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Abdominal aortic aneurysm monitoring via arterial waveform
analysis: towards a convenient point-of-care device
Mohammad Yavarimanesh1,8, Hao-Min Cheng2,3,8, Chen-Huan Chen2,3, Shih-Hsien Sung3,4, Aman Mahajan5, Rabih A. Chaer6,
Sanjeev G. Shroff1, Jin-Oh Hahn 7 and Ramakrishna Mukkamala 1,5✉

Abdominal aortic aneurysms (AAAs) are lethal but treatable yet substantially under-diagnosed and under-monitored. Hence, new
AAA monitoring devices that are convenient in use and cost are needed. Our hypothesis is that analysis of arterial waveforms,
which could be obtained with such a device, can provide information about AAA size. We aim to initially test this hypothesis via
tonometric waveforms. We study noninvasive carotid and femoral blood pressure (BP) waveforms and reference image-based
maximal aortic diameter measurements from 50 AAA patients as well as the two noninvasive BP waveforms from these patients
after endovascular repair (EVAR) and from 50 comparable control patients. We develop linear regression models for predicting the
maximal aortic diameter from waveform or non-waveform features. We evaluate the models in out-of-training data in terms of
predicting the maximal aortic diameter value and changes induced by EVAR. The best model includes the carotid area ratio
(diastolic area divided by systolic area) and normalized carotid-femoral pulse transit time ((age·diastolic BP)/(height/PTT)) as input
features with positive model coefficients. This model is explainable based on the early, negative wave reflection in AAA and the
Moens-Korteweg equation for relating PTT to vessel diameter. The predicted maximal aortic diameters yield receiver operating
characteristic area under the curves of 0.83 ± 0.04 in classifying AAA versus control patients and 0.72 ± 0.04 in classifying AAA
patients before versus after EVAR. These results are significantly better than a baseline model excluding waveform features as input.
Our findings could potentially translate to convenient devices that serve as an adjunct to imaging.
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INTRODUCTION
Abdominal aortic aneurysm or AAA (“triple A”) is one of the top 15
leading causes of death in the United States1. In this condition, a
weakened aortic wall can lead to progressive aortic diameter
enlargement and, in some cases, rupture. Aortic rupture is highly
morbid and lethal with a mortality rate of up to ~80%1,2.
Risk factors for AAA (defined here as a maximal aortic diameter

>3.5 cm) include advanced age, male sex, smoking, family history
of the condition, and hypertension1–3. AAA can be treated via open
or endovascular repair. The mortality rate of the surgery can be just
2–3%1,4. Surgery is indicated for AAAs >5.5 cm or expanding at a
rate >1 cm/year2,3. Since most AAAs are asymptomatic, screening
and surveillance are essential1–4.
Ultrasound permits accurate and safe detection of AAAs with

sensitivity/specificity of 94–100%1–3. Furthermore, guidelines
(e.g., Society for Vascular Surgery) and programs (e.g., Medicare)
are in place for one-time screening in specific populations (e.g.,
men above 65 years4 or men and women aged 65–75 years who
have ever smoked2,3) and for surveillance (e.g., every
12–36 months for AAAs <5 cm3). However, ultrasound requires
an expert operator, capital equipment, and costs ~$100 per scan2.
As a result, ultrasound is used in <1–20% of those patients
eligible for AAA screening5, and AAA diagnosis is often made
based on incidental findings when imaging for other reasons or at
the time of rupture1. About 1.3 years of life are lost for every 10
unscreened patients, which is similar to breast cancer screening6.
Ultrasound may be underutilized for AAA surveillance as well5.
The guidelines assume fixed AAA expansion rates, but AAAs can

grow in spurts or even shrink over time7. The guidelines and
programs are also based on the argument that competing causes
of death are significant at very old ages (e.g., >80 years)2.
However, this argument may become less tenable as society ages
and the quality of healthcare advances.
Convenient methods for AAA screening and surveillance could

thus be impactful4,5. However, physical exam via aortic palpation
requires skill and is unreliable when the AAA is not large or the
patient is not thin, with sensitivity/specificity of 39–68/75%2. As a
result, key opinion leaders are calling for point-of-care devices to
monitor AAA more frequently4,8.
Our hypothesis is that analysis of arterial waveforms, which

could be obtained with a medical office device that is convenient
in use and cost, constitutes a non-imaging solution for providing
information about AAA size and thus a useful adjunct to imaging
by prompting ultrasound. This hypothesis is illustrated in Fig. 1
and grounded in physiology. In particular, arterial waveforms arise
as the superposition of forward and backward traveling pressure
waves, and AAA alters wave propagation and reflection and thus
the observed waveforms. We aim to initially test the hypothesis
using noninvasive carotid and femoral blood pressure (BP)
waveforms via tonometry and reference maximal aortic diameter
measurements via imaging from patients with AAA and using
these two noninvasive BP waveforms from the same patients after
endovascular repair (EVAR) and from comparable control patients
without AAA. Our results demonstrate that this unconventional
approach for AAA monitoring is feasible and has potential to be
translated to future clinical practice.
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RESULTS
Patient data
Table 1 summarizes the patient data for study in terms of sample
sizes, demographics, risk factors, and basic hemodynamic values.
The data were from our existing database9,10 and included
records from 50 patients with AAA before and 4 weeks after EVAR
and 50 control patients for a balanced set, with 17 of the 50 AAA
patient records also having data 3 years post-EVAR. The AAA and
control patients were similar but not perfectly matched with
some differences including body surface area (BSA), smoking, and

heart rate (HR). All patients had an ankle-brachial index (ABI) > 0.9
to generally exclude peripheral arterial disease (PAD). While PAD
is more common in diabetes, only one diabetic patient had an
ABI > 1.3, which could mask PAD. BP and HR did not change in
the AAA patients following EVAR.

