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A digital physician peer to automatically detect erroneous
prescriptions in radiotherapy
Qiongge Li 1,2,3✉, Jean Wright1, Russell Hales1, Ranh Voong1 and Todd McNutt1

Appropriate dosing of radiation is crucial to patient safety in radiotherapy. Current quality assurance depends heavily on a
physician peer-review process, which includes a review of the treatment plan’s dose and fractionation. Potentially, physicians may
not identify errors during this manual peer review due to time constraints and caseload. A novel prescription anomaly detection
algorithm is designed that utilizes historical data from the past to predict anomalous cases. Such a tool can serve as an electronic
peer who will assist the peer-review process providing extra safety to the patients. In our primary model, we create two dissimilarity
metrics, R and F. R defining how far a new patient’s prescription is from historical prescriptions. F represents how far away a
patient’s feature set is from that of the group with an identical or similar prescription. We flag prescription if either metric is greater
than specific optimized cut-off values. We use thoracic cancer patients (n= 2504) as an example and extracted seven features. Our
testing set f1 score is between 73%-94% for different treatment technique groups. We also independently validate our results by
conducting a mock peer review with three thoracic specialists. Our model has a lower type II error rate compared to the manual
peer-review by physicians.
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INTRODUCTION
Radiotherapy (RT) is a complex process that requires careful
quality assurance to ensure safe treatment delivery. One common
safety concern is with errant or uncommon prescriptions
inadvertently being administered: excessively irradiating the
patient can lead to injury or death. Meanwhile, under-irradiating
may fail to mitigate cancer. Even though such events are rare, the
impact of missing such errors could be catastrophic, and minor
deviations result in sub-optimal treatment.
Peer review (PR) chart rounds are a significant component of

the current quality assurance program in radiation oncology
departments. PR chart rounds are a requirement of the American
Society for Radiation Oncology, American College of Radiology,
and the American Association of Physicists in Medicine1. However,
a recent study2 highlighted that PR is not a perfect system,
especially when it is conducted late in the patient care life-cycle,
and that there remains room for improvement. In a study
intended to evaluate the effectiveness of the PR process3,
erroneous prescriptions and other anomalous cases were inserted
into weekly rounds over nine weeks. Only 67% of these
anomalous prescriptions were detected by the physicians. Our
goal is to present a data-driven algorithm to assist physicians by
detecting anomalies automatically, which could potentially
improve the patients’ safety.
There is an increasing trend to study how machine learning

(ML) tools can be used to augment medical professionals’
decisions concerning diagnosis, treatment safety, and quality of
patient care4–10. Several pharmaceutical studies11–15 have applied
ML to find anomalous prescriptions but not tailored to RT. In RT,
several studies16–19 have used ML to look at the treatment
parameters to detect errors in treatment plans, but did not focus
on prescription error detection.

This work presents a multi-layer prescription anomaly detection
tool that creates an automated, historical data-driven checkpoint
to assist in PR. The tool’s core utilizes a ‘distance model’, which
defines distance metrics between a new patient’s features and
prescriptions and those in a historical database. Prescription
elements are the dose per fraction and the number of fractions
prescribed to the target volume. Besides prescription features,
there are other features such as diagnosis code, age at treatment,
disease stage, treatment intent. Using a logical rule-based
approach, the model will flag the new patient’s prescription as
anomalous if the distances fall outside certain optimized thresh-
olds within a subgroup of similar patients.

RESULTS
Distance model results
Here, we provide illustrative results from running the distance
model. In Supplementary Figure 3, we plotted the histograms of
prescription and feature distances from the historical database.
We can see that the prescription distances of zero or 0.2 are
particularly common, which reflects the fact that many patients in
the dataset have the same or similar prescriptions. The feature
distances are more varied, and display characteristic spikes
associated with the categorical differences (see Supplementary
Figure 3 caption for further explanation).
As discussed in the Methods, there are several ways in which we

synthesized anomalies. We present all results in Table 1. The S
column refers to the number of records in the historical database,
a,b are the parameters multiplying θ and τ respectively, and μ ¼ m

S
and ν ¼ n

S are the parameters m and n expressed as percentages
of S. sa refers to the number of anomalies in the training or test
set, whereas sn refers to the number of normal holdout historical
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samples in the training or test set. Note that the holdout set sn is
not used to compute θ or τ.
For in-sample, the f1 score was computed by averaging over 50

trials of random samples of the not-anomaly holdout set sn. We
found f1 scores of 0.98 for 3D, 0.89 for IMRT, and 0.98 for SBRT,
where the error bars run between 2–5%. For the feature switching
generated SAs, we found f1 scores of 0.84 for 3D, 0.84 for IMRT,
and 0.90 for SBRT with similar error bars, as shown in Table 1.
Next, we ran the model on a training set combining both

