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Towards precision medicine based on a continuous deep
learning optimization and ensemble approach
Jian Li 1✉, Linyuan Jin1,9, Zhiyuan Wang 2✉, Qinghai Peng 3✉, Yueai Wang 4✉, Jia Luo4,9, Jiawei Zhou3,9, Yingying Cao2,9,
Yanfen Zhang1, Min Zhang1, Yuewen Qiu1, Qiang Hu1, Liyun Chen1, Xiaoyu Yu1, Xiaohui Zhou1, Qiong Li1, Shu Zhou1, Si Huang1,
Dan Luo1, Xingxing Mao1, Yi Yu5, Xiaomeng Yang6, Chiling Pan7, Hongxin Li8, Jingchao Wang8 and Jieke Liao8

We developed a continuous learning system (CLS) based on deep learning and optimization and ensemble approach, and
conducted a retrospective data simulated prospective study using ultrasound images of breast masses for precise diagnoses. We
extracted 629 breast masses and 2235 images from 561 cases in the institution to train the model in six stages to diagnose benign
and malignant tumors, pathological types, and diseases. We randomly selected 180 out of 3098 cases from two external institutions.
The CLS was tested with seven independent datasets and compared with 21 physicians, and the system’s diagnostic ability
exceeded 20 physicians by training stage six. The optimal integrated method we developed is expected accurately diagnose breast
masses. This method can also be extended to the intelligent diagnosis of masses in other organs. Overall, our findings have
potential value in further promoting the application of AI diagnosis in precision medicine.
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INTRODUCTION
Continuous learning, also known as lifelong learning, is a
fundamental idea in machine learning where a model continu-
ously learns and evolves based on the input of an ever-increasing
amount of data while retaining previously acquired knowledge1.
This learning process model will continue to incrementally learn
and autonomously change its diagnostic capabilities without
forgetting the original task. Automated machine learning
(AutoML)2 is the latest development in artificial intelligence (AI)
and is expected to become the future of AI3. For instance, Google’s
Cloud AutoML4–6 has employed this technology, wherein AutoML
allows clinicians with limited knowledge of ML to apply such
models to their data sets. Most automated deep learning models
developed based on Cloud AutoML exhibit comparable diagnostic
performance and characteristics with the latest deep learning
algorithms6. However, the current version only allows a single
image to be uploaded for prediction. This limits large-scale
external validation and substantially reduces its usability for
systematic evaluation in the study of predictive models7.
Dynamic memory, which is retaining a small and diverse subset

of the data stream in memory, has been used to alleviate
catastrophic forgetting in continuous learning in medical ima-
ging8; however, the practical application of this approach is
challenging. Class-incremental learning on CIFAR-100 is a method
that delivers state-of-the-art performance on challenging con-
tinual learning benchmarks without storing data9. However, this
method is still in the exploratory stage. The CLS adopts a model
automatic optimization method to monitor the diagnostic
performance of the model in real-time, effectively evaluate its
quality, supervise it in the continuous learning process, and
optimize it without overfitting under the condition of small data

sets in the initial stage of the CLS. The CLS adopts historical image
data from the organizations of users to construct data sets; it
labels data according to pathological results to ensure the
accuracy of training data labeling, facilitates data verification
and quality control, and labels benign and malignant images as
well as pathological types and diseases. The CLS also integrates
three models with data on benign and malignant tumors and
pathological types and disease diagnoses through the integration
method, thereby obtaining three kinds of diagnostic results
required by physicians to derive accurate diagnoses. With the
continuous increase in new data, the CLS will learn from more
cases and types of diseases to improve its diagnostic capability
and increase the number of disease diagnoses. The CLS can also
be applied to AI-based diagnosis of ultrasound images of thyroid
masses, liver, kidney, and other superficial body parts.
Existing AI trains diagnostic models on a large amount of image

data and mainly classifies them into benign and malignant
categories10–12, Various AI tools classify images into breast
imaging report and data system (BI-RADS) categories13,14,
phyllodes tumor and fibroadenoma15, and even mastitis and
adenosis16. AI diagnoses have reached or exceeded the diagnostic
abilities of medical experts17 but are seldom applied in practical
work18,19. This is mainly attributed to the lack of trust in the results
of AI diagnoses. Many clinical images are enhanced, cropped,
transformed, or modified to obtain ideal experimental results20.
Thus, the larger the training data, the more difficult it is to control
the quality of the data. Some data are labeled according to the
experience of experts21,22; however, even experienced experts
cannot achieve complete accuracy in pathological diagnoses,
which further reduces the users’ trust in AI. With our continued
ignorance, we risk missing out on perspectives that could shape
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profound solutions to the challenges we face entering the next
decade23.
Developments in big data and AI are transforming medicine;

