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Evaluation of physical health status beyond daily step count
using a wearable activity sensor
Zheng Xu 1,2, Nicole Zahradka1,2, Seyvonne Ip1,2, Amir Koneshloo 1,2, Ryan T. Roemmich3,4, Sameep Sehgal5,
Kristin B. Highland5 and Peter C. Searson 1,2,3,6,7✉

Physical health status defines an individual’s ability to perform normal activities of daily living and is usually assessed in clinical
settings by questionnaires and/or by validated tests, e.g. timed walk tests. These measurements have relatively low information
content and are usually limited in frequency. Wearable sensors, such as activity monitors, enable remote measurement of
parameters associated with physical activity but have not been widely explored beyond measurement of daily step count. Here we
report on results from a cohort of 22 individuals with Pulmonary Arterial Hypertension (PAH) who were provided with a Fitbit
activity monitor (Fitbit Charge HR®) between two clinic visits (18.4 ± 12.2 weeks). At each clinical visit, a maximum of 26
measurements were recorded (19 categorical and 7 continuous). From analysis of the minute-to-minute step rate and heart rate we
derive several metrics associated with physical activity and cardiovascular function. These metrics are used to identify subgroups
within the cohort and to compare to clinical parameters. Several Fitbit metrics are strongly correlated to continuous clinical
parameters. Using a thresholding approach, we show that many Fitbit metrics result in statistically significant differences in clinical
parameters between subgroups, including those associated with physical status, cardiovascular function, pulmonary function, as
well as biomarkers from blood tests. These results highlight the fact that daily step count is only one of many metrics that can be
derived from activity monitors.
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INTRODUCTION
Wearable activity sensors enable remote monitoring of an
individual’s physical activity, but have been largely limited to
assessment of average daily step count. Walking, or ambulating, is
a fundamental movement of daily life and has become an
important metric in promoting human health1. For example,
increasing daily step count (from <4000 to ≥12,000) is associated
with a decrease in all-cause mortality2,3. In hospitalized patients,
daily step count thresholds (typically < 1000 steps per day) have
been associated with poor outcomes, such as readmissions4–6.
Related ambulation parameters, such as gait speed7–9 and timed
walk tests10,11, have also been found to be predictive of clinically
relevant outcomes.
Historically, remote monitoring of an individual’s physical status

has been challenging, however, advances in wearable technology
have enabled continuous assessment following surgery, or
between clinic visits for patients with chronic diseases. Wearable
inertial measurement units (IMUs), such as Fitbit devices, record
step count along with other metrics derived from the IMU signals
(e.g. sleep) that can be viewed in the associated smart phone app.
In addition, many wearable devices, such as Fitbit, use photo-
plethysmography to measure heart rate.
Step count, and particularly daily step count, remains the most

common metric for remote assessment of physical activity,
however, minute-to-minute step count and heart rate data can
be downloaded from the Fitbit server using their application
programming interface (API). Therefore, for an individual who
wears a Fibit continuously, 10,080 values of step rate (units: steps
per minute, SPM) and heart rate (units: beats per minute, BPM) can

be obtained over one week, each point representing the average
value of step rate and heart rate for that minute. While the
accuracy of step count measurements in free-living settings and in
patient populations with atypical gait patterns remains a
concern12,13, studies in individuals with cancer, cardiovascular
disease, pulmonary arterial hypertension, and multiple sclerosis
suggest that these devices can provide accurate and clinically
relevant data14–17. Similarly, in comparison studies, heart rate
measurements from Fitbit devices general show good agreement
with electrocardiograms for individuals at rest or at low activity
levels18,19. However, other factors such as skin pigmentation may
also influence measurement accuracy20.
The objective of this study was to show that clinically-relevant