prescription-switched and feature-switched SAs. We found that
the resulting f1 scores for the combined training set lie in between
the scores for the training sets where each type of anomaly was
considered separately. This makes sense intuitively. We report the
results and parameters in Table 1. Because the standard deviation
is small, we choose any run as our final parameters. Note that τ or
θ varies slightly because of the different historical holdout
samples.
Out-of-sample results are obtained by running the distance

model with the same parameters that were found during
optimization over the training set, on the new unseen test set.
E.g., in the test set, both the normal ‘non-anomalous’ test records
and the anomalous test records are previously unknown to the
distance model.
We used a separate, recent data set (01/01/2021 - 07/14/2021)

to select samples for our out-of-sample testing nonanomalous
class data. We used all of the samples during this time period for
the 3D and SBRT, each containing ten samples. We selected 10 of
the most typical cases out of the 24 IMRT samples from this time
period as our testing normal class. For the out-sample case, the
historical data set (from 01/01/2006 - 12/31/2021) is still an
important input into the model, however, no samples are drawn
from it for prediction. We then created a new set of SAs for each
technique using several construction methods and verified the
anomalous class status by looking at the conditional feature
distribution after switching/changing features.
We report the out-of-sample distance model results in Table 1.

We can see that comparing the out-of-sample performance to the

in-sample, the out-of-sample is worse for IMRT and SBRT but
better for 3D.
A beneficial feature of the distance model is that not only do

we get the model prediction for each of the test records, but we
also get an explanation of why each prediction was made. By
looking at the values of R, F, tF and tRx we can immediately see
the reason why a sample was flagged or not flagged, as shown
for example in Table 2, where each row represents a testing
patient.
The ‘Truth’ column refers to whether the data point is actually

an anomaly or not (1 indicates anomaly; 0 indicates normal). The
‘Pred’ column is the prediction by the model, where again 1
indicates anomaly and 0 indicates not. The first row was predicted
by the model to be a ‘type II’ anomaly, which means the feature
distance is large for this patient compared to the historical
database (the new patient’s feature sets do not match well with
the population who received the same prescription in the past). R
is 0, which is below the cut off tRx but F is larger than the cut off
value tF. R is zero because this prescription has been seen in the
historical database (The ‘Counts’ column indicates it has been
seen 417 times previously). Observation of historical distributions
shows that the energy 10fff was never previously used for the
prescription 4 fx x 1200 cGy, and this prescription was never used
to treat an esophagus diagnosis either. This, again, shows that
being a “common” prescription cannot promise being “normal” or
not an error.
The second row is a normal patient in the database where the

feature sets match well with the historical record. Therefore R and
F are both smaller than cut-off values. In the third row, we show a
switching anomaly, the original prescription was 5 fx x 400 cGy,
but we switched it to 4 fx x 500 cGy. This leads to a large
prescription distance R, making the model predict it as prescrip-
tion anomaly (‘type I’). This is consistent because 4 fx x 500 cGy
almost never appears in the historical database (Counts = 1). This
again, shows that our model has the ability to not only predict
anomalies but also to explain each prediction.

Table 1. Parameters and model performance scores.

Technique a b ν μ τ θ f1 sn sa S

Rx switched SAs 3D 0.449 1.632 0.012 0.018 0.581 0.206 0.98 ± 0.03 20 10 509

IMRT 0.265 0.979 0.025 0.014 0.543 0.261 0.89 ± 0.01 20 10 1153

SBRT 1.631 1.838 0.047 0.014 0.501 0.142 0.98 ± 0.03 20 10 704

Feature switched SAs 3D 0.056 0.797 0.021 0.019 0.581 0.206 0.84 ± 0.02 20 20 509

IMRT 0.286 0.802 0.023 0.038 0.543 0.261 0.84 ± 0.01 20 20 1153

SBRT 0.307 0.584 0.017 0.029 0.501 0.142 0.90 ± 0.03 20 20 704

In-sample (both types of SAs) 3D 0.010 0.717 0.010 0.037 0.581 0.206 0.84 ± 0.01 30 30 499

IMRT 1.401 0.805 0.025 0.014 0.543 0.261 0.86 ± 0.01 30 30 1143

SBRT 1.926 0.465 0.01 0.075 0.501 0.142 0.91 ± 0.03 30 30 694

Out-of-sample (both types of SAs) 3D 0.010 0.717 0.010 0.037 0.580 0.200 0.941 10 8 529

IMRT 1.401 0.805 0.025 0.014 0.544 0.273 0.727 10 10 1173

SBRT 1.926 0.465 0.010 0.075 0.503 0.141 0.875 10 7 724

Table 2. Prediction examples.