Model development and evaluation
We analyzed the patient data to investigate prediction of the
maximal aortic diameter from carotid and femoral BP waveform

Fig. 1 Potential convenient point-of-care devices for abdominal aortic aneurysm (AAA) monitoring via arterial waveform analysis.
a A sensitive weighing scale for measuring a ballistocardiography (BCG) waveform and detecting aortic pulse wave velocity (PWV)19. PWV
decreases with increasing AAA diameter (d) per the Moens-Korteweg equation (where E is the elastic modulus of the aortic wall; h,
wall thickness; and ρ, blood density) but also increases with blood pressure (BP) and age (bar graph adapted from24). b A hand-held unit
for measuring a photoplethysmography (PPG) waveform from the carotid artery. The waveform shape during systole is altered due to the
early, negative wave reflection in AAA13. Such devices may be best used to indicate if an accurate, but less convenient, ultrasound scan should
be ordered.

Table 1. Demographics, risk factors, and basic hemodynamic values of the abdominal aortic aneurysm (AAA) patients before and after endovascular
repair (EVAR) and similar control patients.

Control (n= 50) AAA
(n= 50 | n= 17)

p AAA
4 weeks post-EVAR
(n= 50 | n= 17)

p AAA
3 years post-EVAR
(n= 17)

p

Age (years) 61 ± 15 66 ± 10 0.536

Male, n (%) 45 (90) 45 (90) 1

Height (cm) 163 ± 7 168 ± 7 >0.001

Weight (kg) 64 ± 10 68 ± 9 0.0435

BSA (m2) 1.69 ± 0.06 1.73 ± 0.1 >0.001

Diabetes, n (%) 6 (12) 8 (16) 0.569

Smoking, n (%) 10 (20) 27 (54) >0.001

ABI (unitless) 1.1 ± 0.1 1.1 ± 0.1 0.47

Maximal aortic
diameter (cm)

— 5.3 ± 1.3 — — — — —

SBP (mmHg) 137 ± 16 131 ± 17 | 129 ± 17 0.135 126 ± 16 | 129 ± 21 0.48 | 0.84 132 ± 17 0.58

DBP (mmHg) 80 ± 10 78 ± 11 | 77 ± 13 0.270 73 ± 12 | 73 ± 12 0.28 | 0.54 76 ± 10 0.72

MBP (mmHg) 102 ± 13 99 ± 14 | 99 ± 15 0.300 94 ± 14 | 94 ± 15 0.28 | 0.91 99 ± 13 0.92

HR (bpm) 74 ± 11 67 ± 14 | 69 ± 17 0.004 70 ± 13 | 72 ± 16 0.20 | 0.53 67 ± 11 0.70

The two-sided p-values were obtained through comparisons between the corresponding values in the two non-p columns to the left using paired t-tests.
BSA body surface area, ABI ankle-brachial index, SBP/MBP/DBP systolic/mean/diastolic arm cuff blood pressure, HR heart rate.
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features. Our analysis was based on standard, yet powerful,
linear regression.
We sought to develop linear regression models that could

predict the maximal aortic diameter over its physiologic range
from normal to severely diseased. Although we had the image-
based reference maximal aortic diameter measurements for the
AAA patients, this measurement was not available for the control
patients (see Table 1). Therefore, we leveraged strong pre-
knowledge of the quantitative characteristics of the normal aortic
diameter to model the reference maximal aortic diameters for the
control patients as Gaussian white noise with mean and standard
deviation of 2.2 and 0.4 cm11 (see Data Analysis subsection for
further explanation).
We extracted features from the waveforms that could

potentially translate to a convenient device (see final paragraph
of Discussion section) and also considered non-waveform features
as model inputs. Figure 2 shows two candidate waveform features
that we conceived by invoking physiology, while Fig. 3 shows
common waveform features that we used for a broader candidate
set. Table 1 lists the candidate non-waveform features (except for
the maximal aortic diameter).

We performed feature selection to develop three parsimonious
linear regression models for predicting the measured (AAA
patients) or modeled (control patients) reference maximal aortic
diameter from (i) carotid and femoral BP waveform and non-
waveform features (carotid+femoral feature model); (ii) only
carotid BP waveform and non-waveform features (carotid feature
model); and (iii) non-waveform features alone (baseline model).
We employed leave-one-patient-out cross validation to the data
from the 50 AAA (pre-EVAR) and 50 control patients to train and
test the models. We used the post-EVAR patient data for further
and independent testing of the models.

