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Opioid death projections with AI-based forecasts using social
media language
Matthew Matero 1✉, Salvatore Giorgi 2,3, Brenda Curtis 3, Lyle H. Ungar 2,4 and H. Andrew Schwartz 1✉

Targeting of location-specific aid for the U.S. opioid epidemic is difficult due to our inability to accurately predict changes in opioid
mortality across heterogeneous communities. AI-based language analyses, having recently shown promise in cross-sectional
(between-community) well-being assessments, may offer a way to more accurately longitudinally predict community-level
overdose mortality. Here, we develop and evaluate, TROP (Transformer for Opiod Prediction), a model for community-specific trend
projection that uses community-specific social media language along with past opioid-related mortality data to predict future
changes in opioid-related deaths. TOP builds on recent advances in sequence modeling, namely transformer networks, to use
changes in yearly language on Twitter and past mortality to project the following year’s mortality rates by county. Trained over five
years and evaluated over the next two years TROP demonstrated state-of-the-art accuracy in predicting future county-specific
opioid trends. A model built using linear auto-regression and traditional socioeconomic data gave 7% error (MAPE) or within 2.93
deaths per 100,000 people on average; our proposed architecture was able to forecast yearly death rates with less than half that
error: 3% MAPE and within 1.15 per 100,000 people.
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INTRODUCTION
The United States has been attempting to tackle an opioid
epidemic for over two decades, with age-adjusted opioid-related
deaths increasing by 350% over 20 years from 1999 to 20201. One
of the key challenges to the epidemic is that its underlying driving
force seemingly changes across time and communities, for
example, from prescription drug abuse to cheap and readily
available synthetic opioids (e.g. fentanyl)2. There is suspected to
be large heterogeneity among risk factors per community across
the US3. Traditional methods to capture community character-
istics, focused on economic, broad healthcare, and survey
outcomes, only capture a fraction of what matters during the
everyday lives of community members, especially as communities
change from year to year4. With the epidemic shifting over time it
is often difficult to properly allocate resources to areas until it is
already too late5,6. By using more fine-grained community
representations, accounting for more precise differences in
communities, it may be possible to better forecast opioid
mortality, improve preparation, and ultimately mitigate outbreaks.
Here, we evaluate the use of recent advances in AI-based

sequence modeling7,8 as well as fine-grained characterization of
communities from language9,10 in order to predict rates of future
annual opioid deaths at the county level across the US. We
attempt to demonstrate the feasibility of using language from
Twitter with modern AI-based techniques to forecast year-to-year
changes in opioid mortality. Robust death estimates are often
released more than a full year after the last day of the year11.
Using modern AI-based community forecasts utilizing social media
language can greatly speed up the response.
The need for anticipating large increases or decreases in deaths

has not gone unnoticed. Recently, the CDC has implemented the
“OverdoseData2Action” (OD2A) plan, a collaboration with state
and local governments to track changes in opioid-related use12.

A key component of this plan is the collection of timely and
accurate data to help health officials better understand the issues
and prepare responses12, including the launch of a center for
forecasting and outbreak analysis13.
While we believe this to be an early evaluation of a digital

language-based opioid forecasting system at scale—capturing
counties across most of the US—it joins a recent increase in work
to leverage data analytics to better understand substance and
opioid use and especially their relationship with socio-
demographics14. Most related are those studies that leveraged
language data from social media, sometimes examining counts of
opioid-related words (e.g. fentanyl) and use rates15 and increas-
ingly using more sophisticated AI-based or machine learning
methods, to predict opioid use and outcome rates16,17. Many of
these studies are focused on specific regions (e.g. a single US
state)18 or specific groups of people such as medicare benefici-
aries or adolescents19,20.
The use of social media data brings important challenges in

data veracity. First, Twitter users skew young; they are not a
randomly sampled sub-population21. Second, there are bots that
actively post to Twitter that do not represent a real person and
their interactions with their community. Finally, there is concern
over whether the persona shown on Twitter authentically
matches a person’s true self. However, a developing body of
work has demonstrated that with some care for these issues,
representative health and well-being statistics can often be
predicted from such noisy, but extremely large, data. Previous
works have proven capable of predicting useful outcomes using
noisy social media data, including predicting alcohol consump-
tion rates10, estimating well-being9, and a variety of other health
statistics and community behaviors22–25.
These works, like the present study, avoid the assumption that