Fx Dose/Fx(cGy) Tech Energy(MeV) Intent ICD10 ICDO Age Truth Pred Type R tRx F tf Counts

4 1200 SBRT 10fff palliative C15.6 87203 49 1 1 2 0.00 0.27 0.56 0.23 417

4 1200 SBRT 6fff curative C34.12 61 0 0 0.00 0.27 0.21 0.23 417

4 500 3D mixed photon C34.90 80463 76 1 1 1 0.13 0.00 1
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Mock peer review (PR) results
In order to independently validate our results, we conducted a
mock PR. Three radiation oncologists with more than ten years of
experience treating thoracic patients were each asked to
independently label a sample dataset containing 17 anomalies
and 30 normals (a subset randomly selected from out-of-sample
testing data). The results of the physicians, side-by-side with the
model results, are shown in Fig. 1a). The performance was
evaluated by calculating precision, recall, f1 and accuracy.
Additionally, confusion matrices for the physicians (MDs) and
the model are shown in Fig. 1b) which gives a breakdown of the
different type I and type II errors made by each physician and the
model. We can see that the model slightly outperformed each
physician at the individual level. In Supplementary Table 6, we
show some specific examples of cases and how the MDs
performed compared to the distance model.

Time analysis
To get a sense of the time and effort spent by each physician on
the mock PR, we asked each physician to note the time spent on
the review. MD2 spent 18 min identifying the errors and 12 min
writing out the rationale. MD1 spent a total of 11 min both
identifying the errors and writing out the rationale for their
decisions. The model running time for a single testing sample is
about 1s and the model training time is several days. However,
one only needs to train the model once for a given historical
database (until there is a major update of new historical data). The
training time is proportional to the number of evaluation points in
the grid space, the number of runs to average the f1 score and the
number of data samples.

Model’s performance vs. physician group’s performance
In the PR, physicians can discuss each case and combine their
knowledge to form a consensus about the correctness of a
prescription for each case under review. Thus, besides comparing
our model’s performance against each physician individually, we
also compare it with the group consensus. We consider a best and
worst-case scenario from joining MDs. In the best case, the
consensus is correct if any MD was correct; in the worst case, the
PR selects an incorrect decision if any MD was wrong. We would
expect actual performance of PR in the real clinical setting would
lie in between.
The results of such a worst and best-case scenario are displayed

in Fig. 2 as well as the overlap diagrams of agreement for each
individual MDs. Note that the numbers in the Venn diagrams do
not distinguish between anomalous or non-anomalous class. Any
overlap regions with the ground truth set correspond to correct
decisions, any decisions outside the ground truth set correspond
to incorrect decisions. We can see that, in the worst case, as shown
in panel c), the model outperformed the consensus by missing 9
cases rather than 24 cases by the consensus.
However, the real question is whether the model is still better

than the best-case consensus, as shown in panel b)? The answer is
no. The model missed 9 cases, while the best-case consensus
missed 5 cases. Our model’s performance is in between the best
and worst scenario, but closer to the former. The overlapping
regions/agreements indicates that the model independently
agreed with physician’s knowledge.
We should not interpret these results to suggest that the model

under-performed or out-performed the MDs in the mock PR.
Instead, we suggest that the model be considered an additional
“digital peer reviewer” to complement the MDs. Under these
circumstances, the distance model has promise as a validation tool
to check for prescription errors since the model caught anomalies
that the physicians overlooked.

DISCUSSION
It is important to note that while the intent of the model is to
detect erroneous prescriptions, there will, nevertheless, be cases
where the flagged prescription is rare but not erroneous. Such
instances are false positives (wrongly flagged) by the model.
However, it makes sense to flag prescriptions that are rare, as well
as prescriptions that are erroneous, as both cases warrant further
scrutiny from the peer review team.
An important underlying working assumption of our model is

that our final historical database that is fed into the distance-
model component is error-free. In the Methods, we described how
we manually inspected the historical database and attempted to
clean it of anomalies. Even with this step taken, the assumption
may not hold exactly true and whatever erroneous data points
that lie undetected in our historical database will cause some error
rate in our model. The averaging parameters m, n were introduced
into the model for this very reason in order to reduce the
potentially harmful effects of a single error in the historical
database.
Therapeutic radiation oncology is a fast-evolving field where the

clinical practice were influenced by the practice guidelines and
protocols. This is one of our motivations for choosing a data-
driven approach because we can evolve the models with the data
instead of having to constantly keep up with standard-of-care
protocols. We fully appreciate the changes in practice over time
and have published on it before20. The anomaly detection is a
learning tool that highlights aberrant patterns. When new
techniques and combinations are added to clinical practice, we
anticipate a transient increase in detection associated with these
changes. These false-positive detection results are significant
because the patients treated at the time of an evolving standard
of care may need extra caution taken in treatment plan review. As
the clinical team takes additional time for judgment on these
‘detected’ cases, the tool is self-learning such that over time, the
progressive changes will blend into clinical practice, no longer be
anomalies in our data. Consequently, the tool will self-correct over
time to keep pace with evolving standards of practice.
For example, as shown in Supplementary Figure 4, our data

shows there is trend of adapting hypofractionations (300 cGy, 350
cGy and 400 cGy in 15 fractions) in treating lung cancer patients
since year of 2016. This evidenced that our data is reflecting the
influencing study published in September 201521. If we were using
this tool in 2016, these new prescriptions would initially be
flagged first and thereby generate discussion (appropriately), and
then, as they become more common, they would eventually not
be flagged any more.
However, while the data-driven aspect may be useful in some

