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Where do we stand in AI for endoscopic image analysis?
Deciphering gaps and future directions
Sharib Ali 1✉

Recent developments in deep learning have enabled data-driven algorithms that can reach human-level performance and beyond.
The development and deployment of medical image analysis methods have several challenges, including data heterogeneity due
to population diversity and different device manufacturers. In addition, more input from experts is required for a reliable method
development process. While the exponential growth in clinical imaging data has enabled deep learning to flourish, data
heterogeneity, multi-modality, and rare or inconspicuous disease cases still need to be explored. Endoscopy being highly operator-
dependent with grim clinical outcomes in some disease cases, reliable and accurate automated system guidance can improve
patient care. Most designed methods must be more generalisable to the unseen target data, patient population variability, and
variable disease appearances. The paper reviews recent works on endoscopic image analysis with artificial intelligence (AI) and
emphasises the current unmatched needs in this field. Finally, it outlines the future directions for clinically relevant complex AI
solutions to improve patient outcomes.
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INTRODUCTION
Endoscopy is a gold standard procedure for many hollow organs.
It is used mainly for disease surveillance, inflammation monitoring,
early cancer detection, tumour characterisation and resection
procedures, minimally invasive treatment interventions and
therapeutic response monitoring. Endoscopic image analysis has
started to gain more attention in recent years with a surplus
number of endoscopic imaging-based methods being published
in computer-aided detection (CADe)1–5, computer-aided diagnosis
(CADx)6–11, and computer-assisted surgery (CAS)12–16. Unlike other
radiology data (e.g., X-ray, CT, MRI), endoscopy imaging and its
analysis is a highly specialised and challenging topic. Endoscopic
imaging has multi-factorial dependencies, including large opera-
tor dependence (e.g., experience and training), scope-related
issues (e.g., imagery quality variability) and underlining scene
dynamics (e.g., imminent corruption of frames with severe
artefacts, large organ motion and surface drifts17). Quality
standards in gastrointestinal endoscopic interventions are dis-
cussed in several notable guideline studies18,19. Some recent
works have explored deep learning areas to automate metrics to
assess endoscopy quality. These are especially critical in quantify-
ing blind spots20,21. While SLAM-based 3D reconstruction was
used to generate colonic maps18, the length and area of the upper
gastrointestinal (GI) cancer precursor, Barrett’s oesophagus, were
quantified using deep learning-based depth estimation techni-
que22. Similarly, the most crucial task for minimally invasive
surgical procedures (e.g., laparoscopy) is understanding and
interpreting the underlining scene.
While a 3D reconstruction of hollow organs is vital, it is difficult

to achieve for several reasons, including highly non-linear organ
deformation, scene clutter (e.g., fluid running, blood) and
occlusion (e.g., fat surrounding liver surgery). Thus, most research
is focused on local scene assessment using classification,
detection and segmentation methods. Lesion detection and
characterisation along with its delineation is a primary focus in
GI endoscopy1–11. Similarly, targeted stone segmentation and its

characterisation is of primary focus in ureteroscopy23 and tumour
detection24 has been explored in cystoscopy. For minimally
invasive laparoscopic interventions, surgical tool classification12,
detection and segmentation13, phase recognition12,14, segmenta-
tion of associated landmarks15, and pre-operative 3D volume
superimposition on inter-operative 2D laparoscopic16 has been an
area of focus. A depictive summary of key objectives and various
endoscopic image analysis tasks for different endoscopic inter-
ventions is presented in Fig. 1.
Most previous review works on artificial intelligence (AI)-driven

applications for endoscopic image analysis are published in
clinical journals (22 versus only 11 published in the technical
journal from 2020 to 2022). The clinical review papers are mostly
focused on CADe and CADx systems for lesions in GI endo-
scopy25,26, while the technical review articles are mostly concen-
trated around the laparoscopic surgery27,28. Reviews concerning
upper GI (Barrett’s oesophagus, squamous cell carcinoma (SCC)
and stomach25,29) and lower GI disease (colorectal polyps26,30,31,
and ulcerative colitis32,33) are dominant compared to other organs.
In addition, even though some reviews’ titles were generic26,34,
they only presented studies from GI endoscopic surveillance and
did not cover other areas of endoscopic image analysis. To our
knowledge, previously published reviews cover only specific
endoscopic procedures. They do not engage in a comprehensive
summary, including various modalities, varied organ-specific data
challenges, nature of lesion and visualisation challenges.
Unlike previous reviews, this paper aims to decipher the path

towards clinical integration, which is only possible by putting all
endoscopy-related works in one place and pinning down previous
and current achievements. In addition, the presented review is
concise, highlighting the most important and comprehensive works
with similar research collated separately (see Tables 1 and 2). The
review illustrates deep learning methods applied to different
endoscopic datasets, including cystoscopy, ureteroscopy and
nasopharyngeal endoscopy, which were not covered in previous
studies. Learning the co-existing challenges and identifying the
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gaps in each endoscopic procedure is essential to determine the
developments required for clinically appropriate and advanced
digital healthcare.

METHOD
Endoscopic procedures are operator-dependent, making them
prone to human errors that can result in low adenoma detection
rates (ADRs) (e.g., reported in colonoscopy35). Other limitations
include tumour size, lesion location and technical challenges such
as occlusion during minimally invasive laparoscopic surgery36.
Endoscopic procedures and imaging challenges vary from organ
to organ. Multiple rigid endoscopes are used to tackle the limited
field-of-view problem in laparoscopic minimally invasive surgery37.
However, the procedure is very challenging due to other
overlapping organs. Similarly, colorectal screening procedures
are done using flexible scopes due to colonic peristalsis and bowel
movements. There is more evidence of very similar imaging
limitations in all these procedures. Bubbles and sometimes food
residues are flushed during gastroscopy to clear the mucosa. Also,
bowel cleansing is required before imaging the colon. Similarly,
the bladder walls are flushed with saline solution during the
cystoscopy to make the surface more apparent. Irrigation fluid is
used to clear the scene clutter during the kidney stone
fragmentation procedure. Scene occlusions are a major challen-
ging factor in nasopharyngeal endoscopy (Fig. 2a–f). In an
algorithmic sense, scene clutter affects almost all image analysis
algorithms, including today’s AI approaches, i.e., deep learning. It
is because it becomes hard to understand the underlying mucosa
and difficult to characterise abnormalities that lead to confusing
learned networks trained with clean images. For ureteroscopy,
floating debris makes kidney stone segmentation and character-
isation difficult. Similarly, a decrease in ADR is associated with
bowel preparation38. Such preparation is also critical and can
affect deep learning approaches. The variability in disease