social media data is unbiased, and rather evaluate estimates
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derived from it against accepted representative figures. In our
case, we are evaluating against predictions of future years’ rates
using social media data only from prior years. Past works that
demonstrated the capacity of social media to produce community
characterizations have focused mostly on point estimates of a
sample population at a single time span; Past work has evaluated
cross-sectional modeling, while here we develop and evaluate a
longitudinal model that estimates future changes.
We use the transformer sequence model—adopted parallel

attention-based sequential modeling with the transformer archi-
tecture7. Within language and vision, AI-based sequence modeling
has recently moved from recurrent neural networks (e.g. RNNs like
LSTMs and GRUs)26,27 to transformer networks28. However, public
health studies that are geared towards prediction often opt
instead for traditional cross-sectional modeling with linear/logistic
regression, support vector machines, or gradient boosting
trees29–31). This new architecture allows sequences to be analyzed
with multiple representations, called attention-heads, which give
it a strong ability to see how each step of the sequence interacts
with past steps. Transformer models are often first pre-trained on
general language modeling tasks32,33 and then used as sentence
encoders or fine-tuned to a specific task34,35. However, even when
trained from scratch on a specific task, particularly for forecasting,
they can offer strong results8.
Our contributions include: (1) proposing Transformer for Opiod

Prediction (TROP), a transformer-based sequence modeling
technique to predict future county opioid death rates leveraging
Twitter language representations which we make available via
GitHub, (2) demonstrating the feasibility of a multi-regional
longitudinal method for scalable state-of-the-art yearly forecasts
of opioid deaths, (3) evaluating the unique benefits of the
transformer-based model as compared to standard and modern
alternatives, and (4) highlighting Twitter county linguistic patterns
that reliably increase/decrease in years prior to changes in county
opioid death rates.
Outside of cross-sectional studies, social media and online

forum data have also been used for time-series modeling such as
emotion tracking36,37 and early detection of mental health
issues38. While these works look at the progression of language
over time, they are restricted to the psychological states of
individual people. Modeling at the community level adds
additional complexity as there are three levels of modeling:
individual language “utterances" (e.g., status updates), which are
aggregated to individual people, which are in turn aggregated
into a community (e.g., a county).

RESULTS
Overview of TROP and county sample
We evaluated TROP against other machine learning and
sequence models at predicting future yearly opioid mortality
from past yearly opioid-related mortality together with past
Twitter-based county representations. As described in detail
within the “Methods” section, TROP uses a multi-headed
attention-based transformer network; the other sequence
models included linear auto-regressive models and non-linear
recurrent neural networks (RNNs).
We used language data derived from the County Tweet Lexical

Bank (CTLB)23. To ensure adequate sampling, CTLB was restricted
to counties that had at least 100 users with 30 or more tweets,
overall years of CTLB collection, resulting in 2041 counties. We
then found an overlap of these counties with those available from
CDC Wonder39 that had yearly opioid-related death rates available
for all queried years, resulting in our final 357 counties. These 357
counties have a total population of 212 million people, covering
65% of the total population at the time of our last year of data

(2017). Our topic vectors are then derived based on yearly
language from these counties.

Overall results
We evaluated TROP utilizing both (1) past opioid mortality and (2)
past language use representations at the community level, and
compared it to models utilizing recurrent deep learning methods
(e.g. RNN) and linear auto-regression, as well as, heuristic baselines
using the previous year’s estimate (last(1)) and the average of the
last 4 years (mean(4)).
The results of our models when trained on both opioid death

history and language history are described in Table 1, including
heuristic baselines leveraging only past knowledge of opioid-
related deaths. Overall, TROP ’s predictions were more accurate
than the comparative models when using 3 years of history
(3 years was found to be optimal for all models). Both neural
models, utilizing non-linear techniques, achieved 1–2% lower error
than the linear model. Our proposed model, TROP, had the lowest
percent error down to 2.92% while using the same history as the
other models.
We evaluated the performance of our models compared to and

combined with socio-economic variables (SES) in Table 2. Here,
Ridge SES is a linear ridge regression model trained using past
knowledge of 7 socio-economic variables; log median household
income, median age, percentage over 65, percent female, percent
African American, percent high school graduate, and percent
bachelor graduate. Due to 7 years of SES history not being
available for 20 counties from our primary analyses, the results
reported here used a slightly smaller (and thus we also report our
model results on the same subset for comparison). Besides use on
their own, the 7 SES variables were also integrated into TROP and
the other autoregressive models by concatenating them within
the input vectors of history alongside the past language
representations and past opioid deaths. Notably, the SES variables
on their own were predictive beyond the baselines but in no
situations were they able to contribute to any of the language-
based autoregressive models toward an improvement.
To exemplify what our models had learned, both good and bad,

we investigated predictions for specific counties from TROP as well
as the other statistical models. Our goal was to examine both
counties where TROP gave accurate forecasts and those where it

Table 1. Comparison of TROP to alternative models with the inclusion
of yearly topic data and using optimal yearly history length per
model type.