metrics, beyond daily step count, can be derived from wearable
activity monitors. There is a large resource of untapped
information contained within the data from these devices,
enabling a much more granular fingerprint of an individual’s
activities of daily life. Here we present results from analysis of 22
individuals with Pulmonary Arterial Hypertension (PAH) who were
each provided with a Fitbit device between two clinic visits. From
minute-to-minute step rate and heart rate data we derived a
range of parameters associated with physical activity during free-
living, including metrics associated with the weekly heart rate and
step rate distributions, parameters related to the intensity, length,
and frequency of ambulations, an analog of the Physical Working
Capacity test to assess fitness, a free-living 6-minute walk distance
(FL6MWD), as well as weekly usage metrics. We also considered a
metric of health state based on comparison of the FL6MWD to
predicted values for healthy individuals with the same age,
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gender, and BMI as the subject. Principal Component Analysis and
Latent Profile Analysis were used to identify subgroups of patients
based on Fitbit metrics.
At the clinic visits a maximum of 26 measurements were

recorded (7 continuous and 19 categorical), including assessment
of health related quality of life (HRQOL) and WHO Functional Class,
the presence or absence of various symptoms, and assessments of
organ function. Continuous variables included heart rate measure-
ments, six minute walk test (6MWT), right ventricular systolic
pressure (RVSP), and three biomarkers from blood tests. To assess
the potential for clinical relevance, we used a thresholding
approach to compare clinical parameters between the two
subgroups. We show that many Fitbit-derived metrics can be
used to identify subgroups with differences in clinical parameters
associated with physical status, cardiovascular function, pulmon-
ary function, as well as biomarkers from blood tests. In addition,
we show that several of the Fitbit metrics were strongly correlated
with continuous clinical parameters. Overall, we show that Fitbit-
derived metrics can provide insight into an individual’s activities of
daily life, and have the potential to support decision making and
clinical care.

RESULTS
Heart rate and step rate
We analyzed 3.5 × 106 min of Fitbit data for 22 individuals with
PAH between two outpatient clinic visits with an average of
18.4 ± 12.2 weeks for each subject (total 405 weeks). The average
age of the subjects was 50.6 ± 13.4 years old (mean ± SD), with 3
males and 19 females. In most cases, data were analyzed in weekly
blocks from Sunday to Saturday. From the weekly data we
obtained a maximum of 10,080 values (100% usage) of step rate
(units: steps per minute, SPM) and heart rate (units: beats per
minute, BPM). The distribution of step rates (SR) over each week
(excluding SR= 0) typically followed a log normal distribution (Fig.
1a), from which we extracted mean, standard deviation, and

skewness. For these subjects, the maximum step rate was typically
around 100 SPM, spanning medium walking (80–99 SPM) and
brisk walking (100–119 SPM)21. For active healthy individuals
additional peaks are usually observed in the step rate histograms
in the 100–120 SPM range, corresponding to brisk walking, and in
the 150–180 SPM range, corresponding to running21. We note that
cadence analysis is widely used to assess exercise intensity in free
living environments in a wide range of populations21–23. The
means of the weekly step rate histograms for each subject were
13.6–32.8 SPM, with a standard deviation in the range 10.2–30.3
SPM. The skewness varied from 1.19–2.55, showing that there was
a moderate to large increase in density to the right of the most
probable value. As a comparison to the commonly used daily step
count, the average daily step count was in the range
1338–10,679 steps, with an average of 5729 steps per day
(Supplementary Fig. 1).
To assess the potential for clinical significance, we used a

thresholding approach. We first divided the subjects into two
groups based on a threshold value, and then compared the 26
clinical parameters (Supplementary Table 1) between groups. We
compared individuals with average daily step counts >5000 steps
(14/22) to those with <5000 steps (8/22). This arbitrary threshold
resulted in 6 statistically significant clinical parameters (Supple-
mentary Table 2 and Supplementary Fig. 2). Subjects with
<5000 steps per day had lower 6MWD at visit 1, lower hemoglobin
levels at visit 2, poorer pulmonary health (higher physician-
assessed WHO FC) at visit 1, and experienced more pedal edema
(Pedal Edema score) at visit 2. Two subjects had average daily step
counts >10,000 steps per day (PAH 1, 19), but had no other
similarities. Sensitivity analysis of threshold values and the number
of statistically significant clinical parameters for all Fitbit metrics
are provided in Supplementary Figs. 3 and 4.
The minute-to-minute heart rate data for each week were