appearances from one organ to the other presents comprehensive
challenges. However, some of these challenges can be common.
For example, imaging quality issues, non-uniform hand motions
and organ movements are common in most endoscopic
procedures. Similarly, missed lesion detection due to occlusions
can be a common limiting factor in all endoscopic procedures.
Reviewing these methods in different endoscopic acquisitions
aims to understand the most common deep learning approaches
and the unique missed opportunities.
Machine learning approaches are data-driven and steered

mostly towards minimising (dissimilarity error) or maximising
(similarity) a loss function L (Fig. 3a). An optimiser, usually a
differentiator, is used to find locally optimal values for the
computed loss function iteratively. The loss is usually between the
predicted labels y and the ground truth label ytrue (Fig. 3a). Neural
networks consist of filters or neurons (aka kernels or weights) that
are learnable, unlike classical image processing filters that are
predefined. These weights obtained from differently sized kernels
(e.g., a 3 × 3 kernel, K3×3= {w1,..., w9}) are then passed through
non-linear activation function a(.) that enable them to learn more
complex features that otherwise would not be identified. The
neural network weights are adjusted based on the optimiser
outputs in each iteration. Input samples are mostly processed in
batches, for which a complete iteration over all samples is referred
to as an epoch during training. The learned model weights are
then applied to the test dataset (aka inference or test phase). Most
methods optimise loss functions and use validation sets to tune
hyper-parameters of the network θ. However, such an optimisa-
tion can be done for various task settings such as lesion
classification, detection and localisation, semantic segmentation
(per-pixel classification), instance segmentation (regional box
regression and per-pixel classification), depth estimation tasks
and others. An overview diagram with known deep learning
architectures for neoplasia classification in Barrett’s oesophagus;
detection, localisation and segmentation of polyps in

Fig. 1 Overview of endoscopic image analysis for surveillance and surgical procedures in the human body. Widely used endoscopic
procedures are presented in separate unique categories and subcategories while the rest of the procedures are provided under others. Each is
divided into organ of interest, intervention type, objectives and computer-aided methods that are being developed to address some of the
objectives presented in these endoscopic procedures.
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colonoscopy; surgical instrument localisation and segmentation
during laparoscopic surgery; 3D depth estimation and reconstruc-
tion of the oesophagus; and temporal video context inclusion in
convolutional neural networks (CNNs) are demonstrated (Fig. 3b).
This review identifies and discusses trends of applying machine

learning methods (in particular deep learning) in each organ-
specific procedure. Secondly, current gaps leading to future
directions are deciphered. The web-based search revealed that
most methods optimise the weights using supervised learning
tasks consisting of widely used CNNs. These tasks included
classification, detection, segmentation, and depth estimation. The
literature was selected using search and inclusion criteria provided
in the next section. The main focus is to consider recent studies
and understand their limiting factors in each imaging procedure
and implemented method. We aim to learn methods developed in
similar endoscopic techniques and identify ways that can be
beneficial in other fields. In future developments, the existing gaps
and challenges in endoscopic imaging can allow us to establish a
strategic plan and build protocols for reliable and acceptable
endoscopic imaging methods.

Search strategy and inclusion criteria
Medline, Embase, Springer, Web of Science and IEEE Xplore
databases were used to search related literature. To focus on
organ-specific endoscopic procedural names (e.g., endoscopy,
colonoscopy, liver laparoscopy, ureteroscopy) were used. Also,
computational studies—machine learning, AI and deep learning—
were added together with endoscopic procedure names to
condense the search. Most studies after 2018 until early June
2022 are selected for this review. Just for ‘endoscopy deep
learning’ with active filters articles, English, 251 papers on Medline
and 1740 papers on Embase (as ‘Embase’ did include review
papers as well) were found. All duplicates were also removed. Our
advanced search using keywords like AI in endoscopy, deep
learning for endoscopy, and neoplasia classification revealed 33,
13 and 36 articles, respectively. So, the selected papers are from a
‘basic search’ rather than the advanced search. The basic search
revealed a larger number of articles. However, to reduce these, we
further applied filters that included borescope, trials, software,
photoacoustics, CT, MRI, hardware, simulation, human vs machine
studies, micro-ultrasound, whole-slide imaging, radiology etc.
Reviews and meta-reviews are also considered from the year
2020 till 2022.
A search on the web of science for laparoscopic surgical

interventions included keywords such as laparoscopic liver
segmentation and deep learning for laparoscopy. For this, 56
papers, including 36 articles, of which 12 review papers were
found. The trend of deep understanding in laparoscopic has
grown from 6 papers in 2018 to 21 papers in 2021. Besides specific
disease cases, reports that included quality, anatomy classifica-
tion/recognition, other modalities (e.g., Raman and (hyper)
spectral) and depth or 3D reconstruction were also identified. To
address the growing trend in clinical and technical communities in
gastrointestinal endoscopy, the presented review includes addi-
tional method-specific contributions. Eight peer-reviewed con-
ference works have also been added to strengthen the technical
contributions in this field.
The presented work has below additional inclusion criteria to

make this review more focused, less biased, and reflective of
methods towards clinical integration:

● Research papers should have a large patient cohort (com-
pared to previously published works) or at least compared to a
few publicly available datasets if it is a technically
presented work.

