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Autoencoders for sample size estimation for fully connected
neural network classifiers
Faris F. Gulamali 1✉, Ashwin S. Sawant 1, Patricia Kovatch 1, Benjamin Glicksberg 1, Alexander Charney1,
Girish N. Nadkarni 1,3 and Eric Oermann2,3

Sample size estimation is a crucial step in experimental design but is understudied in the context of deep learning. Currently,
estimating the quantity of labeled data needed to train a classifier to a desired performance, is largely based on prior experience
with similar models and problems or on untested heuristics. In many supervised machine learning applications, data labeling can
be expensive and time-consuming and would benefit from a more rigorous means of estimating labeling requirements. Here, we
study the problem of estimating the minimum sample size of labeled training data necessary for training computer vision models
as an exemplar for other deep learning problems. We consider the problem of identifying the minimal number of labeled data
points to achieve a generalizable representation of the data, a minimum converging sample (MCS). We use autoencoder loss to
estimate the MCS for fully connected neural network classifiers. At sample sizes smaller than the MCS estimate, fully connected
networks fail to distinguish classes, and at sample sizes above the MCS estimate, generalizability strongly correlates with the loss
function of the autoencoder. We provide an easily accessible, code-free, and dataset-agnostic tool to estimate sample sizes for fully
connected networks. Taken together, our findings suggest that MCS and convergence estimation are promising methods to guide
sample size estimates for data collection and labeling prior to training deep learning models in computer vision.
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INTRODUCTION
Supervised learning with deep neural networks has achieved state
of the art performance in a diverse range of applications. An
adequate number of labeled samples is essential for training these
systems but most real-world data is unlabeled. Label generation
can be cumbersome, expensive and is a major barrier to the
development and testing of such systems [1].
Ideally, when confronted with a task and unlabeled data, one

would like to estimate how many examples need to be labeled to
train a neural network for that task. In this paper, we take a step
towards addressing this problem.
Consider a fully connected neural network f of pre-specified

dimensions and a dataset X, which is initially unlabeled, but for
which labels y can be obtained when needed. We define the
minimum convergence size (MCS) for f on X to be the smallest
number n such that a subset Xn of n examples drawn at random
from X can be labeled and used to train f as a non-trivial classifier,
that is, one whose area-under-the-curve (AUC) on a held-out test
set is greater than 0.5:

MCS :¼ argmin
n

ðE½AUCðf Xn;ynðXtestÞ; ytestÞ�> 0:5Þ (1)

Given that outcomes are balanced, an AUC > 0.5 implies that a
model is able to identify some signal in the underlying data, and if
that AUC is on the test dataset, this means that the signal
identified by the model can generalize to unseen data. In this
scenario, below the MCS, we would expect to see little or no
correlation between sample size and model performance mea-
sured by AUC, whereas above the MCS we would expect to see a
positive correlation.
We propose a method for empirically determining the MCS for f

on X using only unlabeled data, and we call this estimate the

Minimum Convergence Sample Estimate (MCSE). We do this by
first constructing an autoencoder g [2], wherein the encoder part
has a similar number of parameters and hidden layers as f. We
train g on increasingly larger (unlabeled) subsets Xi of X. This may
permit similarities in layer-wise learning between f and g. Under
these circumstances, we empirically show that, at each step i, the
reconstruction loss L of g is related to the generalization
performance of f trained on a similarly sized sample. We also
demonstrate how this can be used to determine the MCSE for f on
X (Fig. 1).
As an example, consider classification of the MNIST [3] dataset

with a fully connected neural network (Fig. 2). A comparison of the
test set AUC curve of f and the loss curve of autoencoder g shows
that their inflection points occur at similar sample sizes. We then
define the MCSE for f on MNIST as the sample size corresponding
to the inflection point in the loss function of g:

MCSE :¼ argmax
n

d2L
dn2

� 4:5 ðin this caseÞ
(2)

With sample sizes above MCSE, the learnability of the dataset
on f may be approximated by the ease with which g is able to
embed a latent space that fully represents the data. We
hypothesized the following relationship between generalization
power of a classifier with respect to learnability of the dataset by
the corresponding autoencoder:

dAUC
dn

AUCðf nÞ ’
0; for n<MCSE

�β dL
dn LðgnÞ; for n � MCSE

( )
(3)