separated into heart rate at SR= 0 (HR(SR= 0), i.e. no physical
activity) and heart rate at SR > 0 (HR(SR= 0), i.e. active).
Histograms for HR(SR= 0) (Fig. 1b) and HR(SR > 0) (Fig. 1c) were
described by normal distributions, from which we obtained the
mean, standard deviation, and skewness. The range of mean
HR(SR= 0) was 66.2–111.8 BPM, with standard deviations of
6.4–13.7 BPM (Supplementary Fig. 5). The skewness varied from
−0.75 to 2.30, highlighting a broad range of behavior with
relatively large tails to the left and right of the peak (Supplemen-
tary Figs. 6 and 7).
The distribution of HR(SR= 0) represents all occurrences of zero

step rate and may represent various postures under a range of
resting conditions (e.g. transient or sustained). To relate HR(SR= 0)
to resting heart rate (RHR), we considered two conditions: the
mean value and the average of the lowest 10 values of HR(SR= 0).
A previous study found that individuals with PAH with RHR below
82 BPM had significantly longer overall event-free survival during
a median follow-up period of 37 (18–64) months24. In the study,
the RHR was measured at a clinic visit during a stable period of at
least 15 min of recumbent rest, but is likely higher than the true
resting heart rate (see below). We compared subjects with mean
values of HR(SR= 0) <82 BPM (14/22) to those with >82 BPM (8/
22). This resulted in 8 statistically significant clinical parameters
(Supplementary Table 2 and Supplementary Fig. 8). Subjects with
lower mean values of HR(SR= 0) had lower RHR at visits 1 and 2,
and lower peak heart rate at visit 2, but experienced more pedal
edema (Pedal Edema score) and more palpitations (Palpitation
score) at visit 1, were less able to perform usual activities (lower
EQ-5D Usual Activity scores) at visit 1, and experienced more pain/
discomfort (lower EQ-5D pain/discomfort scores) at visit 1.
Two subjects (PAH 1,4) had a mean HR(SR= 0) >100 BPM. Both

subjects had low fitness slopes (see below), suggesting that they
did not access a wide range of heart rate during daily activities.
However, PAH 1 had the highest average daily step count in the
dataset. We note that 3 subjects (PAH 4, 20, 27) removed the

Fig. 1 Representative weekly heart rate and step rate (PAH 14/
week 11). a Distribution of minute-to-minute step rate (SR) (units:
steps per minute, SPM). Red line shows a log normal fit.
b Distribution of heart rate (BPM) for all minutes where SR= 0.
Red line shows a normal fit. c Distribution of heart rate (BPM) for all
minutes where SR > 0. Red line shows a normal fit. d Weekly activity
map: scatter plot showing heart rate versus step rate. Each point
represents one minute where a physiological heart rate was
recorded. The grey lines show the upper and lower envelopes of
the activity map. The blue line shows a linear least squares fit to
the data.
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device overnight (see below), which may have resulted in higher
mean HR(SR= 0) values since heart rate values during sleeping
were likely not included.
The true resting heart rate (RHR) is usually defined as the value

obtained in a supine position immediately after waking but before
getting out of bed25. To obtain a value similar to the true RHR we
calculated the average of the lowest 10 values of HR(SR= 0); we
assumed that the 10 lowest values recorded during each week are
most likely obtained while supine and resting for an extended
period. The range of the average lowest weekly HR values was
50.3–69.2 BPM (Supplementary Fig. 5). A recent study of >90,000
individuals over 35 weeks, reported that the RHR (assumed to be
the true RHR) was dependent on age, BMI and sleep duration, with
daily values of RHR from 40–108 BPM25, although 95% of men and
women had RHR values between 50–80 BPM, similar to the range
found here.
We compared individuals with skewness of HR(SR= 0) <1 (11/