● Research papers should have specific training, validation and
test sets reported in the article to reduce bias in studies.Ta
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● If the research papers included some novelty but were not
comprehensively evaluated on patient data, then such studies
were either discarded or were included under method
contributions.

● Each rigorously evaluated method was included in the main
table. Here, unique modalities, unique target diseases, and
individual tasks (e.g., classification, segmentation, detection
and localisation) were chosen. At the same time, similar
studies are provided in a separate column for interested
readers.

● A Section for the AI in other endoscopic procedures that are
not widely studied has been included that covers some works
on nasopharyngeal, bronchoscopy, and thyroidectomy.

● For the depth map estimation and 3D reconstruction, works
are included as a separate section under additional applica-
tions as they are not evaluated on more extensive patient
datasets. Under the same Section, studies related to quality
assurance in endoscopy and anatomical landmark classifica-
tion are also included to complete this survey.

Metrics used for the evaluation of methods
Computer-aided gastrointestinal endoscopy. Oesophago-gastro-
duodenoscopy (OGD) is used to perform upper GI surveillance
(including oesophagus, stomach and duodenum). In contrast,
colonoscopy and sigmoidoscopy screen lower GI organs, including

the colon and rectum. With the recent developments in deep
learning, several growths have been in building computer-aided
detection and diagnosis systems. Compared to OGD, more
research is focused on colonoscopy. Some recent reviews high-
lighted a few works from selected groups on upper and lower
GI25,26,30; however, the distinction between train-test dataset or
type-of learning-based method used in these studies or both was
not presented. A more generic CADe and CADx systems with deep
learning (DL) terms were used in the presentation of most found
review papers. DL methods for lower GI are presented in31;
however, these are focused only on colorectal polyps. In this
review, training and test data split and the type of algorithm
developed for a specific task are clearly and concisely mentioned
to give readers an idea of both clinical needs and technical
method developments.
For OGD, with the concerning increase of patients with Barrett’s

oesophagus, a precursor lesion in the oesophagus has been of
prime focus for many current machine learning-based develop-
ments. a hybrid ResNet-UNet architecture was used to classify
neoplastic and non-dysplastic Barrett’s oesophagus (NDBE)1 that
provided an accuracy of over 88% on two test datasets. similarly,
for SCC in the oesophagus, an encoder-decoder architecture using
the VGG16 network for pixel-wise segmentation was used39 that
reported in sensitivity of 98.04% at 95.03% specificity. Atrophic
gastritis (AG) and gastric intestinal metaplasia (IM) are two main
stages in the progression of gastric adenocarcinoma40, principally

Fig. 2 Different endoscopic acquisition systems for various hollow organs. a Gastroscopy procedure during which a flexible endoscope is
inserted to visualise mucosa in the oesophagus and stomach parts of the duodenum. It can be observed that the scene varies quite a lot
depending on the scope location. Similarly, in the top left image, one can observe bubbles surrounding the mucosa. b Colonoscopy
procedures cover the colon and rectum, during which flexible endoscopes are used to navigate this complex twisted organ. Bowel cleansing
is an essential preparation as it can occlude lesions. In most images, the presence of stool is a clear mark of occluded anomaly. c During
laparoscopy, usually rigid endoscopes are inserted through small incision holes. Images depicting fat surrounding the liver, a clear view of the
liver, the presence of tools during surgery and complete occlusion of the liver due to fat are shown. d Widely used rigid endoscopes are used
for investigating bladder walls that are inserted through the urethra. Conventional white light image modality (first three) and fluorescence
image (blue) modality are shown125. It can be observed that the top two images are blurry showing little or no vessel structures. e Kidney
stone removal using ureteroscopy and laser lithotripsy. The difference in texture and surrounding debris (in top) and blood (bottom) for
in vivo images71. f A flexible endoscope enters through the nostrils and can go from the nose up to the throat area and is hence collectively
called nasopharyngeal endoscopy. Images (on the left) show a small opening and field of view, along with surgical tools for some cases126. The
sources of relevant endoscopy images: gastroscopy and colonoscopy images in (a and b are acquired from Oxford University Hospitals under
Ref. 16/YH/0247 and forms part of publicly released endoscopy challenge datasets (EDD2020127 under CC-by-NC 4.0 and PolypGen128 under
CC-by, Dr S. Ali is the creator of both datasets). Liver laparoscopy data are taken from the recently conducted P2ILF challenge129 (Dr S. Ali is the
creator of this dataset), while cystoscopy and ureteroscopy data are respectively taken from PhD thesis of Dr S. Ali130 and a recently published
paper of which he is a co-author71. Similarly, nasopharyngeal images correspond to publicly available UW-Sinus-Surgery-C/L dataset126 with
an unknown licence.
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caused by helicobacter pylori infection or by autoimmune
gastritis. DenseNet121 was trained with 5470 images3 to
characterise AG, resulting in an accuracy of 94.2% on the test
dataset. similarly, UNet++ with ResNet50 was used to classify AG,
IM and haemorrhage41. For this, 8141 images (4587 patients) were
used for training, while 258 external patients and 80 videos were
used for the testing stage.
In a colonoscopy, most of these methods target identifying or

characterising known cancer precursors, ‘polyps’. Due to their
success, most methods implement widely used CNN. For example,
3D CNN for the frame-level binary classification of polyps42 with
an accuracy of 76%. In contrast, detection methods such as
YOLO43 and SDD6 were used for the localisation and detection of
polyps with a much higher accuracy of 96% for YOLO and
reported above 90% sensitivity for the SSD approach. AutoML was
used by Jin et al.9 that allows us to search for efficient neural
networks using recurrent and reinforcement learning techniques.
The optimised CNN network consisted of normal and reduction
cells, which used several operations like separable convolutions
and average and max-pooling layers. The searched network
obtained an overall diagnostic accuracy for difficult-to-locate

polyps was 86.7%. The reported results on performance improve-
ment of novice endoscopists from 73.8% to 85.6% was also
reported. Inception7 was used to classify polyp and characterise
between hyperplastic and adenomatous with a sensitivity of 98%
at the specificity of 83%.
There have been, however, attempts to grade inflammation in