Developed models
The carotid+femoral feature, carotid feature, and baseline
models were stable across the 100 leave-one-patient-out training
sets in that 100, 100, and 83% of their regression equations
included the same features. Optimal yet representative regres-
sion equations for each model trained using all of the data (with
the input features adjusted to zero-mean and unit-variance)
were as follows:

Fig. 2 Candidate arterial waveform features based on physiology for indicating the aortic diameter. a Pulse transit time (PTT ≈ height/
PWV) normalized for age and diastolic BP (DBP) should increase with aortic diameter. b A carotid upstroke index (CUI) similarly normalized
should increase with AAA diameter due to the early, negative wave reflection. Pcarotid is the carotid BP waveform; Pf and Pb, forward and
backward traveling pressure waves. The waveforms and waves are cartoons. c PTT is detected as the foot-to-foot time delay between the
carotid and femoral artery waveforms, while CUI is detected from the carotid artery waveform via fitting two lines to its upstroke. The
waveforms are ensemble averaged waveform beats of a patient.
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Carotid+Femoral Feature Model:

Maximal Aortic Diameter ¼ 3:79þ 0:78 Area Ratio� 0:54
0:21

� �

þ 0:56
Age�DBP

Height=PTT� 1701

548

� �
(1)

Carotid Feature Model:

Maximal Aortic Diameter ¼ 3:79þ 0:96
Area Ratio� 0:54

0:21

� �
(2)

Baseline Model:

Maximal Aortic Diameter ¼ 3:79� 0:44
HR� 70

12

� �
þ 0:48

BSA� 1:71
0:06

� �

(3)

The carotid+femoral feature model included the area ratio
(diastolic area (DA) divided by systolic area (SA) of the carotid
artery waveform and unitless) and normalized PTT ((age·DBP)/
(height/PTT), where PTT is carotid-femoral pulse transit time in ms,
DBP is diastolic BP in mmHg, age is in years, and height is in cm) as
the input features. Figure 4 illustrates these waveform features.
The two features were comparable in importance based on the
relative magnitudes of their model coefficients. The carotid
feature model included only the area ratio as the input feature.
The input features of the baseline model comprised HR in bpm
and BSA in m2, which were again significantly different between
the AAA and control patients (see Table 1).

Model prediction of maximal aortic diameter
Figure 5 illustrates correlation and Bland-Altman plots of the 100
leave-one-patient-out predicted maximal aortic diameters of the
three models versus the measured maximal aortic diameters for
AAA patients (black) and the modeled reference maximal aortic
diameters for the control patients (gray). Note that the control
patient datapoints are included in these plots, even though
measured reference maximal aortic diameters were unavailable, in
order to fairly show the limitations of the models (as discussed
below in this paragraph) and their capabilities. The correlation
coefficient (R; mean ± s.e.m) between the maximal aortic

diameters predicted by the baseline model and the measured or
modeled maximal aortic diameters was just 0.05 ± 0.09, whereas
the corresponding correlation coefficients for the carotid+femoral
feature and carotid feature models were 0.61 ± 0.06 (p < 0.001;

Fig. 3 Commonly used features of arterial waveforms to establish a broader candidate set for indicating the aortic diameter30,31. These
features were extracted from only the carotid BP waveform, since this particular waveform, as perhaps opposed to the femoral BP waveform,
could potentially translate to a convenient device (see Fig. 1b).

Fig. 4 Arterial waveform features selected as inputs to linear
regression models for predicting the maximal aortic diameter (see
optimal yet representative Eqs. (1) and (2)). The carotid area ratio
showed a positive relationship to the maximal aortic diameter, which
can be explained in hindsight via the early negative, wave reflection
in AAA. The normalized PTT showed a comparably positive relation-
ship to the aortic diameter per physiology (see Fig. 2). All other
waveform features (see Figs. 2 and 3) were not helpful.
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common test for dependent data12) and 0.53 ± 0.06 (p < 0.001;
common test for dependent data12). The overall normalized-root-
mean-squared-error (NRMSE; mean ± s.e.m) of the predicted
maximal aortic diameters of the baseline model was 49 ± 2.4%,
while the corresponding errors for the carotid+femoral feature
and carotid feature models were 36 ± 1.6 (p < 0.001; nonpara-
metric bootstrapping for paired data) and 39 ± 1.9% (p < 0.001;
nonparametric bootstrapping for paired data). However, the two
waveform feature models as well as the baseline model did
sometimes clearly overestimate the maximal aortic diameters for
the control patients and did generally underestimate the maximal
aortic diameter for the AAA patients. This overestimation and
underestimation can be seen in the correlation plots directly and
in the Bland-Altman plots via significant inverse correlation
between the predicted maximal aortic diameter errors and the
average of the predicted and measured or modeled reference
maximal aortic diameters.
Figure 6 shows receiver operating characteristic (ROC) curves

for classifying AAA versus control patients using the same 100
leave-one-patient-out predicted maximal aortic diameters of the
three models. The ROC area under the curve (AUC; mean ± s.e.m)
for discriminating the two patient groups via the baseline model
was 0.58 ± 0.06 and thus similar to a coin flip, whereas the
corresponding AUCs for the carotid+femoral feature and carotid
feature models were 0.83 ± 0.04 (p < 0.001; Hanley–McNeil test
for paired data) and 0.78 ± 0.05 (p= 0.003; Hanley–McNeil test
for paired data). Furthermore, at 75% specificity, the ROC curves
indicated that the carotid+femoral feature and carotid feature
models yielded 83% and 66% sensitivities, which compare
favorably to the 39–68% sensitivity of aortic palpation at the
same specificity2.

These results indicate that the carotid+femoral feature and
carotid feature models, but not the baseline model, offered value
in predicting the maximal aortic diameter.

