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A “one-size-fits-most” walking recognition method for
smartphones, smartwatches, and wearable accelerometers
Marcin Straczkiewicz 1✉, Emily J. Huang 2 and Jukka-Pekka Onnela1

The ubiquity of personal digital devices offers unprecedented opportunities to study human behavior. Current state-of-the-art
methods quantify physical activity using “activity counts,” a measure which overlooks specific types of physical activities. We
propose a walking recognition method for sub-second tri-axial accelerometer data, in which activity classification is based on the
inherent features of walking: intensity, periodicity, and duration. We validate our method against 20 publicly available, annotated
datasets on walking activity data collected at various body locations (thigh, waist, chest, arm, wrist). We demonstrate that our
method can estimate walking periods with high sensitivity and specificity: average sensitivity ranged between 0.92 and 0.97
across various body locations, and average specificity for common daily activities was typically above 0.95. We also assess the
method’s algorithmic fairness to demographic and anthropometric variables and measurement contexts (body location,
environment). Finally, we release our method as open-source software in Python and MATLAB.
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INTRODUCTION
The development of body-worn devices, such as smartphones,
smartwatches, and wearable accelerometers, has revolutionized
research on physical activity (PA) in medicine and public health.
Unlike surveys, which are subjective and often cross-sectional, body-
worn sensors collect objective and continuous data on human
behavior. The personal nature of body-worn sensors and their ability
to collect high-resolution data allow researchers to obtain insights
into everyday activities, thus deepening our understanding of how
PA impacts human health.
Human activity recognition (HAR) is the process of translating

discrete measurements from body-worn devices into physical
human activities that may occur in the lab or in free-living
settings1. In public health research, body-worn devices can be
used to quantify PA in terms of “activity counts,” which classify
activities based on their intensity level (traditionally expressed in
gravitational units [g]2) using predefined thresholds developed
for each body location where the sensor is carried3–5. PA in a
given period of observation may be classified as sedentary, light,
moderate, or vigorous. One drawback of classifying PA by
intensity is that it overlooks the importance of specific types of
activities, which depend on personal capabilities, choices,
habitual changes, and detailed characteristics of motion, which
could indicate deteriorating health status. As a potential
alternative, human activities may be classified by type, replacing
PA intensity levels with the type of activity performed, e.g.,
walking or running. Such an approach requires an understanding
of how different activities manifest themselves as measurable
physiological motion.
In this study, we focus on the recognition of walking using a

wide spectrum of personal digital devices, such as smart-
phones, smartwatches, or wearable accelerometers. Walking is
the most common PA performed daily by able-bodied humans
starting approximately from the age of one year6. Walking not
only allows us to commute, but also serves as an essential
exercise that helps to maintain healthy body weight and

prevent disease, for example, heart disease, high blood
pressure, cognitive decline, and type 2 diabetes7–11. The
increasing application of body-worn devices in free-living
epidemiological studies is expected to provide new insights
into quality of life12, as well as allow exploration and possible
extension of walking-related biomarkers, such as cadence, step
length, and gait variability13–15 across heterogeneous cohorts
of subjects. Walking recognition using body-worn devices is a
challenging task, and it has not been implemented on a large
scale using open (non-proprietary) methods (Supplementary
Table 1).
Walking measurements from body-worn sensors are complex

and depend on not only demographic (e.g., age, sex), anthro-
pometric (e.g., height, weight), and habitual (e.g., posture,
gait, walking speed) differences among subjects, but also on
metrological (e.g., sensor body location and orientation, body
attachment, sensing device, environmental context) differences
across studies. Figure 1a illustrates the variety of signals, such as
walking strides (i.e., motion between two consecutive steps of
walking), from several publicly available datasets that we used in
our study (Table 1). The data were collected with accelerometers
situated in various body-worn devices at different locations. To
simplify comparison, we rescaled each walking fragment to the
same length.
The data collected at a given body location within a given

study exhibit visual similarities between subjects in terms of
signal amplitude and variability; however, when compared
across studies, walking signals are much more heterogenous.
Despite some common features, such as a certain minimum
amplitude and oscillations, the data representing the same
activity exhibit different characteristics not just between body
locations but, more importantly, within the same location.
Since each dataset was collected in a different environment
using different instrumentation and different data acquisition
parameters, it is unclear whether existing methods can be
adapted to these settings without compromising their
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classification accuracy16,17. Consequently, while existing meth-
ods offer solutions that are “fit-for-purpose,” e.g., methods that
have been developed for a specific cohort, device, and body
location, the literature still lacks a “one-size-fits-all” or at least a
“one-size-fits-most” method that provides accurate, general-
izable, and reproducible walking recognition in various
measurement scenarios, is insensitive to other everyday
activities, and, importantly, is not systematically biased towards
one specific group of subjects either in terms of demographic
or anthropometric measurements.
Here, we propose a method that recognizes walking activity

through temporal dynamics of human motions measured by the
accelerometer, a standard hardware sensor built in body-worn
devices. Our approach focuses on the inherent features of
walking: intensity, periodicity, and duration. We analyze these
features for sensors at body locations typically used in medical
and public health studies (thigh, waist, chest, arm, wrist) as well
as for unspecified locations (e.g., in free-living settings using
smartphones), and create a classification scheme that allows for
flexible and interpretable estimation of walking periods and their
temporal cadence. To account for diversity in walking, we
validate our method against 20 publicly available datasets
(Table 1). To assess the algorithmic fairness of our method, we
evaluate our approach for a potential bias toward subjects’
demographics and measurement context. To improve transpar-
ency and reproducibility of research, we release open-source
software implementations of our method in Python

(https://github.com/onnela-lab/forest) and MATLAB (https://
github.com/MStraczkiewicz/find_walking).

RESULTS
Method summary
Our method leverages the observation that, regardless of sensor
location and subject, as long as a person is walking, their
accelerometer signal oscillates around a local mean with a specific
amplitude and a frequency equal to their walking speed (Fig. 1).
To determine signal amplitude, we computed a peak-to-peak
distance in one-second non-overlapping segments; information
about temporal characteristics was obtained using continuous
wavelet transform (CWT) (Fig. 2). The algorithm (Fig. 3) is discussed
in full detail in the Methods section.
Our method has several tuning parameters. The parameters are

used to distinguish walking from non-walking activities accounting
for its sufficiently high amplitude (amplitude threshold A),
consistent and omnipresent step frequency (step frequency range
fw), coexistence of sub- and higher harmonics (harmonic ratios α
and β), and time consistency (minimum duration T). To account for
substantial differences in frequency-domain features across body
locations (Fig. 4), we optimized our algorithm for two possible
application scenarios: (1) smartphone or waist-worn accelerometer
data (i.e., when device is typically carried on thigh, waist, chest, or
arm); and (2) smartwatch and wrist-worn accelerometer data (i.e.,
device is typically carried on the wrist).