however, public health systems have been slow to fully embrace
their potential24. Data availability and quality are limiting factors
and the expansion of digital technologies and data collection also
presents a range of ethical and governance concerns24. Contin-
uous learning for medical AI diagnosis is still in its infancy, and
models for ultrasound diagnostics using continuous learning have
not yet been reported. Nevertheless, it is considered an ideal
learning method with great potential in medical practice as it is
akin to the learning method of human clinicians25. The continuous
learning model can gradually learn from errors and adjust
performance with increasing data; however, many challenges
remain in its clinical application, the most crucial being that new
data may interfere with the knowledge that the model has
attained, resulting in a sudden decline in its performance26,27.
These models are sensitive to environmental changes and liable to
performance decay. Despite their successful integration into
clinical practice, ML/AI algorithms should be continuously
monitored and updated to ensure their long-term safety and
effectiveness28. Continuous monitoring algorithms are not
“impossible,” but they are difficult to construct; the quality and
quantity of data are uncertain, altering the diagnostic capabilities
of the models obtained after training. Therefore, continuously
monitoring the diagnostic capabilities of the model and compar-
ing its diagnostic capabilities with the previous model is crucial.
These are all factors to consider when developing a continuous
learning model. These are all factors to consider when developing
a continuous learning model. Furthermore, such models must
incorporate clinical data from several patients to use AI in
assessing health outcomes; however, this may lead to patient
privacy issues. Assessing the quality of these models is currently
impossible25, as the regulatory challenges and risks of using AI in
real-time medicine are substantial25. Currently, no medical device
based on AI or ML continuous learning is approved by the US
Food and Drug Administration29; however, such devices will be
approved in the near future30. Medical devices can be updated
based on new data, including the personalization and elimination
of errors; however, data accuracy and optimal device performance
must be ensured31.
The CLS was tested with seven independent data sets in three

external data sets and compared with 21 physicians. We use nine
performance indices and the same criteria to comprehensively
evaluate and rank the diagnostic ability of the CLS and
participating physicians. These indices included sensitivity, speci-
ficity, area under the curve (AUC), the diagnostic accuracy of
pathological type (DAPT), accuracy of pathological type identifica-
tion (APTI), missed diagnosis rate of pathological type (MDRPT),
the diagnostic accuracy of pathological diseases (DAPD), the
accuracy of differentiating pathological diseases (ADPD), and
missed diagnosis rate of pathological diseases (MDRPD). The CLS
adopts the optimal ensemble method to effectively overcome the
problem of continuous learning model supervision. In this project,
we employed this CLS to evaluate ultrasound breast masses. We
believe this approach will be valuable in gaining the trust of
physicians in the technology and ensuring accurate tumor
diagnoses.

RESULTS
Training and testing
Details of the cases used for training and testing and the
pathological distribution of diseases are provided in Table 1. The
experimental dataset (EDS) was used to test and select five
algorithms (Supplementary Table 1a) with higher AUC values from
13 algorithms, including resnet50, DenseNet121, inceptionv3,

inceptionresnetv2, and Xception; the AUC did not significantly
differ among the five algorithms (p= 0.09~0.88, Supplementary
Table 1b). According to the AUC values of benign and malignant
tumors and pathological types and diseases diagnosed by the
model, the sum of the three models (Supplementary Table 1c) was
calculated. The value of inceptionresnetv2 was the highest (2.161).
Therefore, inceptionresnetv2 was chosen as the algorithm used to
develop the CLS in this study. Five algorithms were used to
construct and test the model using cropped and uncropped
image data sets, where the AUC value of the uncropped image
model was higher than that of cropped image model in four
algorithms. Three of them had p < 0.05; therefore, the image was
not cropped in this study (Supplementary Table 1d).
The data were divided into six stages (Table 2, Supplementary

Table 2): first: 83, second: 81, third: 85, fourth: 84, fifth: 81, and
sixth: 85. The number of benign cases exceeded that of malignant
cases and the benign cases were randomly selected. Finally, the
redundant data of the six stages were first: 39, second: 35, third:
45, fourth: 30, fifth: 28, and sixth: 39, the actual data used for
training the model were first: 44, second: 46, third: 40, fourth: 54,
fifth: 53, and sixth: 46.
The organization internal test dataset (OITDS) was tested by the

optimization model (OM) and-optimal model (NOM) obtained
from the six stages of the CLS training, and the test results were
scored (Table 3). During the model training process, the saved
model is tested. The model with the highest AUC value is the OM,
whereas the model whose accuracy does not increase at the end
of the training is the NOM. The OM score increased from the
lowest (71.1 points) in the second stage to the highest (78.79
points) in the sixth stage (Supplementary Table 3b). The increase
was not directly proportional to the increase in training data and
images. The CLS score in the second stage was 70.87 points, which
was marginally lower than that in the first stage (71.1 points);
however, this stage included 90 training data and 506 images
from only 44 and 245 images, respectively, in the first stage
(Supplementary Table 2). The OITDS test results suggested that
the average score of the OM was higher than that of the NOM
with the nine performance indices, while the scores of the six
stages steadily improved.
The OM and NOM obtained were used to test the external test

dataset (ETDS), and the test results were scored (Table 3,
Supplementary Table 3c). The average score of the OM was
slightly higher than that of the NOM, and the scores of the six
stages steadily improved. As there were no additional data after
the completion of the sixth training stage, this project tested an
add-test dataset (ATDS) on the OM and NOM obtained from the
first five training stages; the ATDS included the data of the second
to sixth stages, which were 81, 85, 84, 81, and 85, respectively, and
the test results were scored (Table 3, Supplementary Table 3d).
The average score of the OM was slightly higher than that of the
NOM. The scores of the third stage were the highest. The CLS,
therefore, exhibited stable diagnostic performance.