the bowel, referred to as ‘Inflammatory bowel disease’, focused on
both ulcerative colitis (UC)11,44,45. Crohn’s disease (CD)46,47. IBD
remains to have substantial intra- and inter-observer variability in
grading disease severity during endoscopy. Several clinically
accepted systems for scoring these severities exist that have, to
some extent, improved endoscopic score reproducibility and
reliability. However, the problem is still vague as these scoring
systems include broad definitions. A wide range of deep learning
methods has been developed to tackle these issues and minimise
operator variability in diagnosis. For UC, Mayo Clinical Endoscopic
Scoring (MCES) is the most widely used system for stratifying
patients consisting of a 0–3 scoring system from normal (0) to
severe (3). An inception V3 model was used to classify between (0
or 1) and (2 or 3)11 with 97% accuracy and PPV of 86%. Similarly, a
quality control model to distinguish between readable and

Fig. 3 Deep learning system and its widely used designs. a A conceptual representation of a deep learning system with an optimiser for
minimising a loss function. A simplified convolutional neural network (CNN) block comprising a 3 × 3 kernel and computed weight for each
pixel with kernel weights and bias is provided. It also demonstrates a non-linear activation function applied to capture more complex features.
The training and test phase consists of split datasets where the validation set is used to guarantee that the learnt parameters generalise and
do not overfit the training dataset. A model over-fitting graph is shown that is regulated using a validation set. b Some widely used deep
learning architectures are shown for various tasks in endoscopic image analysis. For the classification network, only an encoder network is
used that is usually followed by a classifier such as softmax3. For detection, features are extracted using an encoder network, which is then
pulled using a region proposal network to predict both the class and the bounding box representations128. For semantic segmentation, the
encoder features are up-scaled to image size per-pixel classification. Similarly, for the instance-segmentation task, both the region proposals
for bounding boxes and per-pixel predictions for masks are used131. The idea of a depth estimation network is to understand how far the
camera is from an anatomical region providing distances in the real-world coordinate system22. Finally, recurrent neural networks (aka RNNs)
can embed temporal video information to refine current predictions from a CNN network64. Here the sequential frame inputs v1,.., vn are fed to
the CNN network producing visual feature vectors p1,..., pn, which are then fed to the RNN network. The RNNs output represents the temporal
relationship providing context-aware predictions for each frame such that the output for the nth frame qn is dependent on both current and
previous frames, i.e., feature vectors q(Vn) and all other previous feature vectors q(Vu), u < n. Both CNN and RNN networks are jointly optimised
using boosting strategy. The sources of relevant endoscopy images: gastroscopy and colonoscopy images in (a and b) are acquired from
Oxford University Hospitals under Ref. 16/YH/0247 and forms part of publicly released endoscopy challenge datasets (EDD2020127 under CC-
by-NC 4.0 and PolypGen128 under CC-by, Dr S. Ali is the creator of both datasets). Surgical procedure data are taken from ROBUST-MIS113.
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unreadable frames and a deep learning network based on CNN for
UC classification was developed on multicenter datasets reporting
an area under the curve of 0.84, 0.85 and 0.85, respectively for
MCES ≥1, MCES ≥2, MCES ≥3 (binary classification). CD primarily
affects the small bowel, where conventional endoscopes are hard
to reach. There are numerous developments in CD scoring using
deep learning but for video capsule endoscopy (VCE) imaging.
Ulceration and normal mucosa were classified using Xception CNN
model training as 5-fold cross-validation showing accuracy over
95% for each fold46. A deep learning model that used 169-layered
DenseNet48 was trained on a large dataset comprising 28,071
images with CRC (3176 patients) and 436,034 non-CRC images
(9003 patients). The test was conducted on three unique test sets
that included the same and two different centres, demonstrating
the trained model’s generalisability with around 75% sensitivity on
two unseen test sets.

Method contributions in gastrointestinal endoscopy. Development
of novel methods on colonoscopy is well documented31,49. This
can be because of the availability of public datasets for polyp
detection and segmentation. These methods are mostly published
as conference proceedings and have been included here for
completeness. Majority of the current methods for detection and
localisation can be divided into multi-stage detectors50, single-
stage detectors51 and anchor-free detectors52. In this context, to
address the need for real-time polyp detection, Wan et al.51 used
the YOLOv5 network together with the self-attention mechanism
on the top layer of each stage of the feature extraction backbone
network to strengthen the informative features showing boost by
approximately 2% in Dice score and an improved inference time
on two datasets. While most detectors use predefined anchor
boxes for localisation tasks, the concept of anchor-free detector53

was used to address this, showing a competitive Dice score and
improved inference time (nearly 52.6 frames per second) com-
pared to several SOTA methods on four public datasets52.
Recently, a hybrid 2D-3D CNN network was devised to exploit
spatial and temporal correlation of the predictions with marginal
gain on video polyp dataset while preserving real-time detec-
tion54. Detecting abnormality in Barrett’s oesophagus using 3D
CNN and convolutional long-short-term memory (ConvLSTM) that
enables the capture of spatiotemporal information in videos was
also published as a technical contribution55.
For segmentation, current developments are based widely on

encoder-decoder architectures56–58. Tomar et al.57 proposed to
combine text label embedding as an attention mechanism for
effective polyp segmentation and to improve generalisability.
During training auxiliary classification task for learning size-related
and polyp number-related features was trained and embedded
with the segmentation network alongside showing improvement
of up to 2% over SOTA methods on four public datasets.
Transformer-based networks have also been recently introduced,
namely TransFuse59 and ColonFormer60. TransFuse combined
transformers with CNNs in a parallel style allowing capture of both
global and low-level spatial details and demonstrated perfor-
mance gain of nearly 1–2% on five public datasets compared to
DL SOTA methods. A recent work showing an improvement over
TransFuse was presented as ColonFormer, which used an encoder
with mix transformer backbone while the decoder consisted of a
pyramid pooling module that allowed to combine layer-wide
feature maps of the encoder for a global map. Widely used ad hoc
threshold values for final segmentation map prediction were
tackled by proposing a ThresholdNet that used confidence-guided
manifold mixup as data augmentation enabling optimised
threshold learning and showed large improvements (nearly up
to 5%) over various SOTA methods.