Fig. 1 Human gait and accelerometer data collected using body-worn devices. a. Vector magnitude of raw accelerometer time series of
walking strides measured at different body locations. Strides were extracted for five randomly selected subjects in each study and at each
location available in that study. Vertical grid lines separate strides of different subjects, and horizontal grid lines mark stride acceleration equal
to +1 g and −1 g above and below, respectively, of the acronym of the corresponding study. Colors indicate approximate locations of sensing
devices. b. Walking activity is typically understood as a cyclic series of movements initiated the moment the foot contacts the ground,
followed by the stance phase (i.e., when the foot is on the ground) and the swing phase (i.e., when the foot is in the air); the cycle is completed
when the same foot makes contact with the ground again. c. Several examples of resting and walking acceleration signals collected
simultaneously using smartphones at different body locations (thigh, waist, chest, arm) and a smartwatch worn on the wrist by two subjects.
Corresponding time-frequency representation were computed with CWT.
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Data summary
Method evaluation was performed using data from 1240 subjects
in 20 publicly available datasets (Table 1). Cumulatively, our
analysis included more than 831 h of accelerometer measure-
ments split into 56,467 bouts, with more than 267 h of data
representing various types of walking, such as flat walking,
climbing stairs, or walking on a treadmill (15,234 bouts) collected
at various body locations: thigh – 55 h (2593 bouts); waist – 69 h
(2460 bouts); chest – 11 h (544 bouts); arm – 9 h (197 bouts); and
wrist – 67 h (1829 bouts); and 54 h (7611 bouts) collected at
unspecified locations.

Tuning parameter selection
ROC curves (Fig. 5) were used to select optimal thresholds for
tuning parameters. Thresholds for A and fw were similar for the
smartphone and smartwatch, and were set to Â ¼ 0:3 g, and bfw ¼
1:4 Hz; 2:3 Hz½ � (values rounded to two significant figures).
Thresholds for α, β, and T differed between the two devices
and were set to α̂ ¼ 0:6, β̂ ¼ 2:5, and T̂ ¼ 3 for the smartphone
and α̂ ¼ 31:7, β̂ ¼ 1:4, and T̂ ¼ 6 for the smartwatch. These
choices resulted in AUCA ¼ 0:848; AUCfw ¼ 0:959; AUCα;β ¼
0:965; and AUCT ¼ 0:961 for smartphones and AUCA ¼ 0:850;
AUCfw ¼ 0:954; AUCα;β ¼ 0:968, and AUCT ¼ 0:959 for smart-
watches, indicating very good performance.

Method evaluation
The estimated classification accuracy metrics (Table 2) suggest
very high sensitivity (ranging between 0.92 and 0.97) for normal
walking and across various sensor body locations. Sensitivity was
somewhat lower for ascending stairs (min: 0.73, max: 0.93);
descending stairs (min: 0.73, max: 0.86); and other variants of
walking (min: 0.47, max: 0.81). The algorithm underperformed
during slow treadmill walking at 1 mph (min: 0, max: 0.19), most
likely due to very low gait speed, which is atypical in normal
walking. Compared to other sensor locations, a very low sensitivity
was noted at the wrist for a 2 mph walk (0.05, 95% CI: 0.01, 0.09),
which might be due to rail holding that effectively dampened
acceleration (bottom left panel in Supplementary Fig. 2).
The results also suggest that our method does not over-

estimate walking during most everyday activities. In the cases of
sedentary periods, desk work, eating, drinking, using motorized
transportation, running, and cycling, the mean specificity scores
are predominantly above 0.95 with a marginally better
performance at locations typical to the smartphone. More
profound dissonance was noted for selected household activ-
ities, e.g., the estimated specificity for sweeping was 0.94
(95% CI: 0.91, 0.97) for the smartphone, compared to only 0.57
(95% CI: 0.51, 0.62) for the smartwatch, likely due to the
repetitive hand movements involved in sweeping. Regardless of
sensor placement, specificity was systematically low for jumping,
as this activity produces high acceleration with periodicity
similar to normal walking.

Bias estimation
Visual investigation of normal walking sensitivity scores indicated
no systematic bias for any investigated demographic or body
measure covariate (Fig. 6). At the aggregate level, the greatest
difference in weight corresponded to a change of 0.02 in
sensitivity (0.98 for 85 kg vs. 1.00 for 141 kg), 0.01 for height
(0.98 for 1.70 m vs. 0.99 for 1.96 m), 0.01 for BMI (0.97 for 27 kg/m2

vs. 0.98 for 15 kg/m2), and 0.02 for age (0.97 for 22 y vs. 0.99 for
24 y). These differences were greater at the level of individual
datasets: 0.16 for weight (0.72 at 70 kg and 0.88 for 82 kg) in
UniMiBSHAR, 0.21 for height (0.75 for 1.83 m vs. 0.96 for 1.63 m)
in SisFall, 0.12 for BMI (0.88 for 25 kg/m2 vs. 1.00 for 19 kg/m2)Ta
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in Actitracker, and 0.17 for age (0.70 for 21 y vs. 0.87 for 29 y) in
UniMiBSHAR.
We used a linear mixed-effects regression model to assess the

effect of certain covariates on the algorithm’s sensitivity score for
normal walking, defined as the proportion of correct classifications
of normal walking for a given sensor location. If a subject was
tested with more than one sensor location, a separate sensitivity
score was calculated for each. The covariates of interest were
included as fixed effects, and the model also contained a random
intercept for the subject. The random effect was included to
account for the fact that some participants contributed multiple
sensitivity scores (corresponding to different locations), and we
expected the scores from the same participant to be correlated.
The linear mixed-effects regression is referred to as MixedReg. We
also performed the regression without the random effect (i.e., a
standard linear regression), hereafter referred to as StandardReg.
Table 3a shows the estimates, standard errors, and confidence

intervals for StandardReg. The column shows the covariates,
including age, sex, BMI, sensor location (arm, chest, thigh, wrist,
waist, or unspecified), environmental condition (controlled or
free-living), and study (e.g., Actitracker, DaLiAc). Based on the
95% confidence intervals, we found that several covariates,
including certain sensor locations and studies, were statistically
significant using Type 1 error rate of α ¼ 0:05. To understand the
influence of different studies, more information about the study
settings would be required. Two specific sensor locations, chest
and waist, were also statistically significant. The higher sensitivity
scores for chest and waist likely result from the fact that the
accelerometer can be more firmly attached to the body at these
sites. Importantly, these sensor locations were not significant
after Bonferroni correction. The coefficients for age, sex, BMI, and
environmental condition were not statistically significant both
without and with the correction.
In MixedReg (Table 3b), the coefficients for sex, BMI, and

environmental condition were also not statistically significant.
Furthermore, MixedReg had the same statistical significances for
studies as StandardReg. On the other hand, MixedReg showed
somewhat different results than StandardReg for sensor location
and age. The coefficient estimates for chest and waist were
closer to 0, and these fixed effects were not statistically
significant in MixedReg. This result may be more reliable than
that from StandardReg because MixedReg accounts for the nested
structure in the data. In MixedReg, the coefficient for age was
statistically significant, unlike for StandardReg. The MixedReg
results suggest that older age is associated with higher sensitivity
score. This difference from StandardReg may be related to the
fact that, in our dataset, people of older ages accounted for a

smaller portion of the total subjects. Also, older subjects were
slightly more likely than younger subjects to contribute multiple
observations. Overall, including the random effect in MixedReg
indicates a stronger effect of age, but it was not significant after
Bonferroni correction.
Additional testing indicated no significant association with

the original sampling frequency nor device type (Supplemen-
tary Table 3).