Evaluation and comparison with physicians
Twenty-one physicians participated in the test (details of
experience and comprehensive evaluation results in Supplemen-
tary Table 4a, b). The correlation coefficient between the working
years and total score was −0.33, the correlation coefficients of
nine indices and working years were between −0.49 and −0.1,
and the comprehensive diagnostic scores of primary physicians
were slightly higher than those of intermediate and senior
physicians. The CLS adopted the OITDS test results as shown in
Supplementary Table 3a, where the comprehensive evaluation
results of the six stages of the CLS training showed a low
correlation between the sensitivity, specificity, and training stages;
the correlation coefficients of the other seven indices with the
training stage were between 0.64–0.86 (Supplementary Table 3e).
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The CLS diagnostic score and training times had a good
correlation, except that the specificity decreased by 11.86%. The
mean values of the other eight CLS indices were higher than those
of physicians.

CLS and physician diagnosis total score ranking
We compared the total score ranking of participating physicians
and the CLS (Table 4). The physician tests used the OITDS, and the
CLS also used the OITDS results of the OM. Compared with the 21
physicians and six stages, the CLS had its lowest score in stage 2,
ranking tenth; however, this score exceeded that of 17 (81%)
physicians. Further, the CLS ranked ninth in phase 1, sixth in phase
3, and second in phase 6, outscoring 20 (95%) physicians. As the
learning phase progressed, the CLS improved from tenth to second
place and ranked in the top five in phases 4–6 (Supplementary Fig.
3b). We utilized three external data sets, including OITDS, ETDS,
and ATDS; among them, ATDS had five data sets and a total of
seven independent data sets were used for testing. The CLS
attained high and stable diagnosis scores with a small amount of
data for training the model (Supplementary Fig. 1a, b). The OM

score was higher than the NOM score when using the model
optimization method to achieve the supervision of CLS diagnoses.
The CLS could output three results simultaneously—benign and
malignant tumors, pathological types, and pathological disease
diagnoses (identifying the disease to which the mass belongs and
the result of the pathological diagnosis)—by using the model
integration method. Furthermore, it could effectively and trans-
parently evaluate the diagnostic ability of physicians and the CLS
using nine indices.

DISCUSSION
Open and transparent standard comparative diagnostic ability in
AI diagnosis is essential for generating clinicians’ trust. In this
comparative study, we use nine performance indices for a
comprehensive evaluation, and the diagnostic ability score of
the CLS exceeded 17 of the 21 participating physicians in the first
stage and 20 in the sixth stage. Because the evaluation criteria are
the same, the evaluation process is open and transparent, with
continuous improvement in the diagnosis level of physicians;
physicians can also test and verify their diagnostic ability at any

Table 1. Baseline characteristics of datasets.

Development dataset Test dataset

Project name Total cases Training cases OITDS ETDS

Number of cases 561 449 (80%) 112 (20%) 180

Average age (age range) 42 (12–87) 43 (12–87) 41 (13–82) 45 (19–75)

Number of parts 629 499 (79%) 130 (21%) 180

Number of images 2235 1549 686 793

Body parts

Left 326 248 (76%) 78 (24%) 99

Right 303 251 (83%) 52 (17%) 81

Benign 461 366 (79%) 95 (21%) 111

Acute suppurative mastitis 1 1 NA NA

Granulomatous lobular mastitis 3 3 NA 1

Intraductal papilloma of the breast 16 13 3 7

Radial sclerosing lesions of the breast NA NA NA 1

Mammary plasma cell mastitis 12 11 1 1

Benign phyllodes tumor of the breast 1 1 NA 2

Breast cyst 20 14 6 4

Breast abscess 24 21 3 1

Fibroepithelial tumor of the breast 3 3 NA NA

Fibroadenoma of breast 187 143 (76%) 44 (24%) 48

Breast adenopathy 191 154 (81%) 37 (19%) 45

Mammary hemangioma 1 1 NA NA

Breast lipoma 2 1 1 1

Malignant 168 133 (79%) 35 (21%) 69

Intraductal papillary carcinoma of the breast 5 5 NA 2

Ductal carcinoma in situ of the breast 10 7 3 1

Borderline phyllodes tumor of the breast 1 1 NA NA

Invasive ductal carcinoma of the breast 138 110 (80%) 28 (20%) 63

Invasive lobular carcinoma of the breast 4 3 1 2

Intracystic papillary carcinoma 1 1 NA NA

Breast neuroendocrine carcinoma 2 2 NA NA

Medullary breast cancer 3 3 NA NA

Mucinous breast cancer 2 1 1 1

Malignant mesenchymal tumor of the breast 1 NA 1 NA

Adenoid cystic carcinoma of the breast 1 NA 1 NA
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Table 2. Disease distribution and number included in six training sessions.