Model (history) MAPE MAE

Baselines

Last (1) 16.16 5.76

Mean (4) 36.61 11.67

Linear

Ridge AR (3) 6.31 2.63

Deep learning

Recurrent Neural Net (3) 3.99 1.64

TROP (3) 2.92* 1.15*

Model error is reported via mean absolute percent error (MAPE) and mean
absolute error (MAE) with MAE representing the number of deaths per
100,000 our predictions are off by on average. All models performed quite
well but the transformer-based architecture scored less than half the error
of the traditional linear model, likely due to being able to extract multiple
representations of the language sequence. Bold results represent best in
column and * indicates a significance with p < 0.01 using a paired t-test
with respect to the RNN model.
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failed to do so. A select few counties are shown in Fig. 1 with
examples showing both low and high errors for TROP. In general, it
appeared that TROP often overestimated the rate of change when

it got the prediction wrong, whereas the other models most often
underestimated it. TROP was also capable of getting an incredibly
accurate (near 0 error) forecast for a handful of counties, which
even the best counties for the other models did not achieve.
Figure 2 describes how our models behaved when trained

with <3 years of data. For the linear model, there was not much
of a change overall while both non-linear neural networks were
better able to utilize relationships between the language data
across years. However, while they both saw noticeable decreases
in error at 2 or 3 years, they struggled when restricted to only
1 year of data.
To better understand how our models predicted year to year,

we broke down the mean absolute error of each of our
multivariate models by test year, shown in Fig. 3. Overall we
found that each model’s error was mostly stable over both years,
but did see a clear trend in 2016 being a harder year to forecast.
Lastly, we investigated TROP ’s error with respect to data

availability per county, shown as a LOWESS fit in Fig. 4 with a
95% confidence interval. In general, we saw a decrease in error
as the number of tweets increases with the effects tailing off at
160,000 tweets.

Univariate modeling
One could model the progression of time using only a single
variable of interest (e.g., opioid-related deaths) and build a model
that operates on this single feature at each time-step.
We investigated the utility of such an approach by comparing

our model’s performance using only a univariate input versus a
multivariate one; as shown in Table 3. Here, we found that all
models saw a considerable drop in predictive power when the
language features were removed. These results highlight how
each model benefited from the inclusion of language-based

Table 2. Evaluation of TROP and alternative methods with the
inclusion of socio-economic variables.

Model (history) MAPE MAE

Baselines

Last (1) 16.22 5.75

Linear

Ridge SES (3) 6.77 2.75

Ridge AR (3) 6.31 2.62

Ridge AR+ SES (3) 6.55 2.67

Deep learning

Recurrent Neural Net (3) 3.99 1.62

Recurrent Neural Net + SES (3) 4.18 1.67

TROP (3) 2.96* 1.16*

TROP+ SES (3) 3.37 1.34

Errors are reported as MAE and MAPE (deaths per 100k). Here, due to not
all counties having available socio-economic variables for all years
(2011–2017) our dataset is reduced by 20 counties, thus we report the
same approaches from Table 1 with predictions limited to available
counties. Ridge SES is a ridge regression using only past socio-economic
variables, whereas models denoted “+ SES" are using past opioid death
rates, language data, and socio-economic variables. Bold results represent
best in column and * indicates a significance with p < 0.01 using a paired
t-test with respect to TROP+ SES.

Fig. 1 Forecasting model error for selected counties. Visualization of forecast errors, in deaths per 100,000, for all of our machine learning
models as well as the last 1 baseline. We highlight 2 counties where TROP performed best, Orange County, FL (a) and Fayette county, WV (b), as
well as 2 counties where the RNN and linear model are each best, Salt Lake County, UT (c) and Tarrant County, TX (d), respectively.
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features from Twitter. Some models, such as the linear auto-
regressive ridge saw only a small increase in error, 0.6% MAPE,
while both non-linear models saw roughly 5 times that with an
increase in the error of roughly 2−2.6% MAPE.