DISCUSSION
The application of body-worn devices in health studies allows for
objective quantification of human activity. The domain, however,
suffers from a lack of widely validated methods that provide
efficient, accurate, and interpretable recognition of detailed PA
types, such as walking. This gap is likely related to the
heterogeneity of walking, which is substantially affected by
several factors, such as age, sex, walking speed, footwear, and
walking surface; sensor data on walking is affected foremost by
sensor body location (Fig. 1a). For this reason, many studies have
adopted approaches based on PA intensity levels, and various
activity recognition methods have been developed for specific
sensor body locations and specific populations. The methods in
the literature have been predominantly validated using (1) a
limited number of datasets that include small cohorts of subjects
recruited from a specific population, e.g., college students or elder
adults (Supplementary Table 1), and (2) a limited number of body
locations, often representing a subset of locations where the
device might be carried in a real-life setting (especially for
smartphones). In addition, (3) classification methods have been
mainly trained and tested using specific measurement settings,
sensor body locations and, occasionally, device orientations. These
steps, which are aimed at simplifying the problem, appear to be
either insufficient for describing real-life scenarios12,18 or imprac-
tical to implement19.
In this paper, we describe a method intended to fill this gap in

the literature. Our method is based on the observation that
regardless of sensor location, subject, or measurement environ-
ment, walking can be captured using body-worn accelerometers
as a continuous and periodic oscillation with quasi-stationary
amplitude and speed. We applied our method to data from
1240 subjects gathered in 20 publicly available datasets, which
provide a large variety of walking signals and other types of PA.
Our classification scheme makes use of signal amplitude, walking
speed, and activity duration, i.e., features that are activity-specific
rather than location- or subject-specific. The validation of our
approach showed very good classification accuracy for normal

Fig. 2 Visualization of signal features. Vector magnitudes of raw time-domain accelerometer signal is used to compute peak-to-peak
amplitudes in one-second segments, which are then compared to a predefined threshold A; segments with amplitude below the threshold
are excluded from further processing. Time-frequency decomposition computed using CWT reveals temporal gait features (wavelet
coefficients) within, below, and above typical step frequency range fw , used to calculate gait harmonics parameters α and β. The activity is
classified as walking when all amplitude- and frequency-based conditions are satisfied for at least T segments (seconds).
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walking, and good classification accuracy of other types of
walking, e.g., stair climbing (Table 2). Notably, the method’s
performance is not sensitive to various demographic and
metrological factors for individual subjects (Table 3).
The validation was conducted for each body location separately.

Given that different devices are carried differently, we conclude that
our method performs well when applied to a smartphone or
wearable accelerometer placed at the waist, on the chest, or on the
lower back, while method performance may be lower in real-life
settings that employ a smartwatch or wrist-worn accelerometers due
to vigorous and repetitive hand movements, such as those during

household activities. Importantly, our method does not overestimate
walking in the presence of other daily activities, such as sitting or
driving, or for repetitive activities, such as running or cycling.
Our method was designed with two goals in mind: (1)

robustness to heterogeneous devices and (2) computational
performance. The first goal was achieved by employing only
one sensor, accelerometer, and limiting the required sampling
frequency to 10 Hz. Accelerometers have become a standard tool
for assessment of PA, and although recent technological advances
have allowed researchers to benefit from ever more “sensored”
devices, many ongoing health studies still use only the

Fig. 3 Walking recognition algorithm and visualization of data processing steps. Walking recognition algorithm consists of four main
blocks: data preprocessing block standardizes the input signal (i) to the common format insensitive to temporal sensor orientation (ii), data
validation block finds high-amplitude data segments (iii), data transformation block reveals frequency of temporal oscillations in time (iv),
feature extraction and activity classification block excludes segments with important frequency components outside fw (v), as well as
segments of insufficient duration (vi), and returns the output signal with marked walking (vii). Selected algorithm steps are visualized using
example data collected with a smartwatch placed on a wrist (WISDM dataset59).
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accelerometer to measure PA20,21. Regarding the selection of
sampling frequency, our main consideration was to prevent
excessive battery drainage in smartphones and smartwatches.
Even though these devices are capable of collecting acceler-
ometer data at very high rates (100 Hz or higher), such high
frequencies require frequent battery charging22. The sampling
frequency of 10 Hz is supported by the vast majority of
smartphones and wearables and will provide longer battery life
for data collection23.
Limiting sampling frequency also benefited our second goal of

computational performance. Given that our method employs
CWT, which has computational complexity of OðN � log Nð ÞÞ, we
aimed at a sampling frequency just high enough to capture all
typical everyday activities that cannot be filtered out using basic
time-domain features (e.g., running24) and to retain high
recognition accuracy. (Supplementary Table 4 demonstrates that
increasing uniform sampling frequency to 15 Hz has marginal
impact on accuracy metrics.) Our method was also made
computationally efficient with the use of the amplitude threshold
A, which not only excluded large chunks of sedentary activities,
such as lying, sitting, doing office work, and driving, but also
efficiently limited the size of the input to CWT. When run on a
standard desktop computer using a single core, the total
execution time of our code for one subject on a week-long
dataset was between 10 s and 20 s (excluding data uploading),
which is sufficient for large-scale studies.