Project name First Second Third

Total Train NT Total Train NT Total Train NT

Number of recordings 83 44 39 81 46 35 85 40 45

Body parts

Left 43 19 24 37 22 15 43 20 23

Right 40 25 15 44 24 20 42 20 22

Benign 61 22 39 59 24 35 68 23 45

Acute suppurative mastitis NA NA NA NA NA NA 1 0 1

Granulomatous lobular mastitis 1 NA 1 NA NA NA 2 1 1

Intraductal papilloma of the breast 1 1 NA 3 2 1 3 2 1

Mammary plasma cell mastitis 2 1 1 6 3 3 2 1 1

Benign phyllodes tumor of the breast 1 NA 1 NA NA NA NA NA NA

Breast cyst 2 NA 2 2 1 1 4 2 2

Breast abscess 2 1 1 4 2 2 4 3 1

Fibroepithelial tumor of the breast NA NA NA 1 1 0 1 0 1

Fibroadenoma of the breast 17 6 11 20 8 12 19 8 11

Breast adenopathy 35 13 22 23 7 16 32 6 26

Malignant 22 22 0 22 22 0 17 17 0

Intraductal papillary carcinoma of the breast 1 1 0 NA NA NA NA NA NA

Ductal carcinoma in situ of the breast 3 3 0 NA NA NA 2 2 0

Borderline phyllodes tumor of the breast 1 1 0 NA NA NA NA NA NA

Invasive ductal carcinoma of the breast 16 16 0 19 19 0 15 15 0

Invasive lobular carcinoma of the breast NA NA NA 2 2 0 NA NA NA

Breast neuroendocrine carcinoma NA NA NA 1 1 0 NA NA NA

Medullary breast cancer 1 1 0 NA NA NA NA NA NA

Fourth Fifth Sixth

Total Train NT Total Train NT Total Train NT

Number of recordings 84 54 30 81 53 28 85 46 39

Body parts

Left 40 27 13 45 28 17 40 17 23

Right 44 27 17 36 25 11 45 29 16

Benign 57 27 30 55 27 28 66 27 39

Intraductal papilloma of the breast 3 0 3 1 0 1 2 1 1

Mammary plasma cell mastitis 1 1 0 NA NA NA NA NA NA

Breast cyst 4 1 3 1 1 0 1 1 0

Breast abscess 2 2 0 1 1 0 8 2 6

Fibroepithelial tumor of the breast NA NA NA 1 1 0 NA NA NA

Fibroadenoma of breast 24 14 10 29 12 17 34 17 17

Breast adenopathy 23 9 14 22 12 10 19 5 14

Mammary hemangioma NA NA NA NA NA NA 1 0 1

Breast lipoma NA NA NA NA NA NA 1 1 0

Malignant 27 27 0 26 26 0 19 19 0

Intraductal papillary carcinoma of the breast 2 2 0 1 1 0 1 1 0

Ductal carcinoma in situ of the breast NA NA NA NA NA NA 2 2 0

Invasive ductal carcinoma of the breast 23 23 0 23 23 0 14 14 0

Invasive lobular carcinoma of the breast NA NA NA NA NA NA 1 1 0

Intracystic papillary carcinoma 1 1 0 NA NA NA NA NA NA

Breast neuroendocrine carcinoma NA NA NA 1 1 0 NA NA NA

Medullary breast cancer 1 1 0 1 1 0 NA NA NA

Mucinous breast cancer NA NA NA NA NA NA 1 1 0
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time. We found no relationship between the scores of clinicians’
diagnostic abilities and their working years (Supplementary Table
4b), where the correlation coefficient between working years and
the total score was −0.33 (Supplementary Fig. 3a), and the
correlation coefficients between working years and nine indices
were all below 0; unlike the findings of Yang et al.32. Younger
physicians obtained higher diagnostic scores, which may be
related to our evaluation index, including the pathological
diagnosis of the mass. The study data included 41% benign mass
breast adenosis, 40% breast fibroadenoma, and 82% malignant
mass breast infiltrating ductal carcinoma. These three types offer
primary, intermediate, and senior clinicians more opportunities to
learn, and tracking pathological results is essential to obtaining
practical experience in diagnostics. This work was mainly
completed by primary physicians, who may have had the
opportunity to gain enhanced diagnostic experience and similarly.
AI may have more advantages in the pathological diagnoses of
tumors owing to its ability to learn continuously. The CLS is
constantly learning and improving, and if its ability surpasses that
of physicians, it could increase physicians’ confidence in AI.
We found that different algorithms had different diagnostic

capabilities with the same data and training methods. Among the
13 candidate algorithms, inceptionresnetv2 had the highest AUC
value when tested with the same data, while mobilenetV2 had the
lowest. He et al.33 have also used the inceptionresnetv2 algorithm
to achieve good diagnostic results in the auxiliary diagnosis of
breast cancer, and the algorithm is considered superior to the
ResNeXt-101 and SENet-101 algorithms. We plan to compare the