1Icahn School of Medicine, New York, NY 10029, USA. 2New York University, New York, NY 10016, USA. 3These authors jointly supervised this work: Girish N. Nadkarni, Eric
Oermann. ✉email: faris.gulamali@icahn.mssm.edu

www.nature.com/npjdigitalmed

Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00728-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00728-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00728-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00728-0&domain=pdf
http://orcid.org/0000-0002-2973-6594
http://orcid.org/0000-0002-2973-6594
http://orcid.org/0000-0002-2973-6594
http://orcid.org/0000-0002-2973-6594
http://orcid.org/0000-0002-2973-6594
http://orcid.org/0000-0003-1525-8541
http://orcid.org/0000-0003-1525-8541
http://orcid.org/0000-0003-1525-8541
http://orcid.org/0000-0003-1525-8541
http://orcid.org/0000-0003-1525-8541
http://orcid.org/0000-0001-8368-1742
http://orcid.org/0000-0001-8368-1742
http://orcid.org/0000-0001-8368-1742
http://orcid.org/0000-0001-8368-1742
http://orcid.org/0000-0001-8368-1742
http://orcid.org/0000-0003-4515-8090
http://orcid.org/0000-0003-4515-8090
http://orcid.org/0000-0003-4515-8090
http://orcid.org/0000-0003-4515-8090
http://orcid.org/0000-0003-4515-8090
http://orcid.org/0000-0001-6319-4314
http://orcid.org/0000-0001-6319-4314
http://orcid.org/0000-0001-6319-4314
http://orcid.org/0000-0001-6319-4314
http://orcid.org/0000-0001-6319-4314
https://doi.org/10.1038/s41746-022-00728-0
mailto:faris.gulamali@icahn.mssm.edu
www.nature.com/npjdigitalmed


β is a scaling constant. We tested this hypothesis by calculating
the correlation coefficient below the MCSE and above the MCSE,
and results are reported in Table 1. A significant R2 indicates a
linear correlation between loss and power. We used eight
different standard computer vision datasets to demonstrate our
method. MNIST, EMNIST [4], QMNIST [5], KMINST [6] are character-

recognition datasets composed of 28x28 pixel grayscale images.
FMNIST[7] contains 28x28 pixel grayscale images of objects.
CIFAR-10 [8] contains 32x32 pixel color images. STL-10 [9]
contains 96x96 pixel color images with fewer labeled images
than CIFAR-10, and many unlabeled images. FAKE is a dataset of
randomly generated images in PyTorch. We also extended our

Fig. 1 Minimum convergence sample estimation can be used to approximate the number of labels required for generalizable
performance. a A fully connected network is trained on labeled data, and tested on a unlabeled data. Generalizability Performance is
measured via AUC. Minimum convergence sample (MCS) reflects the minimum number of labeled samples required for a fully connected
network to start generalizing. b An autoencoder with a similar structure as the fully connected network is trained on unlabeled data and the
loss function measures how generalizable the FCN is. Minimum convergence sample estimate (MCSE) approximates the minimum
convergence sample (MCS).

Fig. 2 Comparison of autoencoder learning curve with generalizability of a fully connected network. f is a fully connected network with
input dimension of 784 and output dimension 10, and g an autoencoder with an input dimension of 784 and a latent space of dimension 3.
a The loss of the autoencoder displays a curve split into two phases: the quick phase and the slow phase. b The first derivative of the
autoencoder loss function displays a decay phase and a growth phase. c The second derivative reveals a sharp inflection point where the
slope changes from sharply decreasing to sharply increasing. d The area-under-the-curve metric on the test set displays a biphasic structure: a
rapid growth phase and a slow growth phase. e The first derivative of the AUC curve reveals a rapidly increasing phase followed by a
decreasing phase. f The second derivative of the AUC curve reveals an inflection point as a mirror image of the autoencoder loss curve.
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study to synthetic data and a publicly available medical imaging
dataset.