Computer-aided laparoscopic intervention. Surgical intervention
review papers and meta-analysis were conducted by 8 out of 33

review papers. Most of these works were published in technical
journals. Minimally invasive surgical instrument vision detection,
segmentation and tracking algorithms used for the analysis of the
images transmitted by surgical robots were presented in ref. 27,
while DL methods focused on laparoscopic video analysis were
conducted in-depth in ref. 28. The study28 used 32 deep learning
approaches. The survey highlighted that nearly half (45%) of the
developed methods aimed at instrument recognition and detec-
tion, with 20% on phase recognition and nearly 15% on anatomy
and action recognition. However, minority papers were on gauze
recognition (3%) and surgery time prediction (5%), while the most
widely used procedures were cholecystectomy (gallbladder
removal surgery, 51%) and gynaecologic surgery (woman’s
reproductive system, 26%). In this review, additional papers that
have been recently published on anomaly detection, registration,
and augmented laparoscopy are added.
An instance segmentation method referred to as ‘mask R-CNN’

was used to segment the uterus, ovaries and surgical tools on the
endoscopic images from a gynaecology procedure61. ‘SurgAI’
dataset consisted of 461 images. Another study focused on
surgical tool detection in laparoscopic videos proposing a multi-
label classification named LapTool-Net62. LapTool-Net exploited
the correlations among different tools and tasks using a recurrent
convolutional neural (RNN) network. They used publicly available
laparoscopic cholecystectomy datasets, including M2CAI16 and
Cholec80. They employed an over-sampling technique for under-
represented classes and an under-sampling of classes with
majority samples. An Inception V1 was used for feature extraction
with Gated Recurrent Unit (GRU) as RNN blocks, followed by two
fully connected classifiers. An autoencoder technique was used as
a learnable network to measure the ‘normal’ distribution of the
data and detect abnormal events deviating from this distribution
as reconstruction error63. The training was conducted using the
Cholec80 dataset and phantom video data showing recall and
precision equal to 78.4%, 91.5%, respectively, on Cholec80 and
95.6%, 88.1% on the phantom dataset. Another similar study on
automatic monitoring of tool usage during surgery also exploited
temporal context together with visual features (Recurrent net-
work, Fig. 3b)64. A recent study used CASENet to predict silhouette
and ridge contours of the liver in a 5-patient dataset consisting of
133 images65. Even though the paper focused on 3D to 2D
contour-based registration, the method was built on the classical
computer vision technique using the Perspective-n-Point method
with RANSAC for outlier removal.

Computer-aided cystoscopy and ureteroscopy. While very few
research works directly apply deep learning to endoscopic
acquisitions, this field holds enormous potential in developing
robust automated methods for lesion detection66,67, and char-
acterisation68 in cystoscopy. CystoNet67 was developed using five
fully convolutional networks for pixel-to-pixel prediction and a
separate region proposal and ROI pooling layer for bounding box
prediction. The training was conducted on 95 patients containing
2335 benign frames and histologically verified 417 frames
depicting cancerous tumours. In addition, 54 patient videos with
31 normal mucosa and the remaining 23 patient videos with
tumours were used to validate the trained model. Both training
and validation data consisted of both white light and blue light
(BL) cystoscopy. The study showed that the CystoNet algorithm
could identify bladder cancer with per-frame sensitivity of 90.9%
and specificity of 98.6%, i.e., the algorithm detected 39 out of 41
bladder cancers. A transfer learning strategy was used for which
an ensemble of different pre-trained deep CNN networks
(Inception V3, MobileNetV2 network, ResNet50 and VGG16) was
fine-tuned and appended with additional layers on top of each
network68. The study was aimed at classification tasks for BL
cystoscopy images, including benign vs malignant tumours,
tumour grading (benign, low grade and high grade) and tumour
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invasiveness (benign, CIS, Ta, T1, and T2). The results demon-
strated sensitivity of 95.77% and specificity of 87.84% for
malignant lesion identification, while the mean sensitivity and
mean specificity of tumour invasiveness were 88% and 96.56%,
respectively.
Similarly, for ureteroscopy, kidney stone characterisation69,70

and its segmentation for laser lithotripsy (kidney stone fragmenta-
tion)71 have been developed. For stone characterisation69, five
different compositions were obtained from a stone laboratory,
including calcium oxalate monohydrate (COM), uric acid (UA),
magnesium ammonium phosphate hexahydrate (MAPH/struvite),
calcium hydrogen phosphate dihydrate (CHPD/brushite), and
cystine stones. Sixty-three human kidney stones were used for
this study, with at least two images for each stone. Leave-one-out
cross-validation method was used to report the results of
classification using ResNet101. Specificity and precision for each
stone type were (in percentage): UA [97.83, 94.12], COM [97.62,
95], struvite [91.84, 71.43], cysteine [98.31, 75], and brushite [96.43,
75]. Gupta et al.23,71 developed motion-based segmentation
approach using UNet for both in vivo and in vitro datasets. In
addition to the kidney stone, the authors also segmented the laser
instrument, stating that it is important to understand the stone’s
size and the operating laser distance for laser lithotripsy. The
proposed motion-induced HybResUNet improved segmentation
results with a reported dice similarity coefficient of 83.47% for
stone and 86.58% on in vivo test samples for laser segmentation.
The results outperformed baseline networks (e.g., UNet72) for both
in vivo and in vitro settings.