diagnostic performances of the five algorithms under different
amounts of data and test new algorithms in the future. If a better
algorithm is identified, it could be used for CLS diagnoses.
Image processing may improve the diagnostic ability of AI

under experimental conditions; however, the process is variable
and leads to differential results. The findings of this study
suggested that diagnoses were better without cropping images,
similar to those obtained by Golse34 using whole images.
Processing images by CAD tools35 did not improve the diagnostic
performance of radiologists. The experimental results of the three
data sets in the present study were similar, indicating that the CLS
exerts stable diagnostic performance without image processing. In
theory, the peripheral part of the image will not affect the
diagnosis, as AI cannot extract the characteristics of the mass from
the periphery. It may be possible to change the characteristics of
the mass in the image if it is cut or otherwise processed.With
different processing methods, the characteristic changes may be
different if AI learns using processed images. Therefore, images
provided for AI diagnoses must be processed the same way.
Overfitting is an issue that must be solved in the process of

model training, especially in the case of small data sets. Data
enhancement36 is usually used to generate more training data to
reduce overfitting. In this study, the imagenet pre-training model
and transfer learning were used, given the small amount of data in
the initial stage of the CLS. To judge whether the model, whose
accuracy was no longer improved, was an overfitted model, the
OM was selected as the model with the highest AUC value after
training. The OM was not the model with the largest number of

Table 4. The total score ranking of participating physicians and CLS comparison evaluation.

CLS or doctor Level Evaluation

Working years (year) Hospital level Job title Score Rank

Doctor 1 3 TH Primary 80.10 1

CLS_6 78.79 2

CLS_5 76.91 3

CLS_4 76.63 4

Doctor 2 4 TH Intermediate 74.36 5

CLS_3 74.03 6

Doctor 3 7 TH Intermediate 73.72 7

Doctor 4 16 TH Advanced 73.23 8

CLS_1 71.10 9

CLS_2 70.87 10

Doctor 5 15 TH Primary 70.84 11

Doctor 6 2 TH Primary 69.70 12

Doctor 7 5 TH Primary 69.34 13

Doctor 8 8 TH Intermediate 68.42 14

Doctor 9 8 TH Intermediate 68.06 15

Doctor 10 12 TH Intermediate 65.05 16

Doctor 11 16 TH Advanced 64.70 17

Doctor 12 11 TH Advanced 61.50 18

Doctor 13 10 TH Intermediate 59.51 19

Doctor 14 6 CH Primary 59.32 20

Doctor 15 16 TH Advanced 58.53 21

Doctor 16 2 TH Primary 57.56 22

Doctor 17 21 TH Advanced 56.55 23

Doctor 18 7 TH Primary 54.85 24

Doctor 19 16 TH Intermediate 54.79 25

Doctor 20 6 TH Primary 54.29 26

Doctor 21 14 CH Intermediate 39.50 27
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training rounds, and its diagnostic scores were higher than those
of the NOM in the first four stages. The NOM diagnostic
performance was better in the fifth and sixth stages, given the
large amounts of data and images; therefore, it was not easy to
overfit; the ETDS and ATDS tests yielded similar results.
Furthermore, from the six stages and three data sets, the

average OM evaluation score was higher than that of the NOM.
Therefore, it is necessary to adopt the optimization method to
supervise the CLS, which can be further improved with automatic
comparisons, selections of models, and comparisons with previous
stage models. If the diagnostic performance is improved, a new
model can be adopted so that the diagnostic performance of the
CLS can be guaranteed to be stable or improve but not decrease.
A study by Zhou et al.37 suggests an imperative need for research
on medical AI model safety issues; thus, the use of optimal
methods in this study ensured the safe operation of the model.
This project found that the amount of training data is not

proportional to the diagnostic ability of the model. The CLS used a
small amount of data to train the model and produced good
diagnostic results; only 44 cases were used in the first stage,
including 22 benign and 22 malignant cases with 120 and 125
training images, respectively. The results of three data sets to
verify the model showed that the training model with limited data
could also produce good diagnostic results. Faes et al.7 believed
this small dataset method could be tailored to specific patient
groups (e.g., based on geography). It could be valuable once
automatic deep learning finds its place in the medical field. In this
study, the CLS started with a small dataset, and with continuous
learning, the amount of data would have continued to increase;
thus, it will be possible to study the diagnostic ability of the CLS
under different amounts of data.
Furthermore, through multi-center research and merging multi-

center data, we could compare the impact of different amounts of
data on the diagnostic performance of the CLS, especially under a
large amount of data. This approach is similar to Swarm learning38

and comparable to Nightingale Open Science for solving
medicine’s data bottleneck39. The continuous learning process in
the CLS can also be a continuous research process because CLS
can automatically output experimental results and test data sets,
thereby significantly reducing the workload of researchers.
Henry40 reported that rather than viewing the system as a
surrogate for their clinical judgment, clinicians perceived them-
selves as partnering with the technology; thus, clinicians can learn
to trust an ML system through experience, expert endorsement
and validation, and systems designed to accommodate clinicians’
autonomy and support them across their entire workflow. Lehne41