22) to those with skewness >1. This resulted in 4 statistically
significant clinical parameters (Supplementary Table 2 and
Supplementary Fig. 9). Subjects with lower skewness values were
more likely to have higher resting heart rate at visits 1 and 2,
experienced less pain/discomfort (lower EQ-5D pain/discomfort
scores) at visit 1 and were more likely to be in better health
(higher EQ-5D Index) at visit 1. Two subjects had skewness of
HR(SR= 0) values >1.9 (PAH 27, 28): both subjects also had
relatively low resting heart rates, longer free-living 6MWD, and
higher fitness plot slopes.
The heart rate at SR > 0 represents HR values while subjects

were active. The mean values of HR(SR > 0) were 78.6–121.0 BPM
(mean 94.4 BPM), and the standard deviation was 6.5–14.0 BPM
(Supplementary Fig. 10). The mean values were only slightly
higher than the mean values of HR(SR= 0), although the standard
deviations were similar. The mean skewness values for HR(SR > 0)
were from −0.57 to 1.35, similar to the range for HR(SR= 0). We
compared individuals with mean values of HR(SR > 0) <95 BPM
(12/22) to those with >95 BPM, resulting in 4 statistically
significant clinical parameters (Supplementary Table 2 and
Supplementary Fig. 11). Subjects with lower mean values of
HR(SR > 0) had lower RHR at visits 1 and 2, lower albumin levels at
visit 1, and experienced more palpitations (lower Palpitation score)
at visit 1.
All of the weekly data can be represented on a scatter plot

which maps out an individual’s weekly activity on a minute-to-
minute basis (Fig. 1d). These activity maps are approximately
triangular with relatively high density of points at low step rates
and decreasing density as the step rate increases. Other
parameters derived from the minute-to-minute data included
assessment of fitness based on the Physical Working Capacity 170
(PWC 170) test, metrics associated with weekly ambulation, free-
living 6-minute walk distance (FL6MWD), and device usage.

Principle Component Analysis (PCA)
To identify subgroups within the subject population we
performed principal component analysis (PCA). Five parameters
were selected for analysis: the mean and standard deviation of the
step rate histogram, the standard deviation of HR at SR > 0, the
mean HR at SR= 0, and the fraction of time inactive (Fig. 2a). The
data points for each week for most subjects were tightly clustered
in distinct regions. From the loading plot (Fig. 2b), PC1 is
dominated by the step rate parameters (+PC1) and the fraction of
time inactive (−PC1). PC2 is dominated by the mean heart rate at
SR= 0 (+PC2) and the standard deviation of the heart rate for
SR > 0 (−PC2). The group of subjects in the fourth quadrant (PAH
3, 9, 12, 19, 23, 27) are characterized by high mean and standard
deviation of the step rate, and a high value of the standard
deviation of the heart rate at SR > 0. This implies that these
individuals exhibit a wide range of step rates and a wide range of

heart rates during normal activities of daily life. The group of
subjects along the positive y-axis (PAH 1, 10, 14, 17) are
characterized by high mean heart rate at SR= 0. High values of
HR(SR= 0) imply that these individuals have a high resting heart
rate and are unlikely to access a wide range of heart rates during
normal activities, even if they have the capacity for moderate or
high step rates. The group of subjects along the negative x-axis
(PAH 2, 7, 11, 13, 20, 21, 30) are characterized by a large fraction of
time inactive. Three subjects (PAH 15, 26, 28) are clustered around
the origin. The PCA plot suggests a range of behavior with distinct
combinations of metrics associated with heart rate and step rate.
To explore these relationships in more detail, we assessed several
derived parameters. Distinct groupings of subjects were found for
mean HR(SR= 0) >82 BPM, skewness of HR(SR= 0) <1, ambulation
product, P > 1000, and fitness slope >0.15 (Supplementary Fig. 12).