There are some limitations to our method. First, our method
tends to systematically overestimate the duration of walking
periods during exertional activities, such as rope jumping,
particularly due to their significant overlap with walking features
in both time and frequency domains. More sophisticated methods
are needed to address this issue with accelerometer data; for
example, GPS data could be used to measure geospatial
displacement of the device and exclude periods when a subject
was not moving around. This solution, however, may be valid
mainly in outdoor settings, since GPS has limited indoor
reception25,26. Second, our method was validated only on healthy
subjects. For reasons of reproducibility, we only considered
publicly available datasets. More research is needed to determine
walking characteristics in individuals who have walking impair-
ments or use walking aids, such as canes or walkers. Third, due to
the lack of further experiment design description we were unable
to investigate a potential bias toward other factors that might
impact walking data, including sensor attachment, footwear,
walking surface, etc. Further validation is needed to better
understand generalizability of the proposed method in various
data collection environments. Fourth, our method was validated
on a limited number of elder adults, and it was not validated on
children. Given that these groups might walk differently than the
investigated population27,28, our method needs to be used with
caution and changing the amplitude threshold and step frequency
range may be required. (Classification accuracy for an alternative

Fig. 4 Exploratory data analysis. a Distribution of accelerometer-based signal features (peak-to-peak amplitude and wavelet coefficients) for
various sensor body locations and studies during normal walking. Each row corresponds to a subject while color intensity corresponds to the
frequency of a given value for this subject. In each study, subjects were sorted by the location of maximum wavelet coefficient between 1.4 Hz
and 2.3 Hz. b Cumulative cross-study distribution of peak-to-peak amplitude and wavelet coefficients for normal walking and other common
daily activities for various sensor body locations. Distributions were normalized to have equal area under the curve. Distributions reveal that
amplitude- and frequency-based features are well suited to separate walking from other activities. They also reveal visual differences between
frequency-based features at locations typical to smartphone (thigh, waist, chest, arm) and smartwatch (wrist).
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set of tuning parameters with lower A and wider fw is presented in
Supplementary Table 5; note increased sensitivity for treadmill
walking at 1 mph and decreased specificity for motorized
transportation, various household activities, and cycling.) A
potential overlap with activities that contain low-amplitude low-
frequency vibrations, such as car driving, might be addressed
using dedicated methods29,30. Fifth, our investigation included
only four datasets collected in free-living conditions, and in two of
these (Actitracker and Extrasensory), the activities were labeled by
the study participants. The labeling in these datasets suffered
visual discrepancies, and although we tried to correct labels in the
most prominent cases (e.g., when period of flat acceleration was
labeled as walking), the accuracy metrics estimated at unspecified
locations (Table 3) are not fully representative of our method and
need further investigation.
In summary, we proposed a method for walking recognition

using various body-worn devices, including smartphone, smart-
watch, and wearable accelerometers. A robust validation demon-
strated that our approach adapts to various walking styles, sensor
body locations, and measurement settings, and it can be used to
estimate walking time, cadence, and step count.

METHODS
Acceleration signal of walking activity
Kinesiology describes walking as a cyclic series of movements
initiated the moment the foot contacts the ground, followed by
the stance phase (i.e., when the foot is on the ground) and the
swing phase (i.e., when the foot is in the air); the cycle is
completed when the same foot makes contact with the ground
again31 (Fig. 1b). The fundamental challenge in walking recogni-
tion using accelerometer data from various body-worn devices
results from the fact that these movements are reflected
differently in data depending on several factors, including sensor
location and subject. Figure 1c displays several examples of
resting and walking acceleration signals collected using smart-
phones at different body locations (thigh, waist, chest, arm) and
smartwatches worn on the wrist by two subjects. The univariate
vector magnitude was determined by transforming the raw data
from the three orthogonal vectors. These data were obtained from
the publicly available HAR dataset called RealWorld32. According to
the supplementary video recordings available for that study, the
subjects wore sport shoes during data collection and performed
activities on concrete pavement.
When a sensor is placed on the thigh, one cycle of walking

consists of the following stages: the heel strikes the ground
(event I) and is registered as a spike, the body decelerates

during balancing in the stance phase (between events I and II),
the opposite heel strikes the ground (event II) and is registered
as a somewhat lower spike, and finally the body accelerates in
the swing phase until the cycle is completed with the heel
striking the ground again (event I). In contrast, when the sensor
is placed closer to the center of body mass (i.e., at the waist, on
the chest, around the arm), the amplitude of gait events
appears to be more symmetrical and therefore it is difficult to
distinguish them from one another. A more confusing scenario
occurs for a sensor placed on the wrist: for subject 1, the signal
resembles that obtained from the thigh, whereas for subject 2,
the signal resembles that obtained from the waist, chest, and
arm. An explanation for these discrepancies may be deduced
from the videos, which show that during the walking activity,
subject 1 held her hand close to the body, while subject 2
performed arm swings.
The complexity of walking recognition is magnified by the fact

that each of the displayed fragments contains a different
repetitive template of acceleration not only among body
locations, but also across subjects. Moreover, the observations
derived from Fig. 1c might not replicate in different studies (e.g.,
see Fig. 1a). What appears common to all investigated walking
signals is the continuous and periodic oscillation of acceleration
around a long-term average with quasi-stationary amplitude and
speed. The panels corresponding to time-domain signals display
their time-frequency representations (scalograms) estimated
using wavelet transformation, which shows the relative weights
of different frequencies over time with brighter colors indicating
higher weights. Regardless of sensor location and subject, as
long as the person is walking, the periodic components hover
around 1.7 Hz, which corresponds to the published range of
human walking speed between 1.4 Hz and 2.3 Hz (steps
per second)33,34. Depending on sensor location and walking
characteristics, the predominant step frequency may be accom-
panied by both subharmonics (resulting from a limb swing at
half of step frequency, also called the stride frequency) and
higher harmonics (resulting from the energy dispersion during
heel strikes at multiples of the stride frequency)35,36. The
subharmonics are therefore likely to appear on the wrist, as
this location is prone to swinging during walking. On the other
hand, the higher harmonics are likely to manifest closer
to the lower limbs. The higher harmonics are also likely related
to other factors, including demographics, style of walking,
footwear, type of surface a person walks on, as well as sensor
body attachment. In our approach, we leverage the common
features of walking: quasi-stationary amplitude, specified gait
speed, and activity duration.

Fig. 5 Tuning parameter selection. Receiver-operating characteristics (ROC) used for tuning parameter selection using one vs. all approach
(normal walking vs. all non-walking activities). ROCs were computed separately for sensor body locations common to the smartphone (a) and
smartwatch (b). Dots represent optimal cutoff points at which the sum of sensitivity and specificity is maximized.
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Continuous wavelet transform
The time-frequency distributions presented in Fig. 1c were
obtained using a wavelet projection approach, which decomposes
the original signal into various frequencies. Specifically, we used
continuous wavelet transform (CWT) to capture the globally

non-stationary but locally quasi-periodic characteristics of walking.
Indeed, while one can assume that walking is quasi-periodic for a
short period of time (e.g., the time between consecutive steps is
roughly equal when a person walks along a hallway), walking
characteristics can change dramatically over the course of a day

Table 2. Walking classification accuracy across all subjects and activities.