Language changes prior to opioid mortality changes
To gain insight into the individual language patterns that reliably
predicted future opioid deaths, we evaluated the relationship
between changes in each of the topics prior to changes in the
outcomes for both 2016 and 2017. We used a linear model with
the standardized change in opioid rate as the dependent variable
and standardized prior change in the topic as the independent
variable, correcting for prior year opioid deaths as an additional
covariate. We tested for the significance of the effect between
each topic and opioid change, correcting for the false discovery
rate with the Benjamini–Hochberg procedure40.
Figures 5 and 6 highlight topics that either decrease or

increase prior to increases in opioid death rates for 2016 and
2017. Over 50 topics were significantly associated and are also
available in Supplementary Table 4. The displayed clusters were
manually grouped by first examining the individual topics that
have significance p < 0.05 and then manually paired among
other topic clouds that showed similarities. Each cluster of

individual topics represents semantically similar language
associated with opioid deaths.

DISCUSSION
We evaluated how accurately one can forecast U.S. county
opioid deaths using a modern AI-based sequence modeling
technique, transformers. We found that TROP, our model utilizing
transformers, was able to achieve only 3% mean absolute
percentage error (MAPE), reducing the error in half as compared
to a non-transformer model with the same input which achieved
7% MAPE. While there has been a large increase in opioid-
related deaths across the US recently, the rates of change differ
substantially by county2. A model that operates on data unique
to each county is necessary to handle the heterogenous and
evolving nature of the epidemic3, rather than models based on
national-level general trends.
Traditional data sources fall short of providing annual county-

level measurements. For example, one could use socio-
demographic representations for each county as covariates, but
these features are often fairly static and do not capture the rapidly
changing landscape. To this end, we proposed using open-source
(e.g. publicly available) language data from social media sites.
Public social media offers a fast and ecological window into
the community and regional trends of the opioid epidemic.

Fig. 2 Model error by available history. Examining the trend in mean absolute error (MAE) rates, with 95% confidence intervals, based on
available history for multivariate versions of our models. We found that all models perform best with 3 years of data available. For the deep
learning approaches, there was a large drop when increasing from 2 to 3 years of history noting the utility in measuring the change in
language over time.

Fig. 3 Model error by test year. Mean absolute error (MAE) and 95% confidence intervals across our 2 test years for each statistical model.
TROP showed lower error in both years compared to other approaches. The overall gain fromTROP appeared to be in having a more robust
prediction of 2016, with a reduction of 0.6 MAE when compared to RNN. However, all models followed the same trend of 2016 being a bit
harder to predict than 2017.
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The language features that our method relies on are easy to
collect and, now that open-source software is available, fast to
process into an aggregated representation. Our model’s capabil-
ities are strengthened by modern AI-based language processing
techniques at the level of prediction rather than running each
individual tweet through a contextual embedding modeling41,42

which would take considerable computing power.
We compared the transformer-based TROP to multiple machine

learning-based alternatives spanning regularized linear models
and recurrent neural networks. We found that both with and
without language (multivariate and univariate), the transformer
offered the most predictive power and had an average error of
only 1.15 deaths per 100,000 when language data was included.
The key distinction between transformers and the other models is
the multi-headed attention mechanism which enables multiple
composites of past states7. The RNNs we used had the standard
neural-network attention, so we suspect the multi-headed

attention mechanism was the basis of the superior performance.
This highlights the capabilities of transformers for time-series in
the domain of natural language processing, which past works
have not clearly demonstrated37. For a full comparison of the
number of attention heads used in our transformer-based model,
see Supplementary Table 1.
While language data helped all models, it did not reduce errors

in predictions for the linear model as much as the neural network-
based methods. This is likely due to the aggregated language data
being more informative when modeled in a non-linear fashion,
which is often the case in language-based AI systems, as the
interactions between changes in yearly language are complex.
Past work has found social media language can partially capture

covariance between socio-economic variables and drinking10 or
well-being9, cross-sectionally. However, in a longitudinal design as
in the current study, it is less clear whether socio-economic (SES)
variables are beneficial and if so whether social media will out-
predict them. Thus, we evaluated the longitudinal predictive value
of socio-economic variables used both by themselves as well as
integrated into our models. As shown in Table 2, we first show that
the SES variables do in fact predict beyond the prior-year baseline.
However, once SES variables were added to our models they did
not appear to provide additional benefits. This suggests the
covariance accounted for by SES is already covered within social
media-based features. This corroborates previous cross-sectional
research suggesting social media-based predictions seem to
capture county socio-economics10,43,44.
While our proposed model TROP performed best overall in

terms of prediction errors, there were still cases where it is unable
to outperform alternative approaches in predicting future trends,
as described in Fig. 1. These case studies may be useful in
indicating what behaviors these counties have in common and
what is driving the opioid epidemic in their region.
Further, as shown in Fig. 2, the deep learning models not only

benefited from the inclusion of language features but also older
language. We believe this is due to the superior sequential
modeling powers of both the RNN and Transformer networks and
their ability to attend to specific time-steps using their respective
attention-mechanisms. Both neural models picking up on signals
in older language points towards changes in language as a key
indicator of opioid abuse. This highlights the need for larger data