RESULTS
Image data results
Our autoencoder-based method estimates the inflection point of
the fully connected network’s loss function, and therefore
provides an effective measure of the minimum sample size
required for the network to learn meaningful representations and
become statistically powerful for the FMNIST, EMNIST, QMNIST,
CIFAR10, and STL10 datasets (Fig. 3). This technique has the
potential to be highly useful for providing a priori estimates of the

amount of labeled data that must be gathered at the onset of a
project. In medical, biological, military intelligence, and other
applications where substantial and costly domain expertise is
required for labeling data, our empirical method can provide a
valuable alternative to relying on subjective experience—the
current state of the art for ML sample size estimation.
The two main variants from our experiment were CIFAR-10,

which has a larger input dimension, and STL-10, which has a
smaller sample size. Although the CIFAR-10 dataset had a larger
input dimension compared to the other datasets, the results were
valid and interpretable, which suggests that this autoencoder
method can be generalized across input sizes. Furthermore, we
held the number of classes constant at ten for ease of

Table 1. Comparison of statistical power above and below auto-encoder loss inflection points for various image datasets.

Pre-MCSE Post-MCSE

Dataset R2 Kendall’s τ Spearman’s ρ R2 Kendall’s τ Spearman’s ρ

MNIST 0.449 0.438 0.611 0.751 0.851 0.972

FMNIST 0.203 0.286 0.411 0.922 0.855 0.969

KMNIST 0.129 0.284 0.414 0.919 0.839 0.971

EMNIST 0.119 0.224 0.336 0.784 0.843 0.971

QMNIST 0.207 0.323 0.476 0.779 0.836 0.962

CIFAR10 0.028 0.051 0.073 0.499 0.777 0.936

STL10 0.002 0.013 0.016 0.002 0.144 0.209

FAKE 0.002 0.085 0.128 0.154 0.032 0.046

Fig. 3 Sample size estimation with inflection points. The top and middle rows are the results of individual datasets, while the bottom row is
the combination of all eight tested datasets. The black striped line represents the autoencoder loss at the point of the inflection. The shaded
region represents the error bars, with error determined as the autoencoder loss at ± ln(n), where n is the sample size at which the inflection
point of the autoencoder loss occurs. The points are shaded by sample size. For each of these datasets, the autoencoder loss method appears
to provide an unbiased estimate of the minimum convergence sample. The top row demonstrates appropriately sampled data while the
middle row shows statistical power estimation on oversampled and undersampled data. The bottom row shows that linear interpolation using
auto-encoder loss function generally works well in estimating learnability. a Test Area-Under-the-Curve Metric as a function of autoencoder
loss. b Test Area-Under-the-Curve Metric as a function of the derivative of the autoencoder loss. c Test Area-Under-the-Curve metric as a
function of the double derivative of the autoencoder loss. d Linear interpolation of autoencoder loss with respect to Test Area-Under-the-
Curve metric.
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interpretation, but the observed results hold for different label
sets. Second, STL-10 had far fewer samples than the NIST datasets,
suggesting that this method for estimating the minimum
learnable sample size may be used on datasets with small
sample sizes.
The fully connected network demonstrates a growth in

statistical power above the compressibility on the MNIST dataset
(Fig. 3). This may be due to the unknown and arbitrary data pre-
processing steps conducted on the MNIST dataset [10], which
allow a fewer number of samples for classification than compres-
sion, biasing the autoencoder’s learnable sample size estimate
downward. However, it is reassuring that the fake data leads to
autoencoder loss instability, resulting in error bars that exist out of
the bounds of the estimate. This estimate suggests that the
provided fully connected network would not be able to decipher a
distribution from the fake data, which places a bound on the
learnability of the dataset with respect to the network.
Through non-parametric correlation tests, we showed that loss

and power are uncorrelated before the minimum convergence
sample estimate, and that they are correlated above the minimum
convergence sample estimate (Table 1). The high R2 values on
datasets such as FMNIST and KMNIST validate the linear relation-
ship between classifier power and autoencoder loss in Eq. (3).
However, the higher values of Kendall’s τ and Spearman’s ρ, which
both measure non-linear correlation, suggest that in some cases
there is potentially a third stage of learning beyond compression.
This may be related to the regularization of parameter weights or
fine tuning of the network to ensure labels are semantically linked
to their ground truth representation. Nevertheless, Kendall’s τ and
Spearman’s ρ are able to fully capture these non-linear trends,
even with extremely small sample sizes, as demonstrated with the
STL-10 dataset, or with larger networks, as demonstrated with the
CIFAR-10 dataset.
Finally, we demonstrate that this method works specifically for