cases, it would be naive to think that we can allow the model to
be generally indifferent to secular (time) trends in RT prescription
guidelines. It might be the case that a prescription (treatment
guideline) was very popular in the past but has become outdated
by today’s standards. This could lead our model to fail to reach the
right decision. For this reason, we conducted an analysis to
systematically search for secular trends in the historical database,
checking every prescription. The results of this analysis are
presented in Supplementary Notes. We find that for our dataset,
several prescriptions display statistically significant time trend
behavior and propose a methodology for including this informa-
tion into our pipeline to correct our predictions in the presence of
secular trends.
In machine learning binary classification, a common problem is

that there are far more instances of the majority class than the
minority class in the training set (anomaly detection is the prime
example of this). Consequently, the model training tends to ignore
the minority class unless the model complexity is allowed to grow
into the high variance region. One of the advantages of the
distance model compared to a supervised learning (SL) model is

Q. Li et al.
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Fig. 1 Performance. a Performance (macro average of metrics) of physicians vs. model. The blue, green and orange bar indicates each
physician’s performance and the yellow bar is the model performance. We can see that the model’s precision, recall, f1 and accuracy scores are
all compatible with the physicians suggesting that the model can serve a role as a digital peer. b Confusion matrix. The model has the lowest
false-negative rate, suggesting that the model is more conservative than all the physicians, in deciding whether a case should be considered
an anomaly.
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that it does not present any problem with class imbalance. This is
because the distance model is not a SL model in the traditional
sense and instead relies on distances between historical data and
the test set to define outcomes. When comparing the model’s
performance versus the physician’s performance we note that
even with the same level of performance, the model is still
valuable because it is a fully automated process that does not
require valuable physician time and provides an additional
safety check.
Rajkomar et al. 4 mentioned that rule model-based methods are

preferred over traditional machine learning algorithms when the
problem is relatively straightforward with limited but informative
variables – this is our case. With respect to traditional supervised
and unsupervised learning methods, it is possible that similar
results could be constructed with existing anomaly detection
techniques such as isolation forest, local outlier factor or some
adaptation of k-means. However, it is unclear how to separate the
prescription features from the diagnostic/other features, as
discussed in the Introduction.
Recent work in the field of patient similarity learning (PSL) has

introduced a number of novel methodologies to stratify patients
into sub-groups22. Of particular relevance to radiotherapy are the
strategies that integrate clinical data with imaging data. With
cancer as the underlying clinical domain, genetic data is also
relevant to the patient similarity metric if it can be included. Any
similarity metric can be used for anomaly detection by looking for
large values of the metric or patients that belong to certain sub-
groups.
For example, Li et al.23 developed a network topology-based

method to define sub-groups of similar patients with type II
diabetes. This is a general method that can be used with any

dataset that has electronic medical records and genotyping single
nucleotide variations. In reference24, a similarity metric was
developed based on RT image data, it would be interesting to
see if we can integrate our image data into our pipeline with a
similar system. There are also a number of visualization software
such the ICM25, which allows for clustering and visualization of
high-dimensional biomedical data. Such a tool could be used to
visually identify anomalies outside clusters, which is an interesting
alternative anomaly detection method.
These methods can be applied to our problem of anomaly

detection to better define patient sub-groups and optimal
treatment patterns. We would need to expand our data types to
include imaging or genetic data alongside the clinical features.
Finding the right level of granularity in sub-grouping patients is a
challenge22. In our study we made no attempt to sub-group
patients and treated them all at the same level (though we do
introduce the m-closest and n-closest subset of most similar
historical patients using our straightforward metrics). More
common approaches to patient stratification in PSL include k-
means or hierarchical clustering as well as PCA for dimensionality
reduction to try to simplify the features for sub-grouping.
Including k-means, for example, as an intermediate grouping
step in our pipeline may improve the overall ability of the pipeline
to identify appropriate/anomalous treatment prescriptions.
Another alternative method in this context26 calculates the

conditional probability of the prescription conditioned on the
features and threshold for the rarity. We could have expanded this
idea by calculating every conditional probability of the features on
the prescription, or features on other features and threshold for
rarity for the same prescription. However, a major drawback of this
approach is that it involves many condition-by-condition checking