Locations typical to Smartphone Smartwatch

Thigh Waist Chest Arm Unspecified Wrist

Walking

Normal walking 0.92
(0.91,0.93), 459

0.95
(0.94,0.97), 538

0.97
(0.95,0.98), 110

0.92
(0.88,0.96), 60

0.93
(0.91,0.94), 273

0.92 (0.9,0.94), 352

Stair climbing

Ascending stairs 0.83 (0.8,0.85), 361 0.85
(0.83,0.88), 396

0.93 (0.89,0.96), 74 0.82
(0.76,0.88), 60

0.9 (0.85,0.94), 69 0.73
(0.68,0.77), 222

Descending stairs 0.85
(0.83,0.87), 364

0.86
(0.84,0.89), 392

0.78 (0.71,0.85), 74 0.81
(0.73,0.89), 62

0.83 (0.76,0.89), 70 0.73
(0.69,0.77), 213

Treadmill

1 mph 0.19 (0.13,0.24), 31 0.02 (0.01,0.03), 31 – – – 0 (0,0), 31

2 mph 0.82 (0.73,0.91), 30 0.77 (0.67,0.87), 30 – – – 0.05 (0.01,0.09), 30

3 mph 0.96 (0.95,0.98), 29 0.99 (0.98,1), 29 – – – 0.91 (0.85,0.97), 29

3.5 mph 0.97 (0.94,0.99), 28 0.99 (0.98,1), 28 – – – 0.79 (0.68,0.9), 28

Other walking 0.81 (0.72,0.9), 17 0.68 (0.52,0.83), 17 0.79 (0.69,0.88), 17 – – 0.47 (0.31,0.63), 17

Non-walking

Stationary & TV 0.99 (0.99,1), 401 1 (1,1), 380 0.99 (0.99,1), 89 1 (0.99,1), 60 1 (0.99,1), 133 0.99
(0.98,0.99), 257

Desk work 1 (1,1), 153 1 (1,1), 33 – – 0.99 (0.98,0.99), 35 1 (1,1), 154

Eating 1 (0.99,1), 212 – – – 0.97 (0.97,0.98), 57 0.99 (0.98,1), 214

Drinking 0.99 (0.98,1.01), 61 – – – – 1 (0.99,1), 81

Motorized transport – 1 (1,1), 32 – – 0.92 (0.9,0.93), 117 1 (0.99,1), 32

Household

Sweeping 0.94 (0.91,0.97), 34 0.95 (0.94,0.97), 53 0.9 (0.88,0.93), 19 – 0.99 (0.97,1.01), 2 0.57 (0.51,0.62), 53

Vacuuming – 0.98 (0.96,0.99), 19 1 (0.99,1), 19 – – 0.92 (0.84,1), 19

Folding clothes 0.97 (0.95,1), 51 – – – – 0.73 (0.68,0.78), 51

Washing dishes – 1 (1,1), 19 1 (1,1), 19 – 0.99 (0.98,1.01), 5 0.96 (0.93,0.99), 19

Grooming – – – – 0.93 (0.86,1.01), 15 –

Dressing – – – – 0.91 (0.75,1.07), 8 –

Cooking – – – – 0.98 (0.97,1), 12 –

Filling shelves 0.94 (0.9,0.97), 32 0.98 (0.98,0.99), 32 – – – 0.74 (0.69,0.79), 32

Personal hygiene

Combing hair – – – – – 0.67 (0.44,0.9), 5

Brushing teeth 1 (1,1), 51 – – – – 0.98 (0.97,0.99), 54

Sports

Running 0.94
(0.93,0.96), 431

0.97
(0.96,0.98), 430

0.95
(0.92,0.98), 114

0.97
(0.95,0.99), 60

0.92
(0.89,0.95), 126

0.97
(0.96,0.99), 264

Cycling 0.96 (0.94,0.98), 62 0.97 (0.94,0.99), 90 0.99 (0.97,1.01), 48 0.99 (0.99,1), 10 0.84 (0.75,0.92), 23 0.99 (0.98,1), 110

Jumping 0.14
(0.11,0.17), 326

0.18
(0.15,0.22), 354

0.13 (0.07,0.19), 85 0.13 (0.06,0.2), 50 0.14 (0.06,0.21), 61 0.21
(0.17,0.26), 176

Other

Hand clapping 0.98 (0.96,1), 51 – – – – 0.93 (0.9,0.96), 51

Smoking 1 (1,1), 10 – – – – 1 (1,1), 10

Giving a talk 1 (1,1), 10 – – – – 0.96 (0.92,1), 10

Body transitions 0.97
(0.95,0.98), 108

0.99 (0.98,1), 85 0.93 (0.89,0.98), 17 – – 1 (0.99,1), 29

Coughing 1 (1,1), 17 1 (1,1), 17 1 (1,1), 17 – – 1 (1,1), 17

The accuracy is provided as mean (95% CI), sample size. For walking activities, the metric indicates sensitivity; for non-walking activities, the metric indicates
specificity.
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due to the individual’s level of energy, environmental context, and
goals. CWT decomposes the original signal v tð Þ into a set of scaled
time-shifted versions of a prespecified ‘mother’ wavelet ψ(t) using
the transformation C f ; τð Þ ¼ 1ffiffiffiffi

fj j
p Rþ1

�1 v tð Þ � ψ t�τ
f

� �
dt, where f is the

frequency scale and τ is the time-shift. By continuously scaling and
shifting the mother wavelet, the original signal is projected onto
the time-frequency space. The result of this transformation,
wavelet coefficients, represent the similarity between a specific
wavelet function, characterized by f and τ, and a localized section
of the signal v(t). Thus, wavelet coefficients are maximized when a
particular frequency, f, matches the frequency of the observed
signal at a particular time point. Because of this construction, CWT
is sensitive to subtle changes, breakdown points, and signal
discontinuities. This is essential in walking recognition, where both
subtle and sudden changes in walking frequency are the norm.
Moreover, unlike Fourier transform used in previous studies
(Table 1), CWT does not depend on a particular window size and
does not require a prespecified number of repetitions of the
activity to estimate the local frequency.

Walking recognition algorithm
We let the measured signal be x tð Þ ¼ x1 tð Þ; x2 tð Þ; x3 tð Þð Þ, where
x1 tð Þ; x2 tð Þ; and x3 tð Þ denote the measurements along each of
the orthogonal axes of the device at time t in units of g. After the
initial two preprocessing steps described below, in the section
Data preprocessing, we transformed the signal to its vector

magnitude form v tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 tð Þ2þx2 tð Þ2þx3 tð Þ2

q
� 1 (Fig. 3).