Fitness
To derive a metric related to physical fitness from the Fitbit data
we determined the mean step rate, in 20 SPM bins, and the mean
heart rate in that bin. Assuming that the step rate is related to
power output, this approach is similar to the Physical Working
Capacity PWC170 protocol, where the slope of a power vs. heart
rate curve is used to predict the power output at 170 BPM as a
measure of fitness. An example from a weekly data set shows that
the mean heart rate generally increases with increasing step rate
(Fig. 3a). It is also evident that the extrapolated heart rate at SR= 0
is relatively high, about 103 BPM. The fitness plot averaged over all
weeks of data was almost identical to the example week (Fig. 3b),
showing that there was only small weekly variation. The fitness
plots for all subjects (Fig. 3b) spanned a wide range, with
intercepts from 73–120 BPM (Fig. 3c) and slopes of 0.02–0.31 BPM/
SPM (average= 0.15 BPM/SPM) (Fig. 3d). In general, individuals
with a low heart rate at SR= 0 accessed a broader range of heart
rates with increasing activity level (step rate) and hence had
higher slopes.
Comparison of subjects with fitness slope >0.15 (11/22) to those

with slope <0.15, resulted in 3 statistically significant clinical
parameters (Supplementary Table 2 and Supplementary Fig. 13).
Notably, subjects with slopes >0.15 had lower NT-proBNP levels at
visits 1 and 2. B-type natriuretic peptide (BNP) and N-terminal pro
b-type natriuretic peptide (NT-proBNP) are biomarkers for cardiac
stress, and PAH patients with NT-proBNP levels below about

Fig. 2 Principal component analysis. a PCA scatter plot of the first
two principal components. For each subject (N= 20), 10 weeks were
randomly selected from the dataset. The variance for the first two
principal components were 48.6% and 30.0%, respectively. For 100
independent runs, the mean variance of PC1 and PC2 was
77.5 ± 0.58%. Numbers represent subject IDs. Each point represents
one week of data. b Loading plot. HR(SR= 0):mean is the mean
value of the heart rate at SR= 0; HR(SR > 0):SD is the standard
deviation of the heart rate at SR > 0; SR(SR > 0):mean is the mean
step count for SR>0; SR(SR>0):SD is the standard deviation of the
step rate for SR > 0; time active is the fraction of minutes with
SR= 0.
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300 pg L−1 are considered low risk for heart failure26. The mean
levels for subjects with slope >0.15 at visits 1 and 2 were 188 ± 180
and 145 ± 165 pgmL−1, respectively. These results suggest that
the fitness slope may be a useful indicator of NT-proBNP levels
and risk for heart failure. Comparison of subjects with fitness
intercepts above (10/22) and below (12/22) the mean (91 BPM)
were similar to results for subgroups with HR(SR= 0) above and
below 95 BPM.

Ambulation metrics: endurance, intensity, frequency
We defined an ambulation as a period of at least 2 min with
SR ≥ 60 SPM, which corresponds to slow walking or faster23. A
2-minute duration was selected since the 2-minute walk test
(2MWT) is widely used to assess functional capacity27,28. From the
number of weekly ambulations we obtained metrics for frequency,
endurance, and intensity. The average ambulation frequency for
all subjects was in the range 1.6–96 ambulations per week. A
measure of a subject’s endurance was obtained from the 1/e value
of an exponential fit to the histogram of weekly ambulation
durations (Fig. 4a). Therefore, individuals with longer duration
ambulations would be considered to have greater endurance.
Endurance (1/e) values were between 2.2–7.0 min. The longest
individual ambulation duration was 70 min (PAH 9). A measure of
ambulation intensity was obtained from the standard deviation of
the weekly step rate histogram (Fig. 4b), i.e. how far above the
mean value: values ranged from 10–30 SPM. In general, the
ambulation frequency was higher for shorter durations and
intermediate values of step rate (Fig. 4c).
To compare individuals, we defined the ambulation product P

as frequency × endurance × intensity. Average values for all
subjects varied from 42.8 to 10,845.3 (Pmean= 1910) (Fig. 4d).
Comparison of subjects with P > 1000 (12/22) to those with
P < 1000, resulted in 7 statistically significant clinical parameters