Model prediction of EVAR-induced changes in maximal aortic
diameter
Figure 7a illustrates ROC curves for classifying AAA patients before
versus 4 weeks after EVAR using 100 out-of-training predicted
maximal aortic diameters of the three models. Figure 7b shows
ROC curves for classifying the change from before to 4 weeks after
EVAR versus the change from 4 weeks to 3 years post-EVAR using
34 out-of-training predicted maximal aortic diameter changes of
the three models. The two ROC AUCs for discriminating the
surgery via the baseline model were 0.54 ± 0.05 and 0.58 ± 0.09,
whereas the corresponding AUCs for the carotid+femoral feature
model were 0.72 ± 0.04 (p= 0.01; Hanley–McNeil test for paired
data) and 0.71 ± 0.07 (p= 0.12; Hanley–McNeil test for paired
data). The AUCs for the carotid feature model were 0.65 ± 0.05 and
0.60 ± 0.08; these values were not significantly different from
those of the baseline model (Hanley–McNeil tests for paired data).
The results indicate that the carotid+femoral feature model, but
not the baseline model, afforded value in predicting EVAR-
induced changes in the maximal aortic diameter.

Model input waveform features and BP waveforms of
individual patients
Figure 8A illustrates plots of the normalized PTT against the area
ratio per patient for the AAA versus control patients (left panel of
the figure), AAA patients before versus 4 weeks after EVAR (center
panel of figure), and AAA patients before versus 4 weeks after

Fig. 5 Accuracy results of the 100 leave-one-patient-out maximal aortic diameters predicted by the three models (see optimal yet
representative Eqs. (1–3)) for the 100 AAA (before EVAR) and control patients. Correlation plots (top) are predicted versus measured or
modeled reference maximal aortic diameters. R (mean ± s.e.m) is correlation coefficient. The two-sided p-values were obtained through
comparisons with the baseline model using a common test for dependent data12. Bland-Altman plots (bottom) are predicted maximal aortic
diameter errors versus the average of the predicted and measured or modeled reference maximal aortic diameters. NRMSE (mean ± s.e.m) is
the overall normalized-root-mean-squared-error in percent. The two-sided p-values were obtained through comparisons with the baseline
model using nonparametric bootstrapping for paired data. The black datapoints denote AAA patients with measured reference maximal
aortic diameters, while the gray datapoints indicate control patients with modeled reference maximal aortic diameters (see text for
explanation).
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EVAR versus 3 years after EVAR (right panel of figure). Consistent
with the quantitative ROC curve results of Figs. 6 and 7a, the
separation between the AAA and control patient datapoints (left
panel of Fig. 8A) qualitatively appeared greater than the
separation between the AAA and 4 weeks post-EVAR datapoints
(center panel in Fig. 8A). While there was noticeable separation
between the fewer AAA and 4 weeks or 3 years post-EVAR
datapoints, this subset of the data happened to include five of the
least discriminating AAA datapoints overall (see five filled red
circles, which along with two open red circles overlapped most
with the control and 4 weeks post-EVAR datapoints in the left
panels of Fig. 8A and were thus least discriminating in this way).
Figure 8B illustrates more extreme examples of the carotid

and femoral artery waveforms from AAA (before and after EVAR)
and control patients. The carotid waveform appeared narrower/
sharper with AAA as opposed to wider/rounder without AAA
(for a higher area ratio), while the time delay between the
carotid and femoral waveforms was longer with AAA (for a
higher normalized PTT).

DISCUSSION
AAAs are lethal but treatable, yet they are substantially under-
diagnosed and under-monitored. So, there is profound need for
new AAA screening and surveillance devices that are convenient
in use and cost. Our hypothesis is that analysis of arterial
waveforms, which could be obtained with such a device, can
provide information about AAA size (see Fig. 1). We aimed to
initially test this physiology-grounded hypothesis using noninva-
sive carotid and femoral BP waveforms and reference image-
based measurements of the maximal aortic diameter from AAA
patients and using these two noninvasive BP waveforms from the
same patients 4 weeks/3 years following endovascular repair
(EVAR) and from similar control patients. After selecting patient
data (see Table 1) from our existing database, we developed linear
regression models for predicting the maximal abdominal aortic
diameter from waveform features (see Figs. 2 and 3) or other

information (see Table 1). We then evaluated these models in
terms of their ability to predict the maximal aortic diameter value
and changes induced by the EVAR.
This study was inspired by our earlier AAA investigation10. The

aim of that study was to show that carotid-femoral pulse wave
velocity (PWV ≈ height/PTT) and carotid augmentation index are not
suitable markers of large artery stiffness and wave reflection in AAA
patients. Also in contrast to the present study, we did not previously
perform multivariable analysis, assess individual patient differences,
and analyze the 3 years post-EVAR data. While we did use the same
patient database in the earlier study, the overlap of patient data
between the two studies was less than half.
We developed three parsimonious and stable models for

predicting the maximal aortic diameter from waveform or non-
waveform features (see Eqs. (1–3) and Fig. 4). The carotid+femoral
feature model included the carotid area ratio and normalized PTT
as comparably important input features, while the carotid feature
model included only the area ratio as the input feature. The
normalized carotid upstroke index (CUI) that we formulated on
the basis of an early, negative wave reflection in AAA13 (see Fig. 2)
did not appear in either model. In hindsight, the area ratio may
better quantify this phenomenon. With AAA growth, the negative
reflected wave during early systole (waveform upstroke) or even
late systole (initial downstroke) should progressively reduce SA
without impacting DA as much (see Fig. 2) and thereby increase
the area ratio (DA/SA). Note that, while age and BP could likewise
be confounders, post-hoc normalizations of the area ratio
were not fruitful. The positive model coefficients for the area
ratio are consistent with this explanation. In post-hoc analysis,
likewise unnormalized CUI did reveal ability to quantify the early,
negative wave reflection in AAA, especially in terms of being
higher before versus after EVAR (results not shown). However, the
area ratio was better in the training data and thus preferred.
Similarly, the positive model coefficient for the normalized PTT is
congruent with the Moens-Korteweg equation for relating PWV to
vessel diameter (see Fig. 2). (See Methods section for more
detailed physiologic explanations of the features.) The input