We then estimated the periods when the sensor recorded
intensive body motions. For this purpose, we split the signal into
consecutive and non-overlapping one-second windows and
calculated the peak-to-peak amplitude in each window. This
metric was then compared with a threshold A. Segments with
amplitude below the threshold were excluded from further
consideration. In a typical scenario, consecutive steps occurred
in intervals roughly between 0.43 s and 0.71 s for a walking speed
between 2.3 steps per second and 1.4 steps per second,
respectively. The one-second window length was selected to
ascertain that during walking activity, there was at least one step-
related spike in each consecutive time window.
In the next step, we computed CWT over the high-amplitude

segments to obtain their projection onto the time-frequency
domain C f ; τð Þ. Specifically, we used the generalized Morse wavelet

as the mother wavelet, defined as ΨP;γ ωð Þ ¼ U ωð ÞaP;γωP2
γ e�ωγ

,
where U ωð Þ is the unit step, aP;γ is a normalizing constant, P2 is
the time-bandwidth product, and γ characterizes the symmetry
of the Morse wavelet37. Here we used γ ¼ 3 and P2 ¼ 60, which
produced coefficients spread symmetrically both in time- and
frequency-domains, i.e., skewness around the peak frequency
was close to or equal to 0 in time and frequency domains,
respectively38,39 (Supplementary Fig. 1). Other choices for
mother wavelets for our method were the Morlet and Bump
wavelets.
As depicted in Fig. 1, while some walking signals might be

represented by a series of harmonics, the information that was
consistently preserved throughout, regardless of sensing device
and walking pattern, was present within a certain step frequency

Fig. 6 Bias assessment. Normal walking sensitivity metrics against body measure and demographic covariates of weight (a), height (b), BMI
(c), and age (d). Each dot represents a metric for one subject averaged across body locations available for this subject and activity repetitions
this subject performed. The light curves represent smoothed study-level averages while the black curve is an overall average.
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Table 3. Bias model estimates.

Estimate Standard error 95% Confidence
Interval (without Bonferroni correction)

99.75% Confidence
Interval (with Bonferroni correction)

a. StandardReg

Intercept 0.7402 0.0326 (0.6763, 0.8041) (0.6415, 0.8389)

Age 0.0085 0.0044 (−0.0002, 0.0172) (−0.0050, 0.0219)

BMI 0.0044 0.0041 (−0.0036, 0.0123) (−0.0079, 0.0167)

Sex

Male −0.0002 0.0091 (−0.0180, 0.0176) (−0.0277, 0.0272)

Measurement condition

Free-living −0.0136 0.0171 (−0.0470, 0.0199) (−0.0653, 0.0381)

Sensor location

Thigh 0.0201 0.0220 (−0.0231, 0.0632) (−0.0465, 0.0867)

Waist 0.0618 0.0221 (0.0184, 0.1052) (−0.0052, 0.1288)

Chest 0.0638 0.0253 (0.0142, 0.1134) (−0.0128, 0.1403)

Wrist 0.0261 0.0226 (−0.0182, 0.0704) (−0.0423, 0.0945)

Unspecified 0.0255 0.0273 (−0.0280, 0.0790) (−0.0572, 0.1081)

Study

Actitracker 0.1724 0.0483 (0.0776, 0.2673) (0.0260, 0.3189)

DaLiAc 0.2022 0.0317 (0.1400, 0.2645) (0.1061, 0.2983)

HASC 0.1586 0.0263 (0.1071, 0.2101) (0.0790, 0.2382)

IWSCD 0.1383 0.0312 (0.0770, 0.1995) (0.0437, 0.2329)

MobiAct 0.1811 0.0299 (0.1224, 0.2397) (0.0905, 0.2716)

MotionSense 0.2306 0.0361 (0.1597, 0.3014) (0.1211, 0.3400)

Pedometer 0.2075 0.0314 (0.1458, 0.2692) (0.1123, 0.3028)

RealWorld 0.1782 0.0299 (0.1195, 0.2369) (0.0875, 0.2689)

SFDLA 0.1614 0.0302 (0.1021, 0.2207) (0.0698, 0.2529)

SisFall 0.0559 0.0344 (−0.0116, 0.1234) (−0.0484, 0.1601)

SPADES 0.1698 0.0282 (0.1145, 0.2251) (0.0844, 0.2552)

b. MixedReg

Intercept 0.7698 0.0303 (0.7099, 0.8294) (0.6771, 0.8632)

Age 0.0114 0.0051 (0.0016, 0.0214) (−0.0045, 0.0272)

BMI 0.0027 0.0049 (−0.0069, 0.0123) (−0.0124, 0.0182)

Sex

Male −0.0021 0.0109 (−0.0238, 0.0193) (−0.0366, 0.0319)

Measurement condition

Free-living −0.0139 0.0179 (−0.0489, 0.0222) (−0.0677, 0.0393)

Sensor location

Thigh −0.0088 0.0181 (−0.0440, 0.0264) (−0.0638, 0.0470)

Waist 0.0239 0.0178 (−0.0117, 0.0593) (−0.0269, 0.0787)

Chest 0.0277 0.0205 (−0.0131, 0.0684) (−0.0337, 0.0888)

Wrist −0.0051 0.0180 (−0.0406, 0.0305) (−0.0603, 0.0506)

Unspecified −0.0175 0.0230 (−0.0626, 0.0272) (−0.0921, 0.0533)

Study

Actitracker 0.1880 0.0481 (0.0929, 0.2801) (0.0425, 0.3331)

DaLiAc 0.2097 0.0359 (0.1379, 0.2807) (0.0980, 0.3198)

HASC 0.1648 0.0267 (0.1114, 0.2174) (0.0861, 0.2443)

IWSCD 0.1425 0.0332 (0.0762, 0.2086) (0.0375, 0.2449)

MobiAct 0.1834 0.0304 (0.1228, 0.2420) (0.0905, 0.2766)

MotionSense 0.2312 0.0366 (0.1594, 0.3038) (0.1235, 0.3419)

Pedometer 0.2154 0.0334 (0.1510, 0.2808) (0.1130, 0.3168)

RealWorld 0.1764 0.0366 (0.1036, 0.2490) (0.0640, 0.2843)

SFDLA 0.1676 0.0358 (0.0975, 0.2375) (0.0551, 0.2774)

SisFall 0.0624 0.0344 (−0.0057, 0.1298) (−0.0480, 0.1671)

SPADES 0.1760 0.0307 (0.1159, 0.2345) (0.0855, 0.2674)

Coefficient estimates, standard errors, and 95% confidence intervals without Bonferroni correction and 99.75% with Bonferroni correction. a. StandardReg
model. b. MixedReg model. In a and b, the covariate age in years was standardized by centering with the mean (28.7 y) and dividing by the standard deviation
(12.0 y). BMI was also standardized by centering with the mean (22.9 kg/m2) and dividing by the standard deviation (3.9 kg/m2). Sex, environmental condition,
sensor location, and study are incorporated using indicator variables. The reference category for sex is female, the reference category for environment is the
controlled setting, the reference category for sensor location is the arm, and the reference category for study is UniMiBSHAR.
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range fw ¼ fmin; fmax½ �, where fmin and fmax are statistically derived
minimum and maximum frequencies, respectively. To account for
this fact and the presence of harmonics, we created a new vector,
w τð Þ, as denoted in Eq. (1).