Fig. 2 Overlap of agreement between MDs, the model and the ground truth. Panel a shows the overlap of agreement between the three
MDs on decisions of whether to flag or not to flag a particular case. Panel b shows the best-case scenario from the PR and c shows the worst-
case scenario.
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of histograms. In contrast, our approach is simpler where we save
effort in avoiding checking case-by-case.
However, we are limited by the number of informative features

that we can build and the available data. Lack of features limits
our ability to make predictions, and lack of data increases the
variance in whatever predictions we can make.
To increase the number of features, Natural Language Proces-

sing (NLP) would be needed to encode the physician’s notes into a
vector, which we can calculate pairwise distances over. More data
could be obtained by merging datasets with other institutions.
Another major limitation is the difficulty of constructing or

obtaining anomaly data. It is challenging to make realistic
anomalies because they are rare and unexpected by their nature,
so creating a set of anomalies that fully samples the space of
possibilities is a significant challenge. It would be helpful to have
more anomalous data for validation. The relatively small number
of anomalies limits the scope of our findings.
In summary, we have provided a proof-of-concept for an

anomaly detection pipeline for prescription in radiotherapy. Our
results show that the distance model and connected pipeline can
predict with good accuracy for anomalies that are constructed as
described in the Methods. The model showed promise and was
evaluated favorably in the mock clinical setting where its
predictions agreed independently with physicians’ knowledge
and, in some cases, out-performed the physicians. Our approach
has focused on a custom decision tree rule-based anomaly
detection logic that creates its own definitions of "dissimilarity”
between historical patient data. These dissimilarities are incorpo-
rated into a pipeline with novel decision tree logic that is a
potentially useful and novel approach to prescription anomaly
detection in the RT setting.

METHODS
Data description
Our radiation oncology-specific electronic medical record contains
14 years of cancer patients’ radiotherapy treatment records (10/
07/2007- 07/13/2021). This comprises 63768 individual treatment
prescriptions delivered to patients treated in the radiation
oncology department of Johns Hopkins over the time span. We
queried the thoracic subset of the data, excluding patients from
other disease sites (prostate, brain etc.) so that our raw data
contains 4951 de-identified treatment records. The initial data
contained 32 fields (columns) for each record as seen in
Supplementary Table 1. However, not all columns represent
informative features. We extracted information related to patients’
treatment, including patient’s age at treatment, diagnosis code,
morphology code, treatment intent, techniques, energy, anatomic
site, tumor stages and biomarkers. Prescription data includes the
number of fractions, dose per fraction, total dose, and accumu-
lated total dose. The Institutional Review Board of Johns Hopkins
University Hospital approved this.

Preprocessing, feature engineering
Firstly, the raw data was split by technique. There were not
enough samples to build models for the following treatment
techniques: Intensity-modulated proton therapy (IMPT), Two-
dimensional basic radiotherapy (2D), and Brachytherapy (Brachy),
that we ruled out these techniques from our subsequent analysis.
The techniques kept for later analysis are Three-dimensional
conformal radiotherapy (3D), IMRT, and Stereotactic body radio-
therapy (SBRT).
Many feature engineering steps were required to transform the

columns of the data into a standardized form. Search and replace
functions over the string features were implemented to collapse
many alternate spellings of words into a single identifier. For
example, for treatment technique, if we ignore the subtle

differences, ‘rao/lpo’,‘5 field conformal’, ‘opposed laterals’, and
‘ap/pa’ can all be classified as ‘3d’. Similarly, ‘imrt ig’, ‘imrt ig abc’,
‘igvmat’, ‘imrt vmat ig abc’, ‘imrt tomo ig’, ‘tomotherapy’ were all
be classified as ‘imrt’ and ‘sbrt vmat ig’,‘igsbrt’, ‘sbrt ig’ were all
categorized as ‘sbrt’. In other cases irrelevant features needed to
be removed. For example, Gleason scores were helpful for
prostate cancer but irrelevant to the thoracic cancer.
In Supplementary Table 2, we listed the diagnosis codes for our

model and confirmed the completeness and appropriateness of
this list for the model. Our current tool only included thoracic
patients whose primary tumor site is the lung, heart, or
esophagus. We searched for re-plans and cone-down plans with
their initials by finding the mismatch between the total and
accumulated doses. Because they are only 2.6% of the total data
points, and in order to simplify our analysis, we eliminated these
patients’ re-plan treatment along with their initial treatment. We
also eliminated the cone-down plan records for the same reason.
We decided to remove certain subsets of data points that were

unrelated to actual patient data. For example, a number of fake
patients used by medical physicists for calibration procedures
exist in the database. For example, records with name fields such
as “JOHN DOE” with zero total dose are not uncommon. Such
records clearly are noise and are not the interesting data points for
our model.
Finally, after cleaning the database of these pre-processing

anomalies (see Supplementary Notes for a further discussion of
these cases), we acquired 2504 rows of records for the thoracic
group. Supplementary Figure 1 is a consort diagram that tracks
the number of patients at each pre-processing and filtering step
starting from the raw data and ending with the final input cases to
the model described in the Distance model Section. Supplemen-
tary Table 4 shows a sample post-processed feature-set for a
single patient.