medical imaging datasets, where labeling is especially time-
intensive and costly, and more generally on a synthetic datasets
(Fig. 4a). We use a medical dataset consisting of X-ray images for
pneumonia detection and show that the AE accurately predicts a
minimum convergence sample at n= 1024 samples. We antici-
pate sample size estimation will reduce the dataset burden for
medical imaging tasks.

Synthetic data
To generalize our work more broadly to generic clustered
representations, we demonstrate that this method works on
synthetic data. We randomly sampled data-points from an
n-dimensional hyper-cube with side-lengths equal to the class
separation to train the fully connected network (FCN) classifier and
autoencoder (Fig. 4b). The minimum convergence sample
estimate, which is the sample size at which the autoencoder loss
(red) first shows a significant improvement, occurs at
n= 512 samples. Examination of the FCN classifier AUCs shows
that no significant learning occurs until the sample size reaches
the minimum convergence sample estimate of n= 512, at which
point a significant improvement in AUC is observed.
We run the minimum convergence sample estimator across

synthetic data, varying the number of input features, the number
of classes, the number of informative features, and the number of
hidden units. We find that MCSE invariantly captures the number
of samples required for the fully connected network to generalize
to an unseen dataset (Table 2).
Because the model works on synthetic data, we are able to

provide a code-free, dataset-agnostic tool for researchers to a
priori estimate the minimum number of labeled samples they
need to train an effective fully connected network classifier. We
deploy the application using Flask and PyTorch on a publicly
accessible server. We ask for inputs such as priors on the minimum

sample size estimate, the number of total features, informative
features and classes. The algorithm can be bootstrapped to reduce
error, and the size of each hidden layer in a 3-layer fully connected
network can be modified as well, to accommodate for dataset
complexity. This tool can be easily accessed at
samplesizeforml.com. This tool is intended to be used a priori to
data collection. Estimating minimum convergence sample on a
synthetic dataset can provide a lower bound on the number of
samples to collect. After collecting the minimum convergence
sample, MCSE can be more precisely estimated and extrapolated
via Eq. (3) to obtain an estimate of the number of samples
required to achieve a desired performance (Fig. 5).

Limitations on label quality
Minimum convergence sample estimation, by design, does not
account for label quality. Label quality is an essential part of
experimental design, and past work has shown that label errors
can destabilize bench-marking [11]. For minimum convergence
sample estimation to provide a reasonable estimate of minimum
convergence sample, it relies on labeled data providing semanti-
cally meaningful information.
In situations where label quality does not semantically capture

meaningful information in the data, the minimum convergence
sample estimate may not provide an accurate estimate of
minimum convergence sample. Running the method on fake
data generates non-interpretable results (Fig. 3d). The converse is
also true, if an autoencoder converges while the fully connected
network does not, this may serve as a warning on label and
sample quality. To further quantitatively evaluate how label
quality affects the minimum convergence sample estimate, we
evaluate the minimum convergence sample estimate on synthetic
data mislabeled a certain percentage of the time ranging from 0.1
to 50% (Table 3). We demonstrate that as label quality decreases,
the MCSE becomes a worse estimator of MCS.
While most standard imaging data-sets have reasonable

connections between label and data, more complex data-sets
may have a weaker link. This is, therefore, a limitation of present
work. A joint pipeline with other methods to ensure label quality
provides a direction for future work [12, 13].