Fig. 6 Classification results of the 100 leave-one-patient-out maximal aortic diameters predicted by the three models for the 100 AAA
(before EVAR) and control patients. Receiver operating characteristic (ROC) curves for classifying AAA versus control patients using the
predicted maximal aortic diameters. AUC (mean ± s.e.m) is ROC area under the curve. The two-sided p-values were obtained through
comparisons with the baseline model using the Hanley–McNeil test for paired data.
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features of the baseline model were HR and BSA, which were
different between the imperfectly matched AAA and control
patients (see Table 1). However, HR, BSA, or any other non-
waveform feature did not appear in the carotid+femoral or
carotid feature model, thereby suggesting, prior to cross valida-
tion, the greater importance of arterial waveform features.
We indeed found from cross validation that only the carotid

+femoral feature and carotid feature models were useful in
predicting the maximal aortic diameter values of the AAA (pre-
EVAR) and control patients (see Figs. 5 and 6). The maximal aortic
diameter predictions of carotid+femoral feature and carotid
feature models showed appreciable correlations with the mea-
sured or modeled reference maximal aortic diameters and yielded
ROC AUCs of 0.83 ± 0.04 and 0.78 ± 0.05 in classifying the two
groups. Notably, these ROC-based “screening” results indicated

greater sensitivity than aortic palpation at a specificity of 75% (83
and 66% for carotid+femoral feature and carotid feature models
vs. 39–68% for aortic palpation)2.
We also found from cross validation that only the carotid

+femoral feature model was useful in predicting the maximal
aortic diameter changes induced by EVAR (see Fig. 7). The
maximal aortic diameter predictions of the model yielded a ROC
AUC of 0.72 ± 0.04 in classifying pre- versus 4 weeks post-EVAR.
These predicted maximal aortic diameters did correctly decrease
in 84% of the patients following EVAR, but the magnitude of the
reductions was not consistently large (e.g., >30%; results not
shown). The changes in the predicted maximal aortic diameters of
the model also yielded a ROC AUC of 0.71 ± 0.07 in classifying the
change from before to 4 weeks after EVAR versus the change
from 4 weeks to 3 years post-EVAR in the subset of patients with

Fig. 7 Classification results of out-of-training maximal aortic diameters predicted by the three models for the AAA patients before and
after EVAR. a ROC curves for classifying the AAA patients before versus 4 weeks after EVAR using the 100 predicted maximal aortic diameters.
b ROC curves for classifying the change from before to 4 weeks after EVAR versus the change from 4 weeks to 3 years post-EVAR using the 34
available predicted maximal aortic diameter changes. The two-sided p-values were obtained through comparisons with the baseline model
using the Hanley–McNeil test for paired data.
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complete study records. The stent graft itself is stiffer than the
normal aortic wall and may cause an early, positive wave
reflection10. Both the stiffness and wave reflection changes
should have helped the normalized PTT and area ratio in
discriminating the EVAR. Yet, these “surveillance” results were
not quite as good as the screening results (also compare left and
center panels of Fig. 8A). The reasons could be variability related
to the stent grafts (e.g., diverse materials) or that the models were
completely blinded to the post-EVAR data as opposed to blinded
in a leave-one-patient-out sense. Also note that the patient
subset with 3 years post-EVAR data was small (n=17) and an
unfortunate representation of all patients (see five of the least
discriminating AAA datapoints (filled red circles) in left panel also
in right panel of Fig. 8A).
In general, our findings indicate that, in AAA, the carotid artery

waveform appears narrower/sharper and the time delay between
carotid and femoral artery waveforms appears longer (see Fig. 8B).
While these differences may not always be obvious visually, they
could be ascertained computationally as proposed herein. As also
suggested by the individual patient data (see Fig. 8A, B), the
waveform feature models had modest capacity in classifying the
post-EVAR versus control patients (ROC AUCs of 0.64–0.65), which
may further verify the models.
The carotid+femoral feature model performed better than the

carotid feature model, especially in tracking the EVAR-induced
maximal aortic diameter changes, due to the inclusion of the
normalized PTT as a second input feature. An earlier study showed
that carotid-femoral PWV was inversely correlated with the
maximal aortic diameter in earlier stage AAA patients than those
studied herein14. Hence, normalized PTT may be a consistently
important feature throughout AAA growth. Another previous study
showed that advanced machine learning could compute carotid-
femoral PWV from the carotid artery waveform alone based on
about 5000 Framingham Heart Study participants15. However, the
PWV computation formula was not reported, and that study did

not include AAA patients. Nevertheless, the two past studies
together with our findings suggest the possibility that a carotid
feature model could offer greater value in AAA monitoring than
what was reported herein.
The earlier work motivated us to explore machine learning

beyond linear regression. We tried various methods including
logistic regression for classification without maximal aortic
diameter prediction, nonlinear regression via the addition of
quadratic terms comprising the normalized PTT and area ratio,
neural networks with single hidden layers for establishing more
general nonlinear relationships between the maximal aortic
diameter and waveform and non-waveform features, and principal
components analysis for feature dimensionality reduction. How-
ever, we were not able to improve upon our linear regression
results. The likely reason is that our cohort of 100 patients with
one to three study visits per patient was not large enough.
One limitation of this study was indeed the patient sample size.