AI in other endoscopic procedures. Some other types of endo-
scopic images-based deep learning applications include (a)
detection of nasopharyngeal malignancies73, and segmentation
of granulomas and ulcerations on images acquired by laryngo-
scopy74, (b) an end-to-end deep learning algorithm to segment
and measure laryngeal nerves during thyroidectomy (a surgical
procedure)75, and (c) deep-learning-based anatomical interpreta-
tion of video bronchoscopy images76. A recent review and meta-
analysis paper on laryngeal endoscopy77 suggested the AI models
presented high overall accuracy between 0.806 and 0.997.
However, this review did not show details on any AI model and
used sample sizes.
Histologically confirmed patient samples consisting of 27,536

images were used for this study, with 19.7% from healthy patients,
while the remaining had various pathological diseases, including
benign (13.2%) and nasopharyngeal carcinoma (66%). Their overall
accuracy was reported to be 88.7% using fully CNNs78. Here, a
semantic segmentation approach was taken, which yielded in dice
similarity coefficient of 0.78 ± 0.24 and 0.75 ± 0.26 on retrospective
and prospective test sets, respectively. Similarly, for the laryngo-
scopy74, various lesions were annotated in 127 images from 25
patients to train a UNet architecture showing per-pixel sensitivity
of 82% and for granulomas and 62.8% for ulceration. Segmentation
of recurrent laryngeal nerve, responsible for human speech, during
surgery (thyroidectomy) was achieved using the widely known
mask R-CNN (instance segmentation) approach75. The dataset
included various challenging scenarios such as dim light, close-up,
far-away, and bright light and their combinations. The segmenta-
tion results ranged from 0.343 to 0.707 at a confidence interval of
95% across 40 subjects. While anesthesiologists commonly use
video bronchoscopy during intubation, depth and orientation can
be difficult to interpret. Video bronchoscopy decision support
system showing the anatomical locations at various rotations was
developed using an EfficientNetB1 model with 0.86% classification
accuracy (left main branch, right main branch and carina classes),
for which 6806 images were used for training while 511 for test76.

Additional AI-based applications in endoscopy. Apart from focus-
ing on target disease detection and their characterisation, recent

literature also shows several method developments related to
assisting the quality control of endoscopic screening in GI,
mucosal anatomical site detection, and 3D depth estimation or
reconstruction for mucosal scene visualisation. Our search showed
at least ten papers on endoscopic acquisition quality, four on
anatomy classification or detection, and nine on depth map
estimation and three-dimensional reconstruction of the mucosa.
Endoscopic quality is a significant bottleneck and can help

reduce missed detection rates18,19. Works are focusing on both
upper GI21,79 and lower GI endoscopic procedures80 in terms of
quality assessment through deep learning. While monitoring blind
spots by classifying sites was an indicator of quality control21,
artefacts such as blur, bubbles, specularity, saturation, and
contrast in endoscopic frames were an indicator of the quality
in the other study79. Off-the-shelf DCNN networks for quality
control were used in clinical paper21. However, for the methodo-
logically driven framework79 the proposition was on combining
different weights from the found bounding boxes from a detector
YOLOv3 with a spatial pyramid pooling method for a final
aggregated quality score and other restoration techniques were
proposed for partially defective frames for visual purposes. For
scoring the bowel preparation80, a deep split-attention residual
network was used for training. The test results on 927 images from
the external dataset showed an overall accuracy of 96.7%.
Similarly, a study focused on understanding the percentage of
mucosal visualisation in small bowel during VCE used a simple,
fully connected convolution neural network81. Similarly, most
landmark classification works only applied off-the-shelf CNN
networks showing good accuracy in the classification of the
landmark sites (e.g., above 90% recall values for 9 out of 11 site
classes82), widely based on the OGD procedures that include the
oesophagus, stomach and duodenum82,83.
Depth estimation networks for monocular cases (i.e., a single

camera acquisition widely used by most endoscopy systems) were
developed22,84–87. While a self-supervised learning technique for
depth estimation was explored using a Siamese network from a
prior SfM tool based on sparse depth estimations from video
sequences84, recent work by Shao et al.87 explored brightness
constancy assumption to deal with endoscopic scene illumination
variability but again using the self-supervision framework. The
former used sinus endoscopic videos demonstrating an absolute
relative difference of 0.20 mm while the latter was evaluated on
four different public datasets, including a gastrointestinal tract
(ex vivo porcine)86 where the absolute trajectory error was 0.13
compared to previously published 0.20 on Colon IV86. Another
work22 used a fully supervised depth estimation network to
quantify the length of Barrett’s oesophagus for risk stratification.
These measurements showed a good correlation with their 3D
printed phantom on both length and area, with the relative error
below 5% in all cases (maximum relative difference of 0.25 mm on
the length and 0.43 mm2 on area).

CURRENT CHALLENGES AND GAPS
Methodological advancement
In general, most current works in endoscopic image analysis are
adopted from prior published computer vision and other medical
imaging architectures. Some of these popular networks include
Faster-R-CNN88, YOLO89, UNet72, DeepLab90 architectures imple-
mented with well-known backbone networks including VGG1991,
ResNet92, and EfficientNet93. However, the methods reported in
papers, from classification to detection and segmentation, have
contributed mainly to their applicability by solving needed clinical
problems and extensive evaluation of patient datasets. A technical
perspective provided in ref. 29 suggested using visual transfor-
mers, more hybrid models, the inclusion of explainability in AI
models, use of unsupervised and semi-supervised approaches and
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use of generative models. Reproducibility and test of methods on
actual clinical conditions were the major issues raised in another
technical review on DL methods for colorectal polyps31.
Thus, albeit the reported efficacy of these methods on

retrospectively curated data1,2, prospective data studies are either
not accomplished or have one or a few centre-based analyses94,95,
making the clinical applicability questionable. The advancement in
AI has positively impacted the application opportunities for
endoscopic procedural aid and analysis of endoscopic data. On
the one hand, many studies published in clinical journals1,2,39 have
shown their application possibilities. However, they do not
compare other architectures rigorously. Novel DL method devel-
opments steered towards training on diverse endoscopic datasets,
the introduction of explainability of results and more technical
works are required to accelerate this field. On the other hand,
those published in technical journals do not use comprehensive
multi-centre data12,14,23. This is because most of these works are
primarily focused on using retrospectively collected datasets for
algorithmic validation. One can argue that real-world clinical
settings can be very diverse compared to the curated datasets.
Similarly, data scarcity or lack of annotated data and significant
variability in disease cases can lead to data imbalance problems.
Some of the recent works published in technical journals have
tried to address these important concerns in the field of
endoscopic image analysis by including one-shot or few-shot
learning approaches96, meta-learning approaches97, and semi-
supervised techniques98. However, tackling such problems in
prospective clinical cases cannot be pointed out yet. Moreover,
some disease cases, such as ulcerative colitis99,100 are complex,
with highly subtle changes between mild and severe ulcer types,
making it harder to classify (accuracy below 85%) using DL-based
methods accurately.