(Supplementary Table 2 and Supplementary Fig. 14). An ambula-
tion product value of 1000 was selected as it was close to the
median value (1079), and represented a well-defined separation
between the two groups (Fig. 4d). Subjects with P < 1000 had
lower 6MWD at visits 1 and 2, and experienced more pedal edema
(Pedal Edema score) at visit 1. Two subjects had ambulation
product values > 5000 (PAH 9, 19). Both subjects had a high
ambulation frequency and walked more than 5000 steps per day
on average. Both subjects also had relatively lower resting heart
rates, longer free-living 6MWD (see below), and higher fitness plot
slopes. PAH 1, despite having the highest step count, ranked
fourth in ambulation product value as a result of having relatively
lower endurance and intensity values.

Device usage
Usability and compliance with usage are critically important in
deploying devices in free-living settings. Since a measured heart
rate (i.e. 20 ≤ HR ≤ age predicted maximum heart rate) implies that
the device is worn, we defined usage as the fraction of minutes
during a week with a physiological heart rate value (i.e. minutes
worn/10,080). The fraction of minutes outside this range was very
small (4.2 × 10–7%), and hence in most cases it may be reasonable
to use all recorded data points (i.e. HR > 0) for analysis. In this
study the average weekly usage was 0.44–0.97. Note that charging
the device overnight (e.g. 8 h) once a week results in a weekly
usage of 0.95. We also defined the maximum off-time as the
longest continuous time during the week that the device was not
worn, which varied from less than 1 h to more than 12 h. From
heat maps of usage and the maximum off-times for all subjects
(Supplementary Figs. 15 and 16) we can further infer how the
device was used.
As an example, the usage heat map for PAH27 (average

usage= 0.49) (Fig. 5a) shows that the device was consistently not

Fig. 4 Ambulation metrics. Representative ambulation metrics for PAH 14 in week 11. a Frequency of weekly ambulations of ≥2min with
sustained SR ≥ 60 SPM. Endurance was defined by the 1/e value of an exponential fit to the histogram. b Ambulation intensity was defined by
the standard deviation of the step rate distribution. c Heat map showing ambulation frequency on a plot of step rate versus ambulation
duration. d Violin plot showing average values of ambulation product P (=frequency × endurance × intensity) for all subjects. Blue bar–mean;
green bars–upper and lower quartiles.

Fig. 3 Assessment of fitness. a The average step rate and corresponding average heart rate in 20 SPM bins for PAH 14 in week 11. Bars
represent mean ± SD. b Mean step rate versus mean heart rate plots averaged over all weeks for each individual. c Fitness intercept (BPM) and
d fitness slope (BPM/SPM) obtained from a linear least-squares fit to the HR-SR plots for each individual. Blue bar–mean; green bars–upper and
lower quartiles.
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worn overnight but was routinely worn during the day, resulting
in a maximum off-time of around 12 h for each week (Fig. 5b). The
heat map for PAH30 (average usage= 0.90) (Fig. 5c) shows that
the device was not worn overnight approximately every 7 days,
likely for overnight charging. The maximum off time (Fig. 5d)
varied from 2–20 h, but for most weeks was 7–12 h, consistent
with overnight charging. For PAH10 (average usage= 0.97) the
heat map (Fig. 5e) indicates that the device was worn almost
continuously except for 2 h in week 10 and 24 h in week 13 (Fig.
5f). The frequent partial usage hours from 06:00 to 07:00 suggest
that the device was taken off to charge for less than one hour in
the morning. Many subjects removed the device overnight
approximately every 7 to 10 days, presumably for charging. Three
subjects (PAH 14, 20, 27) consistently removed the device
overnight. Three subjects (PAH 10, 19, 26) showed regular partial
usage for about an hour, either in the morning or the evening,
likely for charging.
From the distribution of average usage (Supplementary Fig. 17),

7 of 22 subjects had usage >0.94, which corresponds approxi-
mately to the 75th percentile. Comparison of usage, resulted in
4 statistically significant clinical parameters (Supplementary Table
2 and Supplementary Fig. 18). Subjects with average weekly
usage < 0.94 (15/22) were more likely to have more severe PAH
(higher EQ VAS score) at visit 1, worse pulmonary health (higher
physician assessed WHO FC score) at visit 1, and experienced
more difficulty breathing (modified Borg dyspnea score) at visit 2.
Two subjects had average usage < 0.5 (PAH 4, 27), however, both
of these subjects removed the device overnight. The third subject
who removed the device overnight (PAH 20) also had low average
usage (0.60). (Changes in device usage over time are summarized
in Supplementary Figs. 19 and 20).