With more data, it may have been possible to improve the study
results through more powerful analytical tools for identifying more
accurate, nonlinear equations as an example. It would have also
been possible to employ a distinct dataset for testing, which is
preferred over leave-one-patient-out cross validation. However,
the aim of our study was simply to show initial proof-of-concept
that arterial waveform analysis can provide information about AAA
size. Another study limitation was that the patient data did not
include reference image-based maximal aortic diameter measure-
ments for the control patients. To effectively leverage powerful
linear regression, we modeled the reference maximal aortic
diameter measurements for the control patients using Gaussian
white noise of known statistics. Due to the error introduced in the
reference values, the correlation coefficients and Bland-Altman
errors (see Fig. 5) could actually be higher and lower, respectively,
than reported. However, any differences may only be minor,
because the error of the linear regression models in predicting the
maximal aortic diameter was likely larger than the error in the

Fig. 8 Individual patient results and examples. A Plots of normalized PTT versus the area ratio per patient for each of the three classification
tasks (see Figs. 6 and 7). The red filled circles are five of the seven AAA datapoints that overlap most with the control and post-EVAR
datapoints and thus least discriminating. B Visually apparent examples of the differences in the carotid and femoral artery waveforms from
AAA (before and after EVAR) and control patients. The waveforms are ensemble averaged waveform beats of a patient. The solid blue
waveform beat in the center panel was redrawn as a dashed blue waveform beat in the left and right panels to facilitate comparisons.

M. Yavarimanesh et al.

8

npj Digital Medicine (2022)   168 Published in partnership with Seoul National University Bundang Hospital



reference values due to the relatively narrow range of normal
maximal aortic diameters11. Also note that the classification tasks
and results (Figs. 6 and 7) did not require quantitative reference
measurements. A third limitation was the exclusion of patients
with PAD and other aortic aneurysms. We omitted PAD, which can
accompany AAA, as it too can alter carotid and femoral artery
waveforms (via a late, positive wave reflection). However, with
additional patient data, it may be feasible to accommodate PAD
(e.g., by including the ABI as a model input feature). We eliminated
thoracic aortic aneurysms, because their diameters are not
comparable to those of AAAs. However, in principle, arterial
waveform analysis is applicable to any aortic aneurysm. It is also
important to note that physical exam is not an option for
detecting aortic aneurysms above the abdomen.
Our study suggests potential point-of-care devices that are

convenient in use and cost for providing information about AAA
size. One such device is a weighing scale (see Fig. 1a). A sensitive
weighing scale or force plate can measure the ballistocardiogra-
phy (BCG) waveform16–18. We previously showed that the BCG
waveform in the head-to-toe direction arises as a linear
combination of BP waveforms from the ascending aorta, aortic
arch, and descending aorta and that the time interval between the
I-wave onset and J-wave peak of the BCG waveform is indicative
of aortic PTT19. Another possible device is a hand-held unit with a
photoplethysmography (PPG) sensor for measuring blood volume
oscillations (see Fig. 1b). Since the larger carotid artery may be
mainly elastic, PPG and tonometry waveforms at this site may
appear similar in morphology20. Although these devices may show
low positive predictive value in the general population, they could
be effectively used by caregivers in the primary care setting for
screening only patients at high risk for AAA (i.e., those eligible for
screening and others such as people with a family history of AAA)
and surveillance of patients with known AAA before and perhaps
even after surgery to detect endoleaks. If the device results turn
out positive, then an ultrasound scan would follow. In this way, a
convenient point-of-care device for AAA monitoring via arterial
waveform analysis could potentially help reduce AAA mortality.
Pursuit of such devices and validation using external or
prospective testing data may be worthwhile.

METHODS
Overall approach
We selected AAA and control patient data from a database that
we had previously constructed for other purposes. We analyzed
the data to (i) develop models for predicting the maximal
abdominal aortic diameter using tonometric carotid and femoral
BP waveforms and (ii) evaluate these models in terms of their
ability to predict the maximal aortic diameter value and changes
induced by EVAR.

Patient data
We collected data from patients with and without aortic
aneurysms at Taipei Veterans General Hospital from 2010 to
2017. These patient studies conformed to the principles outlined
in the Declaration of Helsinki and were approved by the Hospital’s
IRB, and each participant provided written, informed consent. A
subset of the patient database and complete study procedures are
presented elsewhere9,10.
Briefly, the database consists of records from >200 patients with

mainly AAAs but also thoracic aortic aneurysms or other aortic
aneurysms (i.e., aortic dissection or multiple aortic aneurysms).
Many of the patient records comprise data before and 4 weeks
after EVAR with a stent graft, and some records even had follow-
up data 3 years post-EVAR. The database also includes records
from >200 patients without aneurysmal disease (“controls”). The
data per patient and study visit include: (1) carotid and femoral

artery tonometry waveforms as well as ECG waveforms at a
sampling rate of >250 Hz (VP-2000 system, Colin, Japan); (2) BP
values via an oscillometric arm cuff; and (3) patient information
including demographics and risk factors. The data from the AAA
patients before EVAR also included the reference maximal vessel
diameter via ultrasound or CT. The University of Pittsburgh’s IRB
declared that this secondary analysis of the existing, de-identified
patient database met the regulatory requirements for exempt
research (STUDY22020004).
For this study, our data inclusion criteria were (i) patients with

AAA and data before and 4 weeks following successful EVAR with
the stent graft (which restores the uniform cross-sectional area
along the abdominal aorta10) and (ii) control patients without any
aortic aneurysm. Our data exclusion criteria were (i) multiple aortic
aneurysms; (ii) PAD as ascertained via an ABI < 0.9, (iii) non-sinus
rhythm; and (iv) artifact-contaminated tonometric waveforms
based on visual inspection. We also sought to match the AAA
and control patients in terms of non-waveform characteristics,
especially sex, age, and arm cuff BP. This matching was crucial for
mitigating the possibility of obtaining trivial results.