Model pipeline
The essential idea of the model is to compare the new patient’s
prescriptions and other features to those in a historical database
and to flag any suspicious patterns because they have not been
previously seen or are rare. We can more precisely define the word
“rare” in two ways. In the first case, the observation of the
marginal empirical distribution of prescription over the entire
filtered historical database of patient prescriptions provides a
probability (or frequency) that each prescription has occurred
without paying respect to any other patient features. In the
second case, a prescription may not be “rare” in the marginal
sense, however, perhaps the prescription never occurs for patients
with a particular feature. For example, a certain prescription may
be commonly used when the treatment intent is curative, but
never (or rarely) used when the treatment intent is palliative. Thus
we have two senses of the word rare, in one case the marginal,
and the other, conditioned on other patients’ features.
It should be noted that the idea of the distance model is to

avoid working with empirical histograms to the extent possible.
Nevertheless, dissimilarity as defined by our metrics below,
corresponds to rarity (low probability events in the empirical
distributions). That correspondence would be difficult to make
exact, formally, however, it is generally the case that the higher
the value of the dissimilarity metric, the more rare the new
patient’s feature set is; where the word rare is defined with respect
to marginal or conditional prescription frequencies as
described above.
Underlying this process is the working assumption that the

historical database is error-free. The validity of this assumption is
addressed in the Supplementary Notes as well as in the
Discussion.
In Fig. 3 we can see the architecture of the model. The historical

data and the new patient’s are first processed as described in the
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previous section. Next, we explain the ‘distance model’ compo-
nent of the pipeline and under what circumstances the new
patient’s prescription will be flagged as a potential anomaly.

Type I and type II anomalies
In accordance with our definition of “rare” prescription above, the
distance model is designed to detect two different types of
prescription anomalies. In what we call type I anomalies, the
prescription itself is atypical from the historical records. In type II
anomalies, the prescription is not uncommon in the historical
database, however, there is a mismatch between the prescription
and the patients’ other diagnostic features. Below we give some
illustrative examples of type I and II anomalies from real clinical
practice.

● A physician prescribed 5 fx × 400 cGy 3DCRT treatment for a
76-year-old Malignant neoplasm of unspecified lung patient.
However, when a resident planned the case under super-
vision, 4 fx × 500 cGy were used. The supervising dosimetrist
did not catch the error, but the physician caught the error at
the time of approving the prescription. The total dose was
2000cGy in both cases, making it harder to detect the error.
However, the BED was 30Gy and 20 Gy, respectively, which
would cause very different radiation responses. From the
historical analysis, we know that 5 fx × 400 cGy is a popular
prescription that appears 98 times in the historical database,
but 4 fx × 500 cGy never happened in history. The case is a
type I anomaly, where the prescription itself has not been
seen before historically.

● WBRT is generally given for patients with multiple brain mets
at a dose of 300 cGy in 10 fractions. However, WBRT is also
offered to a subset of patients with small-cell lung cancer to
reduce the probability of spread of tumor to the brain (This is
called PCI). The actual RT field is identical, but the dose is
slightly different. For the PCI indication, the dose is 250 cGy ×
10 fractions. It can be easy to inadvertently prescribe 300 cGy
× 10 fractions for the PCI indication. From the review
perspective, the plans are identical and the site name for
both is WBRT. This is an example of a type II anomaly.

● Esophageal cancer can be treated with a prescription of 180
cGy × 25 fractions delivered once daily to 4500 cGy. Small cell
lung cancer is usually treated with 150 cGy × 30 fractions
delivered twice daily to a total dose of 4500 cGy. An accidental
prescription of 180 cGy × 25 fractions (BID) to 45 Gy for a small
cell lung cancer patient has occurred at least once in clinical
practice. According to testimony from a radiation oncologist, it
was not easily caught because 180 cGy and 4500 cGy are seen
so often, even though it was incorrect. It was caught midway

through treatment when the patient was having more toxicity
than expected (probability because they were receiving a
higher dose per fractions for a BID treatment than they should
have been). This is an example of a common prescription
being mixed into an incorrect group of patients or a type II
anomaly.

These examples serve to illustrate the types of things that can
go wrong in clinical practice and are the target of the tool. Note
that the example cases above come from testimony (the clinical
experience) of physicians, not from an analysis of prescriptions in
the historical database. For a discussion of the possibility of
anomalies in the historical database and how it relates to our
model and pipeline, please see Supplementary Notes.

The distance model
The model defines a logical system that will flag the new patient if
its ‘distance’ from other patients in the historical database or
specific groups of patients in the historical database is too large. In
order to compare the new patient’s prescription and other
features with patients in the historical database, we need to define
some pairwise and group-level dissimilarity metrics. For this
reason, we have defined two such distance metrics: a prescription
distance to indicate the distance in the prescription parameters,
and a feature distance to indicate the distance within the
remaining features included in the model.
The pairwise prescription distance, ρRx(i, j) between the new

patient, i, to any historical patient, j, in the database, is simply the
Euclidean distance of the scaled prescription features,

ρRxði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðef i �ef
jÞ
2
þ ðedi � ed

jÞ
2

r

(1)

where ef and ed is the min-max scaled fractions f and dose per
fraction d.
The pairwise feature distance, gF(i, j), between the new patient, i,

and any historical patient, j, in the database, is the Gower distance
calculated overall features that are NOT prescription-related. The
Gower distance27 provides a simple way of computing dissim-
ilarity when mixed numerical and categorical features are present.
Numerical features contribute based on the absolute value of the
difference divided by the range. In contrast, the dissimilarity is one
for categorical features if they are different and zero if they are the
same. Each feature in the Gower distance is given equal weight so
that the Gower metric has a range on the interval [0,1].
In addition to pairwise dissimilarity metrics, we also define the

"closest-m group distance” of the new patient i, R(i), defined as the
average of the m shortest prescription distances between patient i
and patient’s j in the historical data.