w τð Þ ¼
1 if α �max

f2fw
C f ; τð Þð Þ>max

f<fmin

C f ; τð Þð Þ ^ β �max
f2fw

C f ; τð Þð Þ>max
f>fmax

C f ; τð Þð Þ
0 otherwise

(
(1)

In Eq. (1), the parameters α and β control the ratio between
the maximum wavelet coefficients that fall below and above fw ,
respectively, and allow for flexible accounting of harmonics
related to, e.g., heel strikes or arm swings. They also prevent
capturing other periodical activities with local maxima within fw
which are sub- or higher harmonics of other processes with
global maximum frequency outside of fw (e.g., stride frequency
of running).
Finally, an activity was identified as walking when w τð Þ is

positive for T consecutive windows. The selection of tuning
parameters leads to a trade-off between sensitivity and specificity
of walking classification accuracy in any given study. For instance,
using a large T (e.g., T ¼ 10) will result in a higher specificity as
fewer non-walking activities generate oscillations within fw that
long, but it will also miss shorter walking bouts.
In the following sections, we discuss the selection of tuning

parameters (A; fw ; α; β; and T) based on the walking characteristics
extracted from several publicly available studies.

Data description
To validate our method, we identified 20 publicly available
datasets with at least 10 subjects each that contain accelerometer
data from smartphones, smartwatches, or wearable acceler-
ometers along with activity labels on various types of PA (Table 1).
Walking activity was recorded in 19 studies, in all but Speed-
Breaker. The datasets were collected by independent research
groups in several countries worldwide, including the Netherlands,
Italy, Germany, Spain, Greece, Turkey, Colombia, India, Japan, and
the United States.
The aggregated dataset includes measurements collected on

1240 healthy subjects. Sex was provided for 901 subjects
(649 males), age was provided for 745 subjects (between 15 and
75 years of age, mean ± SD= 28.6 ± 12.0), height was provided for
865 subjects (147–196 cm, 170.6 ± 8.6), and weight was provided
for 858 subjects (37-141 kg, 66.2 ± 14.2). Given available informa-
tion, we calculated BMI for 858 subjects (15.1–39.8 kg·m−2,
22.6 ± 3.8). Cumulatively, a complete set of sex, age, height,
weight, and BMI was available for 725 (58%) subjects.
Importantly, the datasets were collected under various

measurement conditions, with different study settings (con-
trolled, free-living), environmental contexts (indoor, outdoor),
sensing devices (smartphones, smartwatches, data acquisition
parameters), and body attachments (loose in pocket, affixed
with a strap), which introduces considerable signal hetero-
geneity that is essential in validating any HAR algorithm aimed
for real-life settings1. A summary of the investigated datasets is
provided in Table 1.
Accelerometer data were collected using various wearable

devices, primarily smartphones (running the iOS or Android
operating system) and smartwatches of various manufacturers; a
few studies used research-grade data acquisition units, such as
various versions of SHIMMER (Dublin, Ireland) and ActiGraph
(Pensacola, Florida), or devices developed by the research groups
themselves. The devices were positioned at various locations
across the body. In our study, we focused on measurements
collected at body locations typical to the devices’ everyday use,
i.e., around the thigh, at the waist, on the chest, around the arm,
and on the wrist. We also analyzed measurements taken when the

device location was unspecified. For example, in SpeedBreaker, the
researchers randomly placed the smartphone in the pants pocket,
cupholder, or below the windshield, while in Actitracker, Extra-
sensory, and HASC, smartphones were placed according to the
subjects’ preferences.
As the devices were selected and placed independently by each

research group, their exact location and orientation differed
between studies. This closely mimics a real-life situation when a
researcher is confronted with a dataset from a subject who carried
the device according to his or her individual preferences40. In our
study, we grouped measurements from devices placed in similar
locations into categories. For example, if the device was carried in
the pants pocket, we treated it as being on the thigh. If it was
carried on a waist belt, on the hip, or on the lower back, we
treated it as being on the waist. If it was carried in a shirt or jacket
pocket, or strapped around one’s chest, we treated it as being on
the chest. If it was carried in hand or on a forearm, we treated it as
being on the wrist.
Measurement parameters also differed across the devices. The

studies reported sampling frequencies between 20 Hz and 205 Hz.
In some studies, the actual sampling frequency deviated from the
requested one by a few to several Hz. The reported measurement
range was between ±1.5 g and ±16 g (very high values of
acceleration arose in studies that investigated falls), while the
amplitude resolution (bit depth) was between 6 bit and 13 bit.
The participants performed a wide range of PA types.

Depending on the study scope and aim, the performed activities
included various types of walking, leisure activities, motorized
transportation, household activities, recreational sports, etc. In
Extrasensory, HAPT, HASC, HMPD, MobiAct, MotionSense, SFDLA,
SisFall, and UniMiBSHAR, activities were recorded in several trials.
Activity labeling was carried out in one of two ways: (1) in studies
conducted under controlled conditions, activity labels were
recorded by trained researchers, whereas (2) in free-living settings,
labeling was performed either by researchers (HASC, SpeedBreaker)
or by study participants using dedicated smartphone applications
(Actitracker, Extrasensory). In a few studies (Actitracker, MHEALTH,
SisFall, Pedometer, and WISDM), the investigated activities also
included various falls, stumbles, or complex activities. These
activities might have contained intermittent periods of walking;
however, we excluded them from consideration due to the lack of
precise timing of walking start and end. Additionally, we did not
analyze data collected when the device was not carried on the
subject’s body (Extrasensory).
We grouped certain similar activities in common categories:

activities described as jogging or running were analyzed as
running; self-paced flat walking, slow flat walking, and fast flat
walking were considered as normal walking; forward and back-
ward jumping, rope jumping, and jumping in place were analyzed
as jumping, etc. A complete summary of activity groupings is
provided in Supplementary Table 2.
We did not seek ethical approval for our study because it

involves secondary analyses of data not collected specifically for
this study. The data are available in the public domain and are
provided without identifiable information. We did not seek written
informed consent from participants because we did not collect
any data as part of our study.

Data preprocessing
We carried out a few data preprocessing steps to standardize the
input to our algorithm. First, we verified if the acceleration data
were provided in gravitational units (g); data provided in SI units
were converted using the standard definition 1 g= 9.80665 m/s2.
Second, we used linear interpolation to impose a uniform
sampling frequency of 10 Hz across tri-axial accelerometer data.
Third, to alleviate potential deviations and translations of the
measurement device, we transformed the tri-axial accelerometer
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signals into a univariate vector magnitude, as described above in
the section Walking recognition algorithm.
Visual investigation of the datasets revealed that, in several

studies, the walking activity was preceded and succeeded by
stationary activities (e.g., standing still) that manifested as flatlined
accelerometer readings; however, the corresponding activity
labels marked the entire activity fragment as walking. To address
this issue, we adjusted walking labels to periods when the moving
standard deviation, computed in one-second non-overlapping
windows, was above 0.1 g for at least two out of three axes,
practically limiting labeled walking to periods when there was any
motion recorded.