Fig. 4 Model error by Tweets per county. Impact of the number of tweets on error, as measured by deaths per 100k, per county for the test
year (2017). The line on the graph is fit with a LOWESS regression64 with a shaded region indicating the 95% confidence interval. Overall TROP
shows a trend of decreasing error as counties have increasingly more language to build topic representations from.

Table 3. Comparison of performance across all of our proposed
machine learning models in a univariate context and their ideal history
length in the number of years they have access to.

Model (history) MAPE MAE

With Language

Ridge AR (3) 6.31 2.63

Recurrent Neural Net (3) 3.99 1.64

TROP (3) 2.92* 1.15*

Without Language

Ridge AR (3) 7.09 2.93

Recurrent Neural Net (3) 6.97 2.84

TROP (3) 6.93* 2.81*

Errors are reported in both mean absolute error and mean absolute
percent error. All models performed slightly worse when trained on just a
sequence of opioid death rates(no language features) but the transformer
architecture continued to be better than other approaches. Bold results
represent the best model per configuration(with or without language) and
* indicates a significance with p < 0.01 using a paired t-test with respect to
the Gated Recurrent model of the same configuration.
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in the temporal dimension for training big neural networks. We
also explored dynamic window sizes (e.g. training on data of
multiple lengths between 1 and 3) and show the results in
Supplementary Table 2.
As the opioid epidemic is always changing, it is important to

analyze how our model(s) were able to forecast different years’
changes in the death rate. Figure 3 shows that all models had a
similar ability to predict 2017 a bit easier than 2016. This is likely
caused due to the death rates across years having a large increase
from 2015 to 2016, the largest in all years we’ve collected, which
explains the model’s inability to forecast as accurately. With
counties in the east seeing the largest jump in death rates from
2015 to 2016 and the Midwest seeing the largest jump from 2016
to 201745. However, all of the models still offered somewhat
accurate predictions given this shift in the evaluation data which
suggests that forecasting with language can help combat
distributional shifts in the temporal dimension. Investigating error
further, we show the impact of the number of tweets per county
on TROP ’s absolute error in Fig. 4. The trend, plotted as a LOWESS
fit, shows counties have more language data, in raw tweets, show
less error on average than those with less. This is likely due to the
topic representations being more robust when there is more
language from per county to aggregate.
While we present our work with a focus on prediction accuracy,

there is also insight from the language trends themselves.
Presented as clusters of topics we show language that has
moderate negative correlations (0.40 ≤ r ≤.57) and positive corre-
lations (0.36 ≤ r ≤0.58), in Figs. 5 and 6, respectively. The positively
correlated language can be thought of as a potential risk factor for
increases in opioid abuse and negative language can be viewed
as a lower risk.

Notably, for negative correlations, we found lots of discussions
focused around positive events, particularly family and social
events (e.g. holidays) and personal engagement (e.g. work/school
and travel). This use of positive language implies a sense of “anti-
despair" and optimism. Alternatively, for positively correlated
topics, we see discussions that are less involved with one’s
personal social circle and instead focused on more worldly events
(e.g. politics, negative events). While these topic clouds show a
sense of empathy (e.g. homelessness and veterans of wars) it is
towards events or ideas that lean more negatively in thought.
Additionally, we include Supplementary Figs. 1 and 2, which

are the groupings of topics significantly correlated with our
model’s predicted forecasts, rather than observed changes,
allowing us to gain insight into what the model may be weighing
towards each prediction.
In this work, we set out with two major goals in mind: (1) to

build a tool that can be used to forecast future trends in the
United State’s opioid epidemic and (2) to examine community-
level language behaviors and trends that may be useful in gaining
insight as to what might be driving these changes within
individual counties. Our first goal is achieved by TROP which
achieves a mean absolute percent error of 2.92%. We highlighted
certain counties where our model underperforms alternative
methods, showed predictive power based on available years of
history, broke down error rates based on the year of prediction,
and also examined the relationship between the amount of
language data and forecasting error. Finally, we then used our
county-level topic vectors to gain insight into the language itself,
where we found various changes in yearly topics that correlate
both positively and negatively with changes in opioid death rates.