argues that interoperability is a prerequisite for the digital
innovations envisioned for future medicine, and multi-agency
data sharing and exchange enables data interoperability.
Model integration is an important method for realizing the

pathological diagnosis of mass and involves fusing the models of
different diagnostic tasks together to complete the diagnostic
task, the integration method is like the automatic breast
segmentation diagnosis technology using dual deep learning.
Through model integration, the CLS can output various results,
including whether the tumor is benign or malignant or the
pathological type, arranged by probability. Results on malignancy,
pathological type, and pathological disease diagnoses do not
depend on each other, as this could lead to inconsistent results
and require manual judgment by physicians, which is in line with
the typical diagnostic approach of physicians. In addition to the
first diagnosis, physicians need to consider other potential
diagnoses; when too many diseases are considered, the CLS will
output the most likely multiple diagnostic results for the
physicians’ reference, which is expected to play a vital role in
helping physicians identify diseases. The pathological mass
diagnosis is the precise diagnosis that can help the patient
choose the best treatment plan. Ultimately, most experts believe

artificial and human intelligence will work synergistically42; the
CLS exemplifies this collaboration.
In the initial stage, the types of diseases in the CLS are relatively

few, and the data and images of various diseases are also few,
making it difficult to diagnose these diseases. In the first stage of
this project, there were six pathological types and four diseases.
The inconsistency between the two numbers was because when
the CLS constructs the dataset, the cumulative number of images,
types, or diseases needs to reach ten or more to be included in the
dataset; in this way, the images are randomly selected for training
and verification according to the ratio of 8:2, and the number of
cases and diseases learned by the CLS will increase with
continuous learning. From the second to sixth stage, the number
of pathological types goes up to seven. In contrast, the number of
pathological diseases goes up to nine in the second stage and 15
in the sixth stage (Supplementary Table 2). The CLS currently
diagnoses 41 diseases (Supplementary Table 6), but the number of
diseases is not limited; when there is a new disease, it can be
added through the settings of the CLS. Oren et al.43 believe that
the evaluation of results in existing AI imaging studies is usually
carried out by lesion detection, ignoring the type and biological
aggression of the lesions. Using clinically meaningful outcome
evaluation such as survival rate, symptoms, and treatment is
essential to improve AI imaging studies and their applicability and
effectively apply them in clinical practice. In this project, benign
and malignant tumors, pathological types, and disease diagnoses
were obtained by the multi-model integration method, which is
expected to evaluate the survival rate of patients according to the
pathological types and disease results of tumors, thereby
providing the best plan for the clinical treatment of patients.
The CLS is also integrated with the ultrasound picture archiving

and communication system (US_PACS). This integration has many
advantages, as US_PACS automatically provides the content to the
CLS through the parametric design of the report content, and the
CLS can perform BI-RADS classification on the mass; during report
writing, the physician only needs to select the left or right side of
the current display image and then select AI to assist with the
diagnosis (Supplementary Fig. 5). The user can select any number
of images, which will be automatically provided to the CLS, and the
CLS returns the diagnosis results to US_PACS, avoiding patient
information disclosure and ruling out the impact of sex, age, race,
equipment, or physicians’ habits of collecting images on data. Celi
et al.44 believe that adopting AI can enable intelligent integration
of AI design and clinical workflow by providing seamless, effective,
and unbiased assistance to patients and physicians. This process
requires medical expertise as well as time-consuming input from
experts and researchers in the medical field; in this way, AI can also
work under the supervision of clinicians. According to Young
et al.45, patients and the public express positive attitudes toward AI
but prefer manual supervision. Through integration with US_PACS,
real data can be provided to the CLS. With continuous learning, the
diagnostic performance of the CLS is expected to continue
improving, thereby increasing the accuracy of tumor diagnoses.
This study had some limitations regarding the data quantity,

where only 629 breast masses were used to construct the dataset,
and the CLS was only learned in six stages. Physicians only used one
dataset for testing; thus, more data and prospective studies are
required to verify the current results. Furthermore, the diagnostic
effect of uncropped images was better than that of cropped images,
but this needs multi-center verification. In addition, only data and
image balance processing were performed for benign and
malignant cases in this project. Finally, the interpretability of AI46

could increase clinicians’ understanding of the results and reduce
the risks of using AI, which requires further study.
This project takes the study of ultrasound breast mass as an

example and is a critical step toward the clinical application of AI;
however, this is only the beginning of obtaining precise diagnoses
through AI, and further research remains to be completed beyond

J. Li et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)    18 



the diagnosis of breast masses. Thus, through optimization
integration and constant improvements in diagnostic accuracy,
this method could be applied to other masses in other organs
such as the liver, kidney, thyroid, and external organs. The
application of this method has potential value in improving
precision medicine.