Tuning parameter selection
Our method requires several input parameters, namely minimum
amplitude A, step frequency range fw , harmonic ratios α and β,
and minimum walking duration T. To learn how these features
reflect across walking data from various studies, we selected
signals of normal walking and preprocessed these signals using
the methods described above, in the section Data preprocessing.
Vector magnitudes were then segmented into non-overlapping
one-second segments, and we processed each segment using
several statistical and signal processing methods described
below. The extracted information was then accumulated within
subject and visualized using heatmaps (Fig. 4) where each row
corresponds to a subject while color intensity corresponds to the
frequency of a given value for this subject. To allow visual
comparison between subjects, the values were normalized to
[0,1] intervals.
A peak-to-peak amplitude was calculated to determine typical

walking intensity levels. This analysis revealed that the recorded
walking signals spanned across a wide range of amplitudes
ranging from about 0.4 g to 2.5 g (and most typically between
0.5 g and 1.5 g) and they were visually greater for sensors at
lower body locations (thigh, waist) compared to upper body
locations (chest, arm, wrist).
Computation of a CWT over the segmented walking signal

revealed that the predominant step frequency ranged between
1.7 Hz and 2.2 Hz; in some studies (e.g., IWSCD), the speed span
was slightly wider, e.g., between 1.4 Hz and 2.3 Hz. Even though
this dataset mostly consisted of young adults observed in
controlled settings (Table 1), we hypothesize that, in free-living
settings, lower walking speed might be more common to elders,
while higher walking speed might be more common to
adolescents and children.
The wavelet coefficients showed that the step frequency is

often accompanied by its sub- and higher harmonics. The sub-
harmonics were predominantly present at the wrist, while
higher harmonics were predominantly present at lower body
parts, particularly the thigh (and impacts harmonic ratio α). As
pointed out earlier, the appearance of sub-harmonics results
from limb swings, while the appearance of higher harmonics is
due to distortions of walking signal during stepping, which are
naturally better damped at locations closer to the body torso.
We also observed that the presence of harmonics is somewhat
study-specific (e.g., compare DaLiAc and WISDM at wrist), which
might be due to the different surfaces walked upon. Unfortu-
nately, study protocols did not provide sufficient details to
explore this phenomenon further. However, in contrast to lower
body parts, the strong presence of sub-harmonics at the wrist
suggests that, at this location, the acceleration resulting
from steps might be considerably overshadowed by accelera-
tion resulting from vigorous hand swings. This discrepancy
between smartphone and smartwatch locations suggests
that our method will perform better if supplemented with a
priori knowledge about the sensing device, i.e., smartphone
or smartwatch.

Walking duration depends on several factors, including
individual capabilities, choices, and needs. Generally, walking is
considered a series of repetitive leg movements (see above
section, Acceleration signal of walking activity), but it is not clear
how many of these repetitions are required to call the activity
walking, i.e., whether it is one step, one stride, or multiple strides.
This information is also not specified in the available datasets or
referenced HAR methods. The smallest window size considered
in our method is equal to 1 s, which corresponds to an
approximate duration of one stride. However, walking recogni-
tion at that resolution might come with a decreased specificity
due to the temporal similarity between motions performed
during walking and during other everyday activities (e.g., hand
manipulation during washing dishes captured at the wrist or
body swinging during floor sweeping captured on the thigh). An
improved classification specificity may be achieved using multi-
ple windows aimed at recognition of walking bouts that consist
of at least a few strides.
In the main evaluation, the optimal tuning parameters were

selected using receiver-operating characteristic (ROC) curves in a
one vs. all scenario where we compared normal walking with all
non-walking activities. The calculations were carried out sepa-
rately for body locations typical to smartphone and smartwatch.
The area under the subsequent ROC curves (AUC) was used to
estimate the quality of our algorithm at each step of activity
classification. The optimal cutoff points for A, fw , α, β, and T were
defined as points at which the sum of sensitivity and specificity
was maximized. The thresholds were then used to calculate
walking recognition accuracy metrics and to assess bias toward
cohort demographics and body measures.

Method evaluation
We evaluated the proposed method for the accuracy of walking
recognition. First, we identified walking periods in PA measure-
ments from the aggregated datasets. The outcome of the
algorithm was compared with the provided activity labels. The
accuracy was estimated using sensitivity (true positive rate) and
specificity (true negative rate). Sensitivity was used to estimate
classification accuracy for measurements that contained various
walking activities (normal walking, ascending stairs, descending
stairs, walking backward, treadmill walking), and was calculated
as the ratio between the number of true positives and the sum of
true positives and false negatives. Specificity was calculated for
signals that contained other activities, and was calculated as
the ratio between the number of true negatives and the sum of
true negatives and false positives. If a subject performed multiple
trials of a given activity, their scores were averaged. The resulting
metrics were then averaged across all subjects performing a
given activity and reported as mean and 95% confidence
intervals (95% CI).

Bias estimation
We sought to determine whether the accuracy of our algorithm is
influenced by certain subject characteristics or data collection
settings. To address this question, a standard linear regression
analysis was first performed, referred to as StandardReg. The
response variable (Y) was a subject’s sensitivity score for normal
walking at a particular sensor location. The covariates in the model
included a subject’s age, sex, and BMI, as well as sensor location,
environmental condition, and the study to which a subject
belonged. The model for StandardReg is denoted in Eq. (2).

Yij ¼ β0 þ βXij þ ϵij (2)

In Eq. (2), Yij is the sensitivity score for subject i at sensor
location j, Xij is the vector of covariates, β0 is the y-intercept, β is
the vector of coefficients for the covariates, and ϵij is random
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noise. We then performed a separate linear mixed-effects
regression analysis (MixedReg) to account for clustering in the
data. The model for MixedReg is presented in Eq. (3).

Yij ¼ β0 þ βXij þ bi þ ϵij (3)

The model equation is similar to that of StandardReg, except
that MixedReg incorporated a random intercept (bi) for each
subject i, called a random effect.
In both analyses, we calculated 95% confidence intervals to

assess statistical significance of the coefficients in the vector β. To
account for multiple testing, we also computed results for 99.75%
confidence intervals (Bonferroni correction). Conventional con-
fidence interval formulas based on t values were used for
StandardReg, and the percentile bootstrap was used for MixedReg.
Since some subjects had missing values for certain covariates
(age, sex, or BMI), we fitted the models using data from only the
subjects with all variables recorded. Additional models were
calculated using covariates of the device type and original
sampling frequency.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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