Rði;mÞ ¼ 1
m

X

j2m�closest

ρRxði; jÞ (2)

Similarly, we also define a “closest-n group distance”, F(i), for all
non-prescription-related features that apply the same formula but
summing over n pairwise Gower distances between the new
patient, i and patients, k, in the historical database. We restrict the
sum to patients k who have either the same prescription as patient
i or who have minimal prescription distance to patient i. For
example, if n= 10 and there are 12 patients with the same
prescription as patient i in the historical, we select the lowest 10
Gower distances from this group of 12. If n= 20, then first we
would include all 12 terms ρRx(i, k)= 0 in the sum to compute F
and then sort over the next closest prescription distance to find
remaining terms similarly. We choose this metric because we
expect features to be more similar when compared to others with

Fig. 3 Model schematic. The flow of data through the pipeline is
illustrated as well as the different pipeline components and the
different places where flagging or warnings may occur.
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the same (or similar) prescription.

Fði; nÞ ¼ 1
n

P

k2n�closest
gFði; kÞ

where n terms determined by sorting by ρRxði; jÞ then by gFði; kÞ
(3)

In order to define thresholds that will define our cutoff for
flagging, it is helpful to calculate some characteristic values of
pairwise distances in the historical dataset. In this way, we can
precisely define what we mean when we say two patients’
features are similar or dissimilar. We can say they are dissimilar if
their feature distance is much larger than the average historical
pairwise distances for two patients with the same prescription. We
compute the mean pairwise prescription distance and the mean
pairwise feature distance over all pairs of patients in the historical
database to get a typical distance, θ and τ, defined by

θ ¼ 1
SðS� 1Þ

X

j;k

ρRxðj; kÞ (4)

τ ¼ 1
SðS� 1Þ

X

j;k

gFðj; kÞ (5)

where S is the number of patients in the historical database and,
again, ρRx(j, k), gF(j, k) are distances between a pair of historical
patients j and k.
Then, we pattern the thresholds as percentages of these

characteristic values as follows:

tRx ¼ aθ (6)

where a is a model parameter to be determined by optimization. If
R > tRx then we flag it as an anomaly (type I).
Similarly, we define the feature threshold as a ratio of some

characteristic values such as

tF ¼ bτ (7)

where b is a model parameter. If F > tF then we flag as anomaly
(type II).
In Fig. 4, two different feature anomaly scenarios are depicted in

a purely illustrative 3D feature space. In both cases, anomalies can
be detected if far away from the n-group centroids belonging to
their prescription. Note that in the diagram, the n-group centroids
are determined by the data points on the surface of the
prescription cluster closest to each anomaly data point. In Fig. 4,
panel a), the anomalies are isolated in the feature space, whereas
in Fig. 4, panel b) a single anomaly is mismatched into an incorrect
prescription sector of the feature space.

The logic of the model is depicted in the decision tree shown in
Fig. 5. The first step is to compute the closest-m prescription
group distance, R(m), and flag if it is larger than some threshold
tRx. If R is too large, then the new patient’s prescription is too
dissimilar when considering other prescriptions in the historical
database. If R < tRx then we compute the closest-n group feature
distance considering only patients with the same prescription as
patient i in the F calculation. A warning is given if there are no n
patients in the historical database with the same prescription as
the new patient, i. If F is more than some threshold tF, we flag the
new patient for the mismatch between the prescription and their
other features, at least for the data in the historical database. The
model was implemented in python.

Model training
We have four parameters in this model: m, n, a, b. In order to scale
with the size of the historical dataset, the parameters m, n, are re-
expressed as percentages of the historical training set size. Thus
m= μS, where S is the number of samples in the historical
database per technique after subtracting a holdout set, and μ is
the parameter we use for hyper optimization. Similarly, we define
n= νS and optimize of over the percentage ν. Thus our final set of
parameters for optimization are μ, ν, a and b.

Fig. 4 Illustration of different anomalous cases the model is designed to catch. In a, we show two feature anomalies that are far from the
average. In b a case with prescription A is mismatched within the feature sector of prescription B.