Data analysis
Our analysis of the patient data comprised the following steps.
After preprocessing the arterial waveforms, we extracted a set of
candidate waveform features. We then applied stepwise linear
regression to develop easy-to-understand models for predicting
the maximal aortic diameter from select waveform features plus
basic patient information as well as from the non-waveform
information alone. We finally employed cross validation to
evaluate the predicted maximal aortic diameters in terms of their
accuracy against reference values and their ability to classify AAA
versus control patients and AAA patients before versus after EVAR.

Waveform Preprocessing. We pre-processed the waveforms
similar to our prior work21. Briefly, we applied a bandpass filter
with 0.5–10 Hz passband to each of the tonometric waveforms.
We employed ECG-gating to detect the waveform peaks and then
the waveform feet using the intersecting tangent method22. We
determined the time intervals from the leading foot to lagging
foot and leading foot to peak and the amplitudes of the peak and
lagging foot relative to the leading foot amplitude for each
waveform. We selected the five waveform beats with features
closest to the median values in the least squares sense and
ensemble averaged these waveform beats starting from the
leading foot. We aligned the pairs of carotid and femoral
waveform beats in time via ECG-gating. We calibrated the
representative waveform beats to cuff diastolic and mean BP.
This calibration procedure is standard for tonometric waveforms
and based on the fact that diastolic and mean BP (but not systolic
BP) are similar throughout the larger arteries23. In this way, we
arrived at noninvasive carotid and femoral BP waveforms for
further analysis.

Waveform feature extraction. We extracted a set of candidate
waveform features that could potentially translate to a convenient
device (see Fig. 1). We conceived two of the features by invoking
physiology (see Fig. 2) and used common features for a broader
set (see Fig. 3).
We formulated the first physiology-based feature as follows (see

Fig. 2a, c). The hallmark change of AAA is an increase in aortic
diameter (d). AAA may also increase the elastic modulus (E) of the
aortic wall24 but may have little effect on the average wall
thickness (h)25. So, according to the Moens-Korteweg equation
(PWV= √(Eh/dρ), where ρ is blood density), if d increases more
than E, aortic PWV should decrease with AAA growth. We extracted
aortic PWV at the level of diastolic BP (DBP) via the standard foot-
to-foot time delay between the carotid and femoral artery
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waveforms (i.e., PTT). However, E and thus PWV also increase with
BP and age26,27. Hence, we normalized the PWV, or equivalently,
PTT as (age·DBP)/(height/PTT). This feature is expected to increase
as the aortic diameter increases.
We formulated the second physiology-based feature as follows

(see Fig. 2b, c). Normally, the main arterial wave reflection sites are
at the level of the arterioles due to the abrupt change in vessel
diameter28. Because of vessel tapering, the reflection coefficient
and thus the reflected wave are positive28. However, in AAA, the
vessel diameter is larger at some distance from the heart. The
increased diameter causes a negative reflection coefficient and
reflected wave at a more proximal site13. Hence, carotid artery
waveforms should differ in shape during systole with AAA growth
due to the superposition of an early, negative wave reflection.
While the augmentation index of the carotid artery waveform may
be used to quantify this difference, it can be difficult to detect due
to the use of higher-order derivatives. So, we instead extracted a
more robust index as follows. First, we fitted two lines (each with
an adjustable slope and intercept) to the carotid BP waveform
samples between the leading foot and peak. Then, we identified
the waveform amplitude at the intersection of the two fitted lines.
Finally, we subtracted this amplitude from the waveform peak and
divided this difference (A in Fig. 2c) by the pulse pressure (PP, i.e., B
in Fig. 2c). Like the carotid augmentation index29, this carotid
upstroke index (CUI) may not only increase with aortic diameter
but also age and BP. Hence, we normalized the CUI as CUI/
(age·DBP). This feature may increase with the aortic diameter.
We extracted the popular features from the carotid BP waveform

(see Fig. 3). These features have been extensively studied for other
applications30,31 and comprise time intervals, amplitudes, and
areas of the waveform and its first and second derivatives.

Model development. We employed powerful linear regression to
predict the maximal aortic diameter from the waveform features.
We sought to develop models that could predict the maximal
aortic diameter over its physiologic range from normal to severely
diseased. Although we only had the image-based reference
maximal aortic diameter measurements for the AAA patients, we
did have strong pre-knowledge of the quantitative characteristics
of the maximal aortic diameters for the control patients. In
particular, the mean and standard deviation of the normal
abdominal aortic diameter at the level of the renal arteries are
2.2 and 0.4 cm11. We thus modeled the reference maximal aortic
diameter measurements for the control patients using Gaussian
white noise with these statistics. This modeling of the control
reference values may also be rationale in that it may not be
possible to discriminate the relatively narrow range of maximal
aortic diameters for control patients via arterial waveform analysis
anyhow. Instead, our specific hypothesis is that arterial waveform
analysis can discriminate larger maximal aortic diameter changes
that occur with AAA growth and treatment.
We developed models to predict the measured or modeled

