ethical approval from the NHS

(National Health Service) National Research Ethics Service (Ref11/
NW/0382). All participants gave written informed consent before
enrolment in the study, which was conducted in accordance with
the principles of the Declaration of Helsinki. This study was
performed under UK Biobank application number 58082.

Circadian rest-activity rhythm
CRAR characteristics were derived by applying an extended cosine
model analysis to the activity data, which has been used
extensively in prior studies36,37. This method applies an antilogistic
transformation to the cosine curve and allows for greater flexibility
in fitting the data, and therefore is more suitable for studying
rhythms in the older population, whose diurnal patterns tend to
deviate from a cosine shape38. We focused on four key
parameters: 1) amplitude, a measure of the strength of the
rhythm, is the peak-to-nadir difference in activity of the fitted
curve, and higher values indicated larger rhythm strength with a
higher activity level during the day and a lower activity level
during the night; 2) acrophase, the timing of peak activity of the
fitted curve, was measured in portions of hours (time of day), and
earlier or later times may reflect an advanced or delayed peak of
rhythm respectively; 3) pseudo-F, a model goodness-of-fit
measure and an indicator of overall rhythmicity, and higher
pseudo-F values indicate more regular activity patterns that can
be modelled by a function with a 24-h period, indicating more
robust rhythms; and 4) mesor (midline estimating statistic of
rhythm), the mean level of activity of the fitted 24-hour rest-
activity pattern and reflecting the central tendency of an
oscillating variable, represents the height of the rhythm. Higher
values indicate more robust activity levels. The data were analysed
using the ‘ActCR’ R package39.

Genotyping data
Genetic data on 488,377 UK Biobank participants were generated
using two genotyping arrays. The Affymetrix UK BiLEVE Axiom
Array returned genotypes at 807,411 markers on 49,950 partici-
pants40. The Affymetrix UK Biobank Axiom Array provided
genotypes at 825,925 markers for the remaining 438,427
participants. Because these platforms shared 95% of genetic
markers, quality controls and imputation (the determination of
genotypes at loci by inference and not by direct genotyping) were
performed jointly, which have been previously described in
detail41. Specifically, imputed genotype data were provided by
the UK Biobank, based on merged UK10K and 1000 Genomes
phase 3 panels.

Genetic risk score
The weighted genetic risk score (GRS) was created for AF using
single-nucleotide polymorphisms (SNPs) associated with AF at the
genome-wide association significance in a meta-analysis of
genome-wide association studies of individuals of European
ancestry that did not include participants from the UK Biobank42.
Therefore, the current study was restricted to participants who
were genetically defined as white British. Information on the

166 selected SNPs is listed in Supplementary Table 11. Individual
SNPs were coded as 0, 1, and 2 according to the number of risk
alleles. Missing allele dosages were imputed and replaced with the
mean value across the respective SNPs. The regression coefficient
for each SNP was taken from the reported meta-analysis42. The
number of associated alleles at each SNP was weighted according
to the estimated effect size in the reported meta-analysis42. This
genetic risk score was then categorized into “low risk” (lowest
third), “intermediate risk” (second third), and “high risk” (highest
third).

Incident atrial fibrillation
The outcome was the diagnosis of AF, which was defined as either
AF or atrial flutter17. Incident AF in the UK Biobank was ascertained
through hospital inpatient and death records. In detail, incident AF
was defined as International Classification of Diseases (ICD) edition
10 (codes I48, I48.0, I48.1, I48.2, I48.3, I48.4, I48.9) and operative
procedures (codes K62.1, K62.2, K62.3, K62.4). More details are
shown in Supplementary Table 12. Particularly, ICD 9 and self-
report diagnoses were used only to ascertain the presence of AF at
baseline for exclusion from incident analyses. At the time of
analysis, hospital admission data were available for participants
until 15 January 2021. Therefore, participants were censored at the
date associated with the development of AF, date of death, or last
known follow-up (15 January 2021), whichever occurred first.