Fig. 5 Language associated with lower opioid death rates. Topics longitudinally predictive of lower opioid death rates: yearly change in
language (2014–2015, 2015–2016) negatively associated with future year change in opioid death rates. Individual topics (clusters of
semantically related words) are represented by their 15 most prevalent words (larger is more prevalent). Association (β) is the coefficient from
standardized multiple linear models, adjusting for prior change (p < 0.05; Benjamini–Hochberg adjusted for false discovery rate).

Fig. 6 Language associated with higher opioid death rates. Topics longitudinally predictive of higher opioid death rates: yearly change in
language (2014–2015, 2015–2016) positively associated with future year change in opioid death rates. Individual topics (clusters of
semantically related words) are represented by their 15 most prevalent words (larger is more prevalent). Association (β) is the coefficient from
standardized multiple linear models, adjusting for prior change (p < 0.05; Benjamini–Hochberg adjusted for false discovery rate).
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TROP demonstrated the ability for county-level forecasting not
otherwise available, but there are limitations to its application in
its current form. Firstly, TROP is trained only on data from 2011 to
2015 and evaluated over 2016–2017, only two years prospective
to the training years. This restriction for the current study was due
to (1) the timing of outcome data release and (2) the collection
and availability of county-level time-specific curated tweets as part
of the county tweet lexical bank (CTLB)23 while simultaneously
implementing the novel use of transformers. While TROP may aid
with the former issue, the latter issue could be resolved as such
methods are more available and with more projects focused on
geospatial social media language curation.
Secondly, the predictive power of TROP will be impacted by

distributional shifts in death rates from year to year that cannot be
explained via language features shifts alone. While the evaluation
years 2016 and 2017 contained larger shifts than most demon-
strating some robustness to such time-series “shocks”, this could
be further improved with the development of more models that
incorporate more temporally dependent or fine-grained struc-
tured socio-economic variables than those currently available at
the county-year level.

METHODS
Formulation and design
We sought to forecast the amount of opioid-related deaths per US
county each year. To do this we employed various techniques
from both time-series modeling and deep machine learning. We
formulated our goal in both the univariate case (Eq. (1)) and
multivariate (Eq. (2)), where some function f (e.g. our learned
model) uses information from previous time-steps to predict the
next time-step, with error ϵ. In the multivariate case of Eq. (2), each
time-step contains a D-dimensional feature vector, here D= 20,
concatenated (indicated as ;) with the observed univariate values
from Eq. (1) totaling 21 dimensions per time-step. These additional
20 dimensions represent yearly language use per US county
aggregated from Twitter.

f ðYt; Yt�1; :::; Yt�nÞ þ ϵ ¼ Ytþ1 (1)

f ðYt; Xd
t ; Yt�1; X

d
t�1; :::; Yt�n; X

d
t�nÞ þ ϵ ¼ Ytþ1 (2)

Due to most counties across America having an increasing
amount of opioid-related deaths per year in our dataset, we
applied a single integration step where a difference is taken
between neighboring time-steps to alleviate the issue of non-
stationarity in each time-series. This also means that the model is
designed to forecast the change in opioid-related deaths per
county. While a single difference does not guarantee stationarity,
each subsequent difference reduces the amount of history length
by 1. Thus, we framed the problem to rely only on 1 integration
step due to only having 7 years of total history across both train
and test. After predicting the change, to get the final prediction a
reconstruction step must occur between the last observed value
and the predicted value, shown in Eq. (3) where Yt is the observed
value and Pt is the predicted change.

Yt þ Pt ¼ Ytþ1 (3)

Dataset and preprocessing
To collect the yearly opioid death numbers we queried the CDC
Wonder tool for the cause of death. We included the following
multiple causes of death codes for counting towards opioid
deaths: opium, T40.0; heroin, T40.1; natural and semi-synthetic
opioids T40.2; methadone, T40.3; synthetic opioids, T40.4; or other
and unspecified narcotics, T40.6. The output from a CDC Wonder

query is a comma-separated value (CSV) file that contains the
county code, total population, crude death rate, and age-adjusted
death rate for each county per year. We queried CDC Wonder for
the years 2011–2017 and filtered to counties that had reported
over all of these years.
However, for some counties, the age-adjusted rate was

suppressed when collected from CDC Wonder. To accommo-
date for this we queried CDC wonder again, this time to get the
age breakdown of the population per county and then
constructed yearly age terciles. We then used these terciles to
bucket the population count per county and fit a linear
regression model to the crude death rate. The residuals from
this fit were used to generate our age-adjusted death rate,
shown in Eq. (4). This was done for each year of our dataset,
using that year’s age and opioid data. Here, Ocrude and Presidual
are the crude opioid death rate and residual unique to the
county, respectively, and Omean is the average crude opioid
death rate across all counties within a given year. These
generated age-adjusted rates are treated as our labels for
training our machine learning models.