Generalisability of algorithms
Widely used supervised techniques are data voracious and require
many human annotations. At the same time, supervised methods
can also induce bias due to imperfect labels or different data
distribution potentially due to other imaging modalities or even
due to different scoping devices used to generate data. An
independent and identically distributed i.i.d. dataset is often hard
to realise101 and does not represent patient variability present in
even a selected patient cohort with similar endoscopic procedures
and with the same endoscope. Moreover, using these techniques
in a stand-alone way with only curated labels from a fixed patient
cohort tends to overfit the samples that are predominant in other
cohorts or even the same as the variability is likely to change over
time. Also, endoscopic imaging includes multi-modal acquisition,
varied views, and mucosal changes that can be more varied than
any other imaging modality. The free-hand movement of
endoscopists to visualise the mucosa or an organ can cause
inevitable challenges to the algorithm. In reality, well-curated
endoscopic imaging data will not capture these and can affect the
algorithm performances in the clinic. Several supervised models
have poor generalisability on very close looking but just using a
different colonoscopy dataset102,103. A recently published work102

showed that most DL architectures, including widely used UNet,
reported a performance drop of over 20% when a different
colonoscopy dataset was used for training and testing. For
example, UNet dropped in Dice similarity score from 0.86 when
both train and test data were used from the same public dataset
to 0.62 when test data differed from the training dataset. As most
works perform training, validation and test sets from the same
dataset, generalisability studies are very limited in medical image
analysis. Thus, this area of research is critical for algorithms to be
adaptive to datasets produced in different clinics and varying
proportions. Previous studies have shown that the results have

been skewed to the centre with more data in training even when
combined training is done103.

Exploring multi-modality
Most developed methods use conventional white light imaging.
Even though specialised modalities have proven helpful for
detecting and diagnosing particular lesions, very little research
can be found on more specialised modalities (see Table 1). For
example, chromoendoscopy is a well-established medical proce-
dure to enhance the characterisation of GI mucosal tissues104.
During these procedures, special dyes are used together with
optical endoscopy. The observed details can enable the identifica-
tion of pathology. Similarly, fluorescence cystoscopy68 (aka BL
cystoscopy or photodynamic diagnosis) in routine clinical
practices can improve the detection and visualisation of both
papillary bladder tumours and carcinoma in situ lesions compared
to standard white light cystoscopy. So, why not exploit these data
in addition to the conventional white light modality for more
accurate detection and characterisation of lesions? Exploring
multi-modal avenues will advance early detection as they contain
good visual patterns often not visible in standard procedures (e.g.,
spectral endoscopic technique105). However, advanced techniques
also require training and procedural preparation. Thus, learning to
adapt from the existing samples and broadly available standard
modalities used in daily practices can be a way forward. Domain
adaptation and domain generalisation techniques are current
unmet needs in this area.

Validation of algorithms
Algorithmic evaluation is critical for the development of better
scientific approaches. These evaluations play a significant role in
determining the strength of developed methods for clinical
translation. In the context of deep learning techniques, both the
test dataset size and the use of evaluation metrics reflecting their
performances are essential. It is, however, difficult to establish
what number of test samples provide non-skewed results. While
unseen test sets determine the generalisability of approaches,
most supervised techniques designed are not robust to unseen
data distributions106. Hence, generalisability assessments or
robustness tests are often not included in most papers. Even
though standard computer vision metrics are reported in papers
(e.g., top 1 accuracy, Sørensen-Dice coefficient, intersection-over-
union, precision, and recall), including a metric that assesses the
bias between the validation set and test set is required. Such an
approach can strengthen the understanding of hyper-parameter
tuning and its effect on the unseen test dataset. Also, most current
studies neither investigate the data distribution nor illustrate
distribution plots demonstrating the variance in data and results.
As variance studies are essential to understand the consistency of
algorithmic performance, reporting these must be included as a
part of algorithmic validation.

Algorithmic speed and accuracy
With the recent progress in hardware improvement, DL algorithms
have been devised that are more accurate and faster simulta-
neously. However, the need for real-time performance for some
tasks, specifically in endoscopic disease detection, diagnosis, and
surgical procedures, is more critical. Still, the requirement of high-
end hardware to get reasonable speed and accuracy can be
economically infeasible at some healthcare centres or challenging
to adapt in clinical settings. As a result, network design choices are
important to look at either without making performance sacrifices
or by appropriately choosing an acceptable trade-off between
speed and accuracy is imperative. Faster lightweight networks like
PeleeNet107 with only 5.4 million parameters with improved
accuracy over SOTA MobileNet108 and Tiny-YOLOv2109 designs
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can be considered. In addition, model compression methods can
enable DL methods to be executed on devices with limited
computational capabilities while maintaining the original net-
work’s competitive performance. This method includes pruning,
quantisation, knowledge distillation, and network architecture
search techniques110.