DISCUSSION
Data collection is a universal step in the development of machine
learning algorithms. The question of how much labeled data is
needed to train a generalizable classifier is one that every data
scientist working in supervised or semi-supervised learning must
grapple with. The paradigm of big data answers with ‘as much
data as we can get’. For many tasks, however, this convention is
highly problematic. A priori sample size determination is a
common practice for almost every field to mitigate some of these
issues, and here we introduce a variant on sample size
determination—the minimum convergence sample for machine
learning. We additionally propose and validate a method to
estimate a minimum convergence sample for deep learning
algorithms with a focus on fully connected networks. This study
makes several contributions to the field. The first is a simple
method for estimating dataset learnability by a given model f.
While prior work has characterized different methodologies by
which learnability can be characterized, these works have focused
on characterizing the expressivity of models relative to data rather
than the learnability of data relative to a model[14, 15]. Du and
colleagues [16, 17] have adapted tools from empirical process
theory [18] for the estimation of sample complexity of CNNs and
RNNs. However, empirical process theory may not extend well to
networks which include nonlinear activation methods, like
Rectified Linear Units.
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In this work, we primarily focus on estimating the number of
labeled samples needed to train fully connected networks. Many
developments in deep learning have focused on reducing the
number of samples. These approaches fall into two categories: (a)
adding structural information about the data into the model or (b)
having the model assign labels through semi-supervised learning
approaches. An improvement in sample efficiency does not void
sample determination, but rather increases the potential gap
between the minimum convergence sample and number of
collected labeled samples.

In the first category, improvements neural network architectures
that take advantage of domain-specific and data-specific knowl-
edge can reduce the minimum convergence samples. For example,
neural network layers like convolutions takes advantage of spatial
relationships of the pixels in an image to better learn representa-
tions of an image [19]. Convolutions improve sample efficiency and
achieve generalizable performance at smaller samples than fully
connected networks. The technique of a priori minimum
convergence sample estimation we present should be easily
adaptable to architectures like convolutional neural networks.

Fig. 4 Minimum convergence sample estimation on a medical imaging and synthetic datasets. a Minimum convergence sample
estimation on a medical imaging dataset for pneumonia detection on Chest X-rays. b Minimum convergence sample estimation on a
synthetic dataset (×10 bootstrapped). Boxes represent the 25th and 75th percentiles, and the whiskers and the whiskers represent the
minimum and maximum values.

Table 2. Correlation between test area-under-the-curve and sample size above and below auto-encoder loss inflection points for with varying
dataset characteristics and neural network hyper-parameters.

Pre-MCSE Post-MCSE

Parameter Value R2 Kendall’s τ Spearman’s ρ R2 Kendall’s τ Spearman’s ρ

N-informative 8 0.074 0.292 0.341 0.577 0.837 0.944

16 0.019 −0.172 −0.210 0.578 0.836 0.944

32 0.013 −0.180 −0.224 0.534 0.850 0.954

64 0.078 0.172 0.212 0.529 0.835 0.944

128 0.056 0.138 0.170 0.632 0.804 0.925

256 0.010 0.081 0.105 0.729 0.707 0.852

N-classes 2 0.000 0.000 0.000 0.161 0.399 0.530

4 0.011 0.072 0.093 0.332 0.514 0.679

6 0.039 0.146 0.189 0.522 0.610 0.783

8 0.029 0.125 0.162 0.615 0.659 0.824

10 0.023 0.118 0.152 0.606 0.617 0.781

N-features 256 0.004 0.059 0.053 0.681 0.585 0.736

512 0.149 0.410 0.538 0.666 0.663 0.814

784 0.020 −0.108 −0.141 0.713 0.697 0.849

1024 0.225 0.402 0.475 0.566 0.624 0.789

2048 0.100 0.193 0.253 0.629 0.608 0.769

4096 0.069 0.181 0.225 0.582 0.513 0.671

Hidden Layer Size 64 0.012 0.085 0.110 0.459 0.499 0.653

128 0.023 0.118 0.153 0.552 0.591 0.755

256 0.014 0.085 0.111 0.590 0.619 0.783

512 0.023 0.109 0.142 0.621 0.638 0.800

784 0.026 0.123 0.160 0.603 0.656 0.818

1024 0.039 0.151 0.194 0.595 0.640 0.805
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In the second category, semi-supervised learning methods can
learn labels given a large set of unlabeled samples and smaller
subset of labeled samples [20]. Semi-supervised learning relies on
a few key assumptions, the most relevant of which is the low-
density assumption. The low-density assumption in semi-
supervised learning is that the decision boundary of a classifier
should preferably pass through low-density regions in the input
space. When a dataset is not representative of the population due
to systemic inequities as seen in healthcare, this may result in the
classifier providing biased labels for underrepresented classes. For
example, there may be biases in data collection based upon race
and ethnicity because of inequitable access to care [21]. A
minimum convergence sample estimate may help guide data
collection to adequately represent low-density subsets of the data.
Sample size determination and statistical power remain closely