METHODS
Data collection and dataset construction
We obtained 561 cases of breast masses with pathological results
from 1 January 2015 to 31 December 2020 (Table 1, Fig. 1). There
are 68 cases due to bilateral breast masses, so there are 629 breast
masses and 2235 images, from which 130 breast masses and 686
images were randomly selected as the OITDS; the remaining data
and images were used for training. Data from 3098 cases were
collected from other institutions, from which 180 cases and 793
images were randomly selected as the ETDS from two tertiary
hospitals in Hunan Province, namely Liuyang People’s Hospital
(2591 cases; 151 cases randomly selected) and Huaihua First
Hospital (507 cases; 29 cases randomly selected). The Cancer
Hospital Affiliated with Xiangya Medical College of Central South
University, Second Xiangya Hospital of Central South University,
and First Affiliated Hospital of Hunan University of Traditional
Chinese Medicine participated in the project and multi-center
testing.
The images in this project were obtained in JPEG format from

the video output port of the ultrasound instrument through the
US_PACS video capture card. If the image was output in digital
imaging and communications in medicine (DICOM) format, it was
converted to JPEG format. We collected 965 benign and malignant
tumor images from the data in our institution; of these, 800 images
were randomly selected for training, 165 images were randomly
selected for testing, and an EDS was constructed; 200 images each
of benign and malignant masses were selected from 130 cases and
used to construct a benign and malignant diagnostic test dataset
(BMTDS); 200 images of infiltrative non-specific cancer were
selected as a positive class according to the pathological type in
the diagnosis, by randomly selecting 200 images from those of
other pathological types as a negative class, a pathological type
diagnostic test dataset (PTTDS) was constructed; 200 images of
breast infiltrating ductal carcinoma were selected as a positive

class according to the pathological disease diagnosis, and 200
images in other pathological disease images were randomly
selected as a negative class; thus, the pathological disease
diagnostic test dataset (PDTDS) was constructed.
The 499 breast masses and 1549 images were divided into six

training data sets (Table 2) in the order of patient examination and
were used to train the model in stages; the data of all previous
stages were accumulated in the later stage, and cases without
pathological results and ultrasound images were not included.
Based on the pathological results, if only one side had a mass,
irrespective of it being a single or multiple mass, it was considered
a breast mass; if one side had a benign and malignant mass, only
the malignant mass was selected; if one side had multiple types of
malignant masses, and the malignant degree of the tumor could
be judged according to the pathological diagnosis results, the one
with the highest degree of malignancy was selected; if one side
had multiple types of benign masses, the one with the largest
mass was selected. Data from 180 cases outside the institution
were collected; if there was a mass on one side of the breast, that
side was chosen, and if there were masses on both sides of the
breast, one side was chosen randomly. This study was approved
by the Ethics Committee of The Affiliated Changsha Central
Hospital, Hengyang Medical School, University of South China
(approval number: R201949). Informed consent was waived. The
statistical tools used included MedCalc Statistical Software version
20.014 (MedCalc Software Ltd., Ostend, Belgium; https://
www.medcalc.org; 2021), use its ROC curve analysis to calculate
95% confidence interval and significance level p, and use the
comparison of two rates test to calculate the p-value of incidence
rate ratio. The CLS development technology of this project was
provided by Guangzhou Yirui Zhiying Technology Co. Ltd.
(Guangzhou, China).

Image clipping experiment
The EDS and BMTDS data sets were constructed with and without
image cropping (cutting off the text around the ultrasound
image), respectively. Five algorithms were used to develop the
model and tested by BMTDS. The AUC values obtained by the two
approaches were compared (Supplementary Table 1d). According
to the experimental results, we chose whether or not to cut the
image during model training.

Fig. 1 Data construction flowchart. OITDS organization internal test dataset; ETDS external test dataset; ATDS add test dataset.
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Experimental conditions for CLS development
A basic PC with the following specifications was used: CPU, Intel
(R) Core (TM) i7-6700CPU 3.40 GHz (Intel, Santa Clara, CA, USA);
memory, 8 GB; system type, 64-bit operating system, x64-based
processor. The operating system used Windows 10 Professional
Edition (Microsoft, Redmond, WA, USA). Other features included a
GPU graphics card (NVIDIA Quadro P4000; NVIDIA, Santa Clara, CA,
USA), video memory (8 g), and software such as Python 3.7.6,
tensorflow-gpu (version 1.13.1 Google, Mountain View, CA, USA),
scikit-learn 0.21.0, and keras 2.2.4.

CLS simulation prospective study
We divided 499 training data and 1,549 images into six stages of
data to maintain a relative balance between benign and
malignant data (Supplementary Table 2). Each stage was based
on malignant mass images, randomly extracting benign cases with
approximately the same number and images as the malignant
cases. Python was used to develop the CLS and integrate it with
US_PACS (Fig. 2). The CLS was divided into three parts: CLS_A,
CLS_B, and CLS_C. A clinician provided data and images to CLS_A
through the US_PACS; when CLS_A received images with
pathological results, the images were automatically classified,
and a dataset was constructed, i.e., benign and malignant set
(BMS), pathological type set (PTS), and pathological disease set
(PDS), The classification was based on pathological types and
disease classifications ((Supplementary Table 6).
An ImageNet pre-training model and transfer learning were