Oage adj ¼ Ocrude � Presidual þ Omean (4)

Next, to collect covariates for our time-series we started with
language data previously curated from Twitter. The dataset we
used was a subset of the County Tweet Lexical Bank (CTLB)23,
which contains aggregated data across US counties. CTLB is
comprised of both bag-of-words style features (uni-grams, word
count) and bag-of-topics46. While pre-aggregated Latent
Dirichlet Allocation (LDA) topic vectors existed, they were not
broken down by year so we instead used the uni-grams and
word count data to generate our own yearly topic vectors. To
ensure quality representations CTLB used the following inclu-
sion criteria per county: (1) a county needs 100 active users and
(2) each user must have a minimum of 30 tweets. However, this
is a requirement over the entire temporal span of CTLB
(2011–2016), thus for topic vectors spanning a single year, a
county may not have guaranteed 100 active users with 30+
tweets in any given year.
Therefore, in the case that a county did not meet the

requirements for a given year their language data were replaced
with the average of the topic vectors from other counties in that
year. This occurred for a small number of counties each year and
counties were selected only if they had at most 2 years missing.
All counties were represented by a 2000-dimension LDA topic
vector for each year and our final included counties were
limited by those that had reported their opioid death rates
for all collected years (2011–2017) to the CDC, resulting in a final
357 counties.
Due to the dataset size (N= 357) we performed a dimension-

ality reduction across our 2000 dimension topic vectors. We chose
to apply a non-negative matrix factorization (NMF)47 due to
showing good performance in past works that relied on
dimensionality reduction techniques on language34,48. We learned
the NMF reduction over the collection of training years
(2011–2015) and for each year’s 2000 dimension topic vector
the NMF reducer was then applied to bring each county’s
language data to 20 dimensions.
Lastly, we explored a version of the dataset using socio-

economic variables from US Census data. Here, we pulled 7 socio-
economic variables over the years 2011–2017 for all counties in
our dataset that had this information available. This resulted in a
somewhat smaller dataset than our Twitter-only version, dropping
20 counties overall, showing the benefit of using publicly available
language data over traditional sources. These 7 variables include:
log median household income, median age, percent age over 65,
percent female, percent African American, percent high school
graduate, and percent bachelor graduate.
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Model design
We explored a variety of models that have been shown to work in
the time-series domain such as linear autoregressors49–51 as well
as deep learning sequential models that have shown promise in
temporal natural language processing (NLP)36,37. Additionally,
transformer7-based models were considered, which have shown
state-of-the-art performance in many NLP-based tasks32.

Transformers
The transformer network has seen great success since its inception
in 2017 and popularization by the BERT language model in 201832.
These types of models handle sequences much differently than
recurrent neural networks, notably transformers do not recur
down the sequence but rather process each step in parallel. This is
achieved by generating a positional encoding that gets added to
the inputs of the network as well as utilizing residual connections
so that this positional information is not forgotten at higher levels
in the network. Additionally, transformers use multi-headed
attention giving the network multiple internal representations of
how sequential steps may relate to one another. While there is
evidence that attention heads can be pruned for inference52,
models are typically trained in a multi-headed fashion. An
overview of attention and the multi-head combination are shown
in Eqs. (5) and (6).

headi ¼ AttnðQuery; Key; ValueÞ ¼ softmax
QKT

ffiffiffiffiffi

dk
p

� �

V (5)

MultiHeadðQuery; Key; ValueÞ ¼ concatðhead1; head2; :::; headhÞWO

(6)

Here, the attention is determined by the scaled dot-product of
query, key, and value vectors where the query maps to a
key–value pair. For example, the query may be time-step 1 with
values at time-steps 1–3. The key is what determines how related
the pairings of query and values are. Since we run this attention
across the input sequence itself, this is called “self-attention”, as
opposed to traditional attention networks which often calculate
attention across outputs of an encoder to build a better
representative input into a decoder-based model to perform
prediction or generation. The scaling factor is

ffiffiffiffiffi

dk
p

which is the
square root of the number of dimensions in the key vector. After
calculating the attention for the query, keys, and values across h
attention-heads (in our model h= 3), each of their representations
is concatenated and one last linear transformation is applied using
weight matrix WO.
Oftentimes, when transformer models are used for NLP tasks a

model pre-trained as a language model is used to generate
contextual embeddings, or the language model is directly “fine-
tuned” to the task of interest33. However, language models have
yet to produce embeddings for hierarchical representations
beyond the sentence level, thus preventing us from using an
off-the-shelf model for county-level language and applying it to
our forecasting task. Instead, we built a small transformer network
from scratch that operates on pre-aggregated feature representa-
tions rather than individual words or sentences to use for our task
of yearly change in opioid-related deaths.
Due to the small size of our dataset, we implemented a single