Ascertainment of covariates
We used the self-report questionnaires, accelerometer-measured
variables, and medical history to assess possible confounders. Age
(Continuous) was calculated from dates of birth and wearing an
accelerometer. Sex (Female/Male), Townsend deprivation index
reflecting socioeconomic status (Continuous), region of the UK
biobank assessment centre (England/Wales/Scotland), educational
attainment (Degree or above/Any other qualification/No qualifica-
tion), body-mass index (BMI) categories [Normal/Underweight
(<25 kg/m2)/ Overweight (25≤ to <30 kg/m2)/ Obese (≥30 kg/m2)],
smoking status (Never/Previous/Current), frequency of alcohol
intake (Not current/Less than three times a week/Three or more
times a week), coffee consumption (Yes/No), tea consumption
(Yes/No), and diet-related factors were obtained from touchscreen
questions at the time-point closest to the accelerometer
(Supplementary Fig. 7). The healthy diet score was calculated by
using the following factors: vegetable intake at least four
tablespoons each day (Median); fruits intake at least three pieces
each day (Median); fish intake at least twice each week (Median);
unprocessed red meat intake no more than twice each week
(Median); and processed meat intake no more than twice each
week (Median). One point was given for each favourable diet
factor, with the total diet score ranging from 0 to 5. Health-related
variables including hypertension, diabetes, and dyslipidaemia
were obtained from the self-report questionnaires, interviews, and
hospital records that were diagnosed before the accelerometer.
Season of accelerometer wear (Spring/Summer/Autumn/Winter),
sleep efficiency (Continuous), sleep duration (<7 h/day, 7–8 h/day,
>8 h/day) recorded by the accelerometer, and the first 10 principal
components of ancestry were also included as confounders.

Statistical analyses
Baseline characteristics are presented as the mean ± SD for
continuous variables and the number (%) for categorical variables.
To minimize the potential for inferential bias and to maximize the
statistical power possible, we conducted multiple imputations to
assign any missing covariate values by using the “mice” R
package43. Detailed information on missing covariates is shown
in Supplementary Table 13. As previously described44,45, to
account for possible non-linear associations and to ensure
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robustness against outliers, we trichotomized circadian rest-
activity parameters using several cut-offs, which were based on
change points at the associations with AF (Supplementary Fig. 8):
amplitude (≤35, 35< to ≤50, >50, counts/min), acrophase (≤13:00,
13:00< to ≤14:00, >14:00, hh:mm), pseudo-F (≤100, 100< to ≤200,
>200), and mesor (≤23, 23< to ≤30, >30, counts/min). If no
relevant change points were found, we selected cut-offs to
balance the sample size between groups.
Cox proportional hazards regression, with time since accel-

erometer wearing time as the start of follow-up, was used to
model the associations of CRAR categories, genetic risk categories,
and their combination with incident AF. Participants with AF at
baseline were excluded. Moreover, we included an interaction
term in the regression models to test for statistical interaction
between CRAR and genetic risk scores, and we also further
conducted the main analyses stratified by genetic risk category.
The proportionality of hazards assumption was assessed using the
Schoenfeld residuals technique46 and no violation of the
assumption was found. Hazard ratios (HRs) and corresponding
95% confidence intervals (95% CIs) were calculated. Cox regres-
sion analyses were adjusted for age, sex, Townsend deprivation
index, recruitment centre, education level, season of acceler-
ometer wear, BMI category, healthy diet score, smoking status,
alcohol intake, coffee consumption, tea consumption, hyperten-
sion, diabetes, dyslipidaemia, sleep efficiency, sleep duration, and
the first 10 principal components of ancestry. Collinearity between
all the covariates included in the analyses was examined via
correlation matrix analysis, which revealed no problem of multi-
collinearity. To account for multiple testing, P values were
corrected via the FDR by using the Benjamini–Hochberg
method47. Based on the final model, adjusted cumulative
incidence curves were then generated to show the standardized
risk of incident AF according to genetic risk and different CRAR
categories.
Furthermore, five sensitivity analyses were performed to

investigate potential sources of bias in our results. First, to
interrogate the potential bias from the competing risks, Fine-Gray
subdistribution hazards were calculated, incorporating death as a
competing risk for the incidence of AF. Second, we restricted the
analyses to participants without any missing covariate data. Third,
we excluded events that occurred within one year after
accelerometer assessment to minimize the risk of reverse
causality. Fourth, we performed sensitivity analyses by censoring
up to December 31, 2019 (we considered this date the start of the
COVID-19 epidemic) to minimize the possible bias caused by the
pandemic. Fifth, we excluded participants who reported a history
of shift work and repeated the main analyses.
To test the robustness and potential variations in different

subgroups, we repeated the main analyses stratified by age (< 65/
≥ 65 years) and sex (Female/Male). We conducted all statistical
analyses by using R software version 4.0.4 and SPSS 26.0. All
statistical tests were two-sided, and a P value of less than 0.05 was
regarded as statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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