Methods for subtle lesions
Most methods are built around more obvious cancer or
precancerous lesions (e.g., high-grade dysplasia1,2,68, polyps42,43).
The need for identifying subtle early precancerous development
thus remains under-explored with conventional endoscopy. In this
regard, neoplastic changes at a very early stage, inflammations
and other tissue abnormalities that account for the development
of serious life-threatening infections should be the focus of novel
AI developments. For example, the sensitivity of MCES scoring in
patients with IBD is still low with the sensitivity of 83%, even
though a binary classification was performed combining 0 and
1 scores as one class and scores 2 and 3 as another class11 which is
much lower than other lesion classification techniques. However,
current developments, even for obvious neoplastic lesions, are
definitely of interest as they can reduce subjectivity in treatment
procedures and patient management.

3D reconstruction, multi-scale and multi-modal registration
While 3D reconstruction of mucosa has been explored for over a
decade due to the challenging endoscopic image acquisition, this
research direction remains challenging. Deep learning-based
depth estimation techniques do have opened an opportunity for
mucosal 3D reconstruction22,84–87; however, due to the complex
endoscopic trajectories and mucosal movements, especially in the
hollow organs such as the colon, mucosal visualisation of
complete mucosa in 3D remains an open problem. Also, data-
driven approaches are yet to be innovated in surgery for pre-
operative to post-operative registration.
With several complementary modalities devised and used in

routine clinical procedures, including spectral endoscopy, Raman
scattering technique, microendoscopy and digital histopathology
(optical biopsy), minimal or no effort have been made to explore
data-driven methods for multi-scale and multi-modal data fusion
techniques. Even though the findings are matched with endo-
scopy, for example, in spectral endoscopy105, these signals are not
registered to the region where they are generated.

CONCLUSION AND DIRECTIONS
In this review, recent deep learning approaches that aimed to
minimise inter and intra-observer variability in clinical procedures
are highlighted. These developed methods primarily focused on
automatic lesion detection, characterisation, localisation, segmen-
tation, surgical support and 3D visualisation or measurement. We
also outlined current challenges and gaps in these AI-based
approaches and their validation strategies. Research papers in the
endoscopic community are primarily steered largely on applying
methods from the vision community, demonstrating grim
progress in problem-based unique method developments and a
lack of comprehensive multi-centre studies. Shallow validation of
algorithms and race to publish has mainly affected the quality of
research in this area. Also, current needs are ignored due to this,
and most apparent lesions are picked repetitively instead of
working on subtle flat or sessile lesions or early-neoplastic
changes. Taking a bold stand, below future directions are
proposed with the assumption that these propositions will help
develop unbiased, advanced, and clinically practical AI approaches
that are today’s needs.

Mitigating gaps in AI approaches by learning from challenges
dealt with in other endoscopic procedural types
Even though each endoscopic procedure is unique, methodolo-
gical advances are more progressive and repetitive in one than
the other. While this opens up an opportunity for algorithm
developers where applications are still uncommon, the lack of
dataset and little participation of clinical experts have made these
procedural types less attractive. However, there is a clear
opportunity and need for similar developments of these
computer-assistive technologies in all endoscopic procedures to
improve patient care. For example, tackling gastrointestinal
pathology using AI has an overwhelming number of papers25,31

(see section ‘Computer-aided gastrointestinal endoscopy’). In
contrast, despite cystoscopy and ureteroscopy procedures being
equally challenging, literature shows minimal work reported so
far66,71.

Multi-modal and multi-scale data integration
The questions are ‘What is challenging to assess in routine clinical
procedures’; and ‘what AI should pick in terms of detection and
diagnosis?’ Are lesions easy to locate by a trained clinical fellow, or
is it challenging to find even by an expert (e.g., inconspicuous
lesions)? Specialised algorithmic developments and more expert
time in curating data are vital for the latter case. Alongside this,
complementary modalities can play a significant role in assessing
hidden and subtle lesions that can harm patients20,21. While
human vision is limited, and the mind can only interpret what it
can make sense out of the eye, computers can solve more
complex data such as multi-modal and multi-scale data signa-
tures105. Multi-modality is the key to answering the above
questions and is the way forward in tackling hard-to-find lesions.
At the same time, multi-scale can provide more detailed
characterisation to understand it better, which can complement
the strength of AI in this field.

Multi-centre data validation
Method validation should be first assessed on a multi-centre and
heterogeneous retrospective dataset. Since deep learning is very
susceptible to data distribution, a model trained on one particular
imaging device or a population can lead to market monopoly and
limited access to advanced healthcare systems. As a result, it
significantly impacts society and the economy. Encouraging the
research community to include generalisability assessments is the
only way towards a more secure and desirable ecosystem of
method development. While access to data due to privacy
concerns can make the assessment difficult, the way forward in
this direction is to use a federated learning approach that enables
assess of multi-centre data and help in the development of
generalisable methods that can be both used to build and validate
methods111.

Clinical validation
Access to more publicly available clinically acquired datasets
consisting of curated and real-world data can be critical for
algorithmic development and its adaptation to clinical scenarios.
Some examples of these datasets include colonoscopic videos and
related annotations in LDPolypVideo112 and ROBUST-MIS dataset
for surgical tool detection, segmentation and tracking113. Similar
comprehensive datasets can help assess methods and encourage
technical advances towards translational feasibility. Furthermore,
to assess the usability in clinical scenarios, the developed
approaches can also be encouraged to perform prospective
studies at a few community centres. Ideally, clinical studies in local
centres should be acceptable to understand translational feasi-
bility and limiting factors.
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Environmental aspect
With the growing deep network architectures and analysis of
larger data volumes (e.g., videos in endoscopy), there has been an
increasing energy consumption and carbon footprint of DL
methods that need to be addressed by the community114. The
editorial teams should be encouraged to assess each submitted
work involving AI-based approaches using additional metrics
before sending it for peer review. These metrics can include: (1)
papers that use larger DL networks which are impracticable in
clinical settings and are responsible for high carbon footprint115

should be encouraged to perform model compactness strategies
and justify the model selection choices, (2) the importance of
conducted work should be weighted by assessing the comparison
of method novelty versus state-of-the-art methods, and (3) the
robustness versus test run time experiments should be assessed.
The submitted works should clearly outline these parameters in
their submitted paper abstract and provide a mandatory checklist
as an additional file during submission.
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