reference maximal aortic diameters from all waveform features
(carotid+femoral feature model) or from carotid waveform
features alone (carotid feature model). For each model, we also
allowed demographics, risk factors, and basic hemodynamic
values (i.e., all variables in Table 1 except for maximal aortic
diameter) as possible non-waveform features. For comparison,
we developed a third linear regression model to predict the
maximal aortic diameter from the non-waveform features alone.
This baseline model was important due to the imperfect
matching of the AAA and control patients (see Table 1). We
adjusted each continuous feature to zero-mean and unit-
variance and included each binary categorical variable as two
model intercepts (as opposed to model slopes or coefficients)
corresponding to each category. Each model also included an
overall intercept equal to the average maximal aortic diameter
in the training data.

We selected the features and determined the regression
parameters (coefficients and intercepts) similar to our prior
work21. More specifically, because our patient sample size was
not large, we employed leave-one-patient-out cross validation
to use as much data as possible for training while also allowing
testing on all patients without using the same data for training
and testing. For each model, we trained 100 regression
equations using the measured or modeled reference maximal
aortic diameters (dependent variable) and waveform and non-
waveform features (independent variables) from all combina-
tions of 99 of the AAA (pre-EVAR) and control patients and left
the remaining patient of each combination for testing. For each
of the 100 training sets, we applied forward stepwise regression
in conjunction with an “elbow” method to determine the
number of features by penalizing for model complexity. We
added one feature at a time to the regression equation, starting
with zero features and ending with five features, and selected
the additional feature at each iteration as the one that yielded
the minimum mean-squared maximal aortic diameter prediction
error. We set the maximal number of features to five, because
about 20 datapoints per parameter are usually needed. We thus
created six optimal equations corresponding to 0 to 5 features.
We then fitted two lines to the monotonically decreasing curve
relating the minimum mean-squared prediction error to the
number of features and determined the number of features, and
thus the final regression equation, via the intersection of the two
lines (i.e., the curve’s elbow). Our experience has been that this
simple method produces more parsimonious and stable models
than more popular methods such as Akaike’s or Bayesian
Information Criteria minimization.

Model evaluation. We evaluated the 100 leave-one-patient-out
maximal aortic diameter predictions of each of the three models
in two ways to ascertain “AAA screening” capabilities. First, we
assessed the accuracy of the predicted maximal aortic diameters
of each model against the measured or modeled reference
maximal aortic diameters using correlation and Bland-Altman
analyses (see second to last paragraph of Discussion section for
rationale). We statistically compared the (i) R value for each
waveform feature model with that for the baseline model using a
common test for dependent data12 and (ii) NRMSE (=√(μ2+ σ2),
where μ and σ are the conventional bias and precision errors,
divided by the average of the 100 reference image-based
maximal aortic diameters and given in percent) for each
waveform feature model with that for the baseline model using
nonparametric bootstrapping for paired data21,32. Second, we
evaluated the predicted maximal aortic diameters of each model
in terms of their ability to classify AAA versus control patients
using ROC curve analysis. We statistically compared the ROC AUC
for each waveform feature model with that for the baseline
model using the Hanley–McNeil test for paired data33. ROC curve
analysis quantifies the ability to classify individuals, and the AUC
indicates the probability of correctly classifying two individuals
wherein the individuals are from different classes. This analysis is
more relevant than common t- and U-tests, which quantify the
ability to classify groups of individuals. We smoothed the ROC
curves without impacting the AUCs to be able to reliably estimate
sensitivity at a given specificity34.
We also evaluated each of the three models in terms of their

ability to track the maximal aortic diameter following the EVAR
to assess “AAA surveillance” capabilities. Since reference image-
based maximal aortic diameter measurements were not available
post-EVAR, we leveraged knowledge that successful surgery will
substantially reduce the effective maximal aortic diameter. For
each model, we first applied a regression equation trained using
all data from the 100 AAA (pre-EVAR) and control patients to
predict the maximal aortic diameter from the waveform or non-
waveform features post-EVAR. We then employed ROC curve
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analysis to assess the out-of-training predicted maximal aortic
diameters of each model in terms of their ability to classify AAA
patients before versus 4 weeks after EVAR. We likewise assessed
the predicted maximal aortic diameter changes of each model in
terms of their ability to classify the change from before to
4 weeks after EVAR versus the change from 4 weeks to 3 years
post-EVAR. This second classification task assumed that the
maximal aortic diameter changed appreciably more following
EVAR than 3 years of aging. We again used the Hanley–McNeil
test to compare the ROC AUCs of the models for each of the
classification tasks.
We thus employed three evaluation metrics (R, NRMSE, and

AUC) and performed statistical comparisons against a baseline
model. This approach, along with the patient matching, mitigated
the possibility of obtaining trivial results.

Preliminary analysis. Prior to performing the aforementioned
model development and evaluation, we developed the linear
regression models using the data from all 50 AAA and 50 control
patients for 100 different realizations of the Gaussian white noise
model of the reference maximal aortic diameters for the control
patients. We found that the selected features for the carotid
+femoral and carotid feature models were the same for 94 and
100 of the realizations and that the coefficients of the models
with the common input features had a coefficient of variation of
only <5%. Due to this consistency, we then performed the
aforementioned model development and evaluation for one
realization of the Gaussian white noise to conveniently present
representative results.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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