related for many important studies, including medical trials and
social and psychological studies [22, 23]. Not having a priori
sample size estimation has been recognized as a common mistake
in the design of clinical trials and occurs more often when
statisticians are not involved early in the trial design process [24].
Under-powered studies in neuroscience, and more specifically in
Alzheimer’s disease have led to routine failures in replication
[25–27]. Given the increasing presence of artificial intelligence in
medicine and clinical trials [28], sample size determination for
neural networks represents an important opportunity to advance
the utility of artificial intelligence in these domains by increasing

trial efficiency, efficacy, and power. Most grant applications in
medicine require an estimate of sample sizes, and now an
estimate can be reasonably provided for machine-learning based
grant applications via the deployed Flask application. A sound
method for conducting sample size estimation for machine
learning models can ensure proper experiment design.
Some past work has surveyed the use of sample size

determination in machine learning with respect to medical
imaging applications [29]. These methods are split into Pre-Hoc
and Post-Hoc methods. However, pre-hoc methods were not
robust in the high-dimensional setting with large intraclass
variability [30]. Other pre-hoc methods such as empirical process
theory did not extend well to non-linear methods [16]. Post-hoc
methods usually involve fitting a learning curve, but fitting a
learning curve is trivial for minimum convergence sample
estimation because any amount of data should result in a non-
zero increase in performance on a training data-set. Moreover,
these methods are task-specific, data-specific, and model-specific,
as one learning curve has no relevance outside that specific task,
model and data-set. Nevertheless, while our experiments validate
minimum convergence sample estimation on toy data-sets,
synthetic data, and one real-world example of medical imaging
due to data availability, future work should further validate this
method on more across different tasks and imaging types in the
healthcare context.

Fig. 5 Data collection pipeline with minimum convergence sample estimation. Stage 1 of the pipeline is to use hyper-parameters to
estimate a minimum convergence sample. Stage 2 is to collect the number of samples estimated by the MCSE, and use that to determine the
sample size required for a desired performance via MCSE and Eq. (3). Stage 3 is to collect the number of samples required, label those samples
and train on the FCN to achieve the desired performance.

Table 3. Correlation between test area-under-the-curve and sample size above and below auto-encoder loss inflection points for with varying levels
of label accuracy.

Pre-MCSE Post-MCSE

% Mislabled R2 Kendall’s τ Spearman’s ρ R2 Kendall’s τ Spearman’s ρ

0.10 0.006 0.074 0.092 0.686 0.703 0.842

1.00 0.003 –0.025 –0.032 0.710 0.721 0.865

2.00 0.021 0.100 0.126 0.706 0.694 0.839

5.00 0.002 0.054 0.070 0.687 0.654 0.812

10.0 0.001 0.002 −0.001 0.714 0.681 0.827

20.0 0.012 0.084 0.106 0.644 0.619 0.768

30.0 0.004 0.028 0.038 0.465 0.498 0.636

40.0 0.000 −0.017 −0.022 0.389 0.418 0.557

50.0 0.024 −0.105 −0.137 0.385 0.354 0.471
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Our second contribution is the proposal of a method to
empirically estimate MCSE for a given fully connected neural
network f. This function allows users to predict statistical power of
a model without needing to train on the entire training set during
every trial. It also includes an uncertainty on the estimate, in which
the variance is inversely correlated to how structured the
underlying data is. Our third contribution is a publicly available
tool for minimum sample size estimation for fully connected
neural networks.
Importantly, there are several natural opportunities to extend