used in each training. When the number of images of benign and
malignant tumors reached the preset number (initially set to 125
images), CLS_B automatically started the training model; after the
training of the benign and malignant diagnoses models, it
automatically started the testing module, and the last eight
models (the maximum number was limited by the condition of
the computer hardware) were selected from the models stored
during training to test the BMTDS. The model with the highest
AUC value as a benign and malignant diagnostic optimization
model (BM_OM) was automatically selected, output, and saved as
an original record for use by the experimenter. The model trained
to the end with no further increase in accuracy was taken as the

benign and malignant diagnostic non-optimal model (BM_NOM),
which could be identified from the receiver operating character-
istic (ROC) curve of the sixth stage (Supplementary Fig. 4d). The
highest value of the AUC was 0.845 (BM_OM) in 34 rounds and
0.826 (BM_NOM) in the last round (round 43).
After CLS_B finished the training of the pathological type

models, the test module automatically started; the last eight
models were selected from the models stored during the training
to test the PTTDS. The model with the highest AUC value was
automatically selected as a pathological-type diagnostic optimiza-
tion model (PT_OM). The model trained to the end with no further
increase in accuracy was used as a pathological type diagnostic
non-optimal model (PT_NOM). From the ROC curve of the sixth
stage (Supplementary Fig. 4e), the AUC value was the highest at
83 rounds of training, reaching 0.869 (PT_OM), and at round 84 of
training, the AUC value was 0.868 (PT_NOM).
After CLS_B finished the training of the pathological disease

model, the test module automatically started. The last eight
models were selected from the models stored during training to
test the PDTDS, and the model with the highest AUC value was
automatically selected as a pathological disease diagnosis
optimization model (PD_OM). The model trained to the end
without further increase in accuracy was taken as a pathological
disease diagnosis non-optimal model (PD_NOM). From the ROC
curve of the sixth stage (Supplementary Fig. 4f), the AUC value
was the highest at 71 rounds of training (0.825; PD_OM), and at 86
rounds of training, it was 0.80 (PD_NOM).
After the training at each stage with CLS_B, the test module

automatically started. BM_OM, PT_OM, and PD_OM were adopted
to the OITDS, and the result was output (Supplementary Fig. 4a).
BM_NOM, PT_NOM, and PD_NOM were manually selected in each
stage to test the OITDS; the result was output and the results of
the two methods were compared (Supplementary Table 5a,
Supplementary Fig. 2).
When CLS_A received the images without pathological results,

the images were directly transmitted to CLS_C. BM_OM was
selected to perform benign and malignant diagnoses on the mass,
and the results were returned to US_PACS. The image with the
highest malignant probability was selected from the provided
images to perform pathological type and disease diagnoses.

Fig. 2 CLS training and diagnosis flowchart. CLS continuous learning system, US_PACS ultrasound picture archiving and communication
system, BMS benign and malignant set, PTS pathological type set, PDS pathological disease set, BMTDS benign and malignant diagnostic test
dataset, PTTDS pathological type diagnostic test dataset, PDTDS pathological disease diagnosis test dataset, BM_OM benign and malignant
diagnostic optimization model, BM_NOM benign and malignant diagnostic non-optimal model, PT_OM pathological type diagnostic
optimization model, PT_NOM pathological type diagnostic non-optimal model, PD_OM pathological disease diagnosis optimization model,
PD_NOM pathological disease diagnosis non-optimal model.
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PT_OM was first selected for pathological type diagnosis; PD_OM
was then selected for pathological disease diagnosis, and the
result was returned to the US_PACS after the diagnosis was
complete. Since diagnoses and learning were performed by
different modules (same or different servers), CLS_B did not affect
the diagnosis of CLS_C while learning.

CLS diagnostics performance test
In addition to the automatic testing of the OITDS after CLS training
(Supplementary Table 5a, Supplementary Fig. 4a), this project
tested the ETDS on OM and NOM obtained in six stages of training
and compared the output results (Supplementary Table 5b,
Supplementary Fig. 4b). This project tested an ATDS on the OM
and NOM obtained from the first five training stages, and the
output results were compared (Supplementary Table 5c, Supple-
mentary Fig. 4c).

Comparison of the diagnostic performance of the CLS with
test physicians
The same evaluation standard (Supplementary Table 7) was used
to compare the scores of the CLS and diagnostic ability of 21
physicians who participated in breast ultrasound diagnoses
(including two community hospital physicians who studied in
our institution). The highest total score of nine indices was 100, the
AUC value was 20, the value of other indicators was 10, and the
sensitivity and specificity were selected according to the Youden
index of the ROC curve. Three diagnoses could be selected
according to the pathological type, and three indices were used for
evaluation; the accuracy of APTI indicated a correct diagnosis in
three diagnoses, and according to the ranking of correct
diagnoses, different scores were given: first rank, 3 points; second
rank, 2 points; third rank, 1 point; absent in three diagnoses, 0
points. The calculation of the various indices is explained in
Supplementary Table 7. The OITDS, ETDS, and ATDS diagnostic
results (Supplementary Table 3b–d) using the OM and NOM were
evaluated according to the evaluation criteria; physician test results
were also evaluated (Supplementary Fig. 3b), and the CLS and
physician diagnostic scores were ranked (Table 4).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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