Fig. 5 Model architecture. We use dissimilarity metrics R and F to
flag incoming new patient. If prescription is uncommon (R is greater
than tRx), we flag it as blue. Otherwise, we compute feature distance
F, if it is greater than cut off tF, we flag it as red indicates that feature
mismatches with its prescription. We can also give warnings
as shown.
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We used a parameter space search (grid-search) optimization to
determine these parameters. The objective function for optimiza-
tion was taken as the f1 score (f1 ¼ tp

tpþ1
2ðtpþf nÞ; tp is true-positives

and fn is false-negatives) over a training set that includes 10-30
simulated anomalies (SAs) and a similar number of non-
anomalous patients. Thus, the training set consists of SAs and
holdout data from the historical database so that we have both
positive (anomaly) and negative (not anomaly) classes in the
test set.
Optimization through parameter space search was implemen-

ted with python hyperopt module28. Hyperopt uses the tree
Parzen Estimator (TPE) to search the parameter space efficiently.
Search intervals were defined based on the characteristic values θ
and τ for parameters a and b. Search intervals for the percentages
μ and ν were constrained to be between 0 and 0.1, which confines
the m, n-group dissimilarity metrics to 10% of the historical
database or lower for calculations of F and R. The number of
evaluations was set to 100 per each space search of the detection
algorithm.
In order to reduce variance in the normal (not-anomaly) class, we

averaged the results over random samplings of the non-anomalous
holdout historical records. During this averaging, the anomaly class
data points remained constant because we had a limited number of
simulated anomalies available for training. This process was
demonstrated in Supplementary Figure 2. For easy navigation, we
provide a notation summary in Supplementary Table 5.

Synthesization of anomalies based on distribution
Creation of the anomalies is a time-consuming task that requires
careful examination of the historical database and identification of
non-previously-occurring patterns between prescription and other
features. We will illustrate the construction with some examples
below. The main idea is to change the prescription of an existing
record, or to change the other features of an existing record, in a
way that creates a data point that is not typical of historical
prescription-feature patterns. In this way we create a mismatch
between the prescription and the other features. This mismatch is
verified by observing conditional distributions of features based
on the given prescription for each case. Thus we carefully check
that the anomalies constructed are rare based on the historical
conditional distributions.
We must construct simulated anomalies that would be similar

to those that could occur in the actual setting. We can obtain the
correct parameters to generalize the model’s application to
the real world by carefully designing the anomalies. We expect
to tune the model parameters to catch each of the simulated
anomalies and flag them.
Simulated anomalies were generated by switching the leading

digit in the fractions with the leading digit in the dose per

fraction or by varying several feature values randomly so that the
resulting features do not match the prescription. In Table 3, we
show four examples, marked A - D, where the original record is
placed above its anomalous mutated form. In example A, we
switched the fractions (Fx) and dose per fraction (Dose/Fx) from
5 fx x 400 cGy to 4 fx x 500 cGy. 5 fx x 400 cGy is a common
prescription in 3D thoracic treatment, having occurred 50 times
in the historical database but not 4 fx x 500 cGy, which occurred
only once.
The simulated anomalies were created in B and C by

modifying other features and leaving the original prescription
intact. For example, we changed the treatment intent from
curative to palliative in case B and the age from 91 to 10. The
prescription 5 fx x 1000 cGy occurred 185 times in SBRT thoracic
treatment but never occurred with palliative intent. Also, this
prescription was never used in a pediatric patient (age under 21).
Thus we varied the features in a way that created a mismatch
between prescription and diagnostic features. In C, we mutated
the diagnostic code from C34.30 to C15.9. Compared with the
historical records, this prescription never treated the esophagus
(which has a diagnostic code in the C15 series) and only was
used to treat the lungs (C34 series). Also, we mutated the energy
from 6 MeV to 10 MeV, which never occurred for this
prescription.
In the last example, D, we simulated an anomaly by switching

the technique label from 3D to IMRT so that effectively all the
features are mismatched. 10 fx x 300 cGy is a common
prescription in both 3D and IMRT. The feature sets are pretty
distinct because in 3D, the energy that comes with this
prescription is usually 15 MeV, but 15 MeV rarely occurs in
historical IMRT cases.
It should be noted that this approach to simulating anomalies is

purely data-driven and based on deviations from past historical
patterns. The anomaly creation process was done by authors with
no clinical information (MDs were excluded from this process).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Data is not available due to ethical/legal restrictions by the current IRB.

CODE AVAILABILITY
Our code is available for public here: https://github.com/qli622/Rx_anomaly_detection.git.

Received: 5 December 2021; Accepted: 7 October 2022;

Table 3. Simulated anomaly examples.

Example Fx Dose/Fx (cGy) Age at Tx Technique Energy (MeV) Intent ICD10 code Morphology code

A orig 5 400 76 3D mixed photon – C34.90 80463

mutate 4 500 76 3D mixed photon – C34.90 80463

B orig 5 1000 91 SBRT 6fff curative R91.1 –

mutate 5 1000 10 SBRT 6fff palliative R91.1 –

C orig 4 1200 49 SBRT 6 palliative C34.30 87203

mutate 4 1200 49 SBRT 10 palliative C15.9 87203

D orig 10 300 74 3D 15 palliative C78.1 –

mutate 10 300 74 IMRT 15 palliative C78.1 –

– stands for missing values.
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