our work to more complex models, as discussed below. First, our
paper only considered a fully connected network with a relatively
simple architecture. One natural question that might extend from
this work involves assessing how this method fares in estimating
the statistical power of convolutional or recurrent neural networks.
While adding convolutions would be relatively easy to do via the
addition of another layer, adding attention mechanisms may
require additional structural modifications to fully approximate
the statistical power of recurrent neural network or transformers.
For our method to be applicable to medical imaging tasks, we
anticipate that extending this work to convolutional neural
networks remains an important next step. Future work can
validate MCSE on more complex architectures utilizing pre-trained
networks and skip connections. Second, the loss function that was
utilized in this current analysis was the reconstruction loss, which
is a relatively simple choice of loss function. For variational
autoencoders, the loss function changes to instead use a KL-
divergence, while GANs use JS-divergence and WGANs use
Wasserstein divergence [31–33]. Therefore, different autoencoders
with various structural representations can also be used to
represent a fully connected network with distinct losses and
structural features. Future work should examine different recon-
struction frameworks to approximate the statistical power of
increasingly complex network architectures. Third, we have not
explored the utility of a similar approach to aid in architecture
search and identification of an optimal set of cases for labeling.
In summary, we present a novel method of estimating the

minimum sample size required to train a fully connected neural
network for a classification task. The distinguishing feature of our
approach is that this estimate can be obtained prior to labeling
any data, which can be advantageous in real-world settings where
labeling is expensive or time-consuming.

METHODS
Main
For the six MNIST variants and FAKE, we let f be a fully connected
network with input dimension of 784 and output dimension 10,
and we let g be an autoencoder with an input dimension of 784
and a latent space of dimension 3. The latent space dimension of
3 was chosen in the hope of avoiding over- or under-compression
of the latent space. The only differences for CIFAR-10 and STL-10
were input dimensions of 1024 and 9216, respectively. We train
both f and g on 13 different sample sizes at factors of ×2: 16, 32,
64, 128, 256, 512, 1024, 2048, 4096, 8192, 16,384, 32,768, and
50,000. Training was performed by bootstrapping 50 times on two
NVIDIA GeForce GTX 1080 Ti GPUs using PyTorch. We tested all 50
bootstrapped models of f at different sample sizes on the test-size
of 10,000 to find the test AUC. This protocol was completed on all
eight datasets.
Then, we smoothed both the autoencoder loss function of g

and the area-under-the-curve of f using a natural spline. Next, we
obtained the second derivative of the spline on the autoencoder
(Fig. 3).
After taking the second derivative of the loss function, we

located the inflection point and its respective sample size as well
as the value of the autoencoder loss at that value. Figure 2 was

generated when we plotted the autoencoder loss of g and the
AUC of f against the sample size. MCSE was drawn as a vertical line
in Fig. 3, coinciding with the inflection point on the autoencoder
loss function and provides a lower bound on the sample size
required to improve model performance. The shaded area bars
represent the error, determined as the autoencoder loss at the
log(MCSE ± 1) sample sizes.
Third, we determined the correlation between autoencoder

loss and area-under-the-curve using R2, Kendall’s τ and
Spearman’s ρ (Table 1). These values demonstrated a sig-
nificant coorelation above, but not below, the MCSE (inflection
point of the autoencoder loss curve). To better demonstrate
this finding, we plotted out the results for Eq. (3) for values
above MCSE (Fig. 3).
Finally, we generalize these results to an n-dimensional hyper-

cube and validate them on a medical imaging dataset. To
generate the synthetic data set, we randomly sampled data-points
from an n-dimensional hyper-cube with side-lengths equal to the
class separation to generate the fully connected network classifier
and an autoencoder. For the medical dataset, we use the publicly
available Kaggle Chest X-ray dataset [34], and accurately predict
the minimum number of labeled samples required to learn a
meaningful classifier using a fully connected network.
Analysis of the publicly available NIH CXR dataset was carried

out with approval of the Institutional Review Board at Icahn School
of Medicine at Mount Sinai, New York, NY 10019. The requirement
for informed consent was waived as the dataset was completely
de-identified.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The image datasets can be accessed via the torchvision library https://pytorch.org/
vision/stable/datasets.html. The synthetic dataset was generated via the sklearn library
https://scikit-learn.org/stable/index.html. The de-identified X-ray dataset is publicly
available https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.
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