(1) layer transformer network rather than the common 6 or
more8,53. Transformers usually have tens to hundreds of millions of
parameters so that they can encode a lot of information that
would transfer to other tasks (e.g. language models)54,55. We
believed that even though transformers typically thrive in large
data scenarios, it was possible to train a robust model that is
adequately downsized to match the data available. Our model
used the following configuration: 1 transformer layer, fixed
sinusoidal positional embeddings, 3 self-attention heads, input

dimensions of 21, feed-forward hidden size of 128, and drop out
of 0.20.
For the final prediction from our model, we took the

representation for the last year, Ht, and used that as input into a
linear layer which then forecasted the change for each county. We
trained all models in PyTorch and PyTorch Lightning56,57, using
AdamW58 for optimization, and Optuna59 for hyperparameter
tuning over a held-out development set. The following parameters
and search spaces were explored: Learning Rate (5e−3–5e−5),
Weight Decay (0–1.0), Dropout (0.1–0.5 with steps of 0.05), and
Hidden Size (1–16 with steps of 2 for univariate, and 32–256 with
steps of 16 for multivariate).
Lastly, we explored running the transformer network in a

bidirectional format analogous to a recurrent network60. We found
that this neither improved nor degraded the predictive capability
of our model. We believe that this may be due to having such a
short sequence where the multi-headed attention can already
extract the relevant interactions.
The final pipeline for our data processing and model are shown

in Fig. 7, which covers data intake to final prediction. Before
loading data into our models, the time-series has a single
integration step applied to it (neighbor differencing) so that our
model is trained to predict change in rates rather than the raw
rate. The example in the figure is the configuration when training
with a history of 3, such that the inputs are the changes in opioid
death rates for [2012–2011], [2013–2012], and [2014–2013] with
the final prediction being [2015–2014]. In the case of our 2 test
years, the sequence would slide down one step for each
prediction (e.g. [2013–2012], [2014–2013], [2015–2014] predicting
[2016–2015]).

Recurrent networks
Gating-mechanism-based recurrent neural networks such as gated
recurrent units (GRU)27 and long–short-term memory (LSTM)26

cells were also considered as potential models. Historically,
recurrent neural networks have shown great promise for sequence
and time-series modeling61 with GRU-based networks offering
similar or better performance than LSTM on smaller data62 while
being a less complex model. Thus, our main focus is on leveraging
GRU cells, but we show results based on LSTM architecture as well
in Supplementary Table 3.
These types of recurrent networks are different than transformers

as they have to move down each step of the sequence one-by-one,
using 2 types of inputs. The first input is the features representing
the current time-step and the second input is the previous hidden
state from the previous time-step(s) (i.e. the recurrent step). The
final representation that is used to decode the hidden representa-
tions is a weighted sum of the hidden states across the time-steps
as defined by a neural network attention mechanism63. Addition-
ally, our RNN networks used a bidirectional representation, where
the forward and backward networks have their hidden states
concatenated at each time-step, which was found to improve
predictive power.

Linear models
Based on the history of linear modeling in the time-series domain,
we opted to use an L2 regularized (Ridge) linear regression as one
of our baseline models. These linear models are simple and quick
to implement while still often giving near state-of-the-art results.
We trained our ridge regression using a gradient descent
approach, with the same frameworks as our deep learning models.

Heuristic baselines
In addition to the linear and RNN models, we also considered two
simple baselines that have proven useful for time-series models37:
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(1) predicting the last observed value again (no change) and (2)
predicting the mean of all k observations.
All procedures were approved by the University of Pennsylvania

Institutional Review Board #6 under exempt status.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
County language data is available through the 2011–2017 County Tweet Lexical
Bank23. Our yearly aggregated language topic vectors along with historic opioid-
related deaths, per county, will be added to the repository: https://github.com/
wwbp/county_tweet_lexical_bank.

CODE AVAILABILITY
The model definition, data loader, and train/test loop for TROP will be available at the
following repository: https://github.com/MatthewMatero/TrOP.
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