Free-living 6-minute walk distance (FL6MWD)
The 6MWT is a sub-maximal exercise test used to assess aerobic
capacity and endurance, and was introduced by the American
Thoracic Society in 200229. The 6MWT is widely used in different

patient populations30–32, with thresholds for prediction of survival
typically in the range 300–350m for individuals with chronic
respiratory diseases, including individuals with PAH33. Timed walk
tests provide information on distance and speed10,11, but are labor
intensive and hence are impractical to implement at high
frequency during hospitalization or outside the clinic. At the
research level, apps for self-administered 6MWTs have been tested
with wearable accelerometers34. We have developed a novel
approach for assessment of a free-living 6MWD (FL6MWD) by
searching the weekly data for the continuous 6-min block of time
with the highest cumulative step count. Step count was converted
to distance based on a subject’s gender and height (Supplemen-
tary Figs. 21 and 22).
The average values of FL6MWD ranged from 164m (PAH30) to

478m (PAH23) (Fig. 6a). The lowest weekly FL6MWD was 85.7 m
(PAH30, week 23) and the highest weekly value was 683.1 m
(PAH23, week 11). 14/22 subjects had average values >320m
(PAH1, 3, 9, 10, 11, 12, 14, 17, 19, 22, 23, 26, 27, 28). Comparison of
FL6MWD resulted in 6 statistically significant clinical parameters
(Supplementary Table 2 and Supplementary Fig. 23). Notably,
subjects with average FL6MWD < 320m had lower 6MWD at visit 1
and visit 2, experienced more pedal edema (Pedal Edema score) at
visit 2, had worse pulmonary health (higher physician-assessed
WHO FC) at visit 1, and had lower hemoglobin at visit 2.
The lowest average FL6MWD was 164 m (PAH30). This subject

was the second heaviest (108.7 kg), and had an ambulation P
value < 1000. Two subjects had average FL6MWD values > 480 m
(PAH3, 23). These subjects were in the fourth quadrant of the PCA
plot, which implies that they had a wide range of step rates and
heart rates during normal weekly activity, and had ambulation
product P values > 1000.

FL6MWD and therapeutic goals
As described above, 6MWD threshold values of around 320m are
predictive of poor survival in PAH patients. In the context of
treatment goals, a 6MWD of ≥380–440 m has been proposed for

Fig. 5 Examples of heat maps of device usage and maximum off time. Heat maps show usage for each hour of each day during the trial. The
legend indicates the fraction of an hour that the device was worn with HR > 0. Yellow cells indicate that the device was worn continuously for
the full hour. White cells indicate that the device was not worn (no HR recorded) for the full hour. a Heat map for PAH27 (13 weeks of data),
showing low usage (average= 0.49) with the device not worn overnight. b The maximum off time for each week for PAH27 is consistently
around 12 h overnight. Each point represents the maximum off-time for each week in the trial. c Heat map for PAH30 (22 weeks of data),
showing relatively high usage (0.90), with the device removed for several hours every few days. d The maximum off time for PAH30 is typically
8–20 h and includes overnight hours. e Heat map for PAH10 (13 weeks of data), showing high usage (0.97). For the first 10 weeks the
maximum off-time is less than 1 h. f The maximum off time for PAH10 is usually less than 1 h.
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PAH patients35–37. Subjects with average FL6MWD > 400m (12/22)
had higher 6MWD at visit 2, lower NTpro-BNP at visit 2,
experienced less chest pain (Angina score) at visit 1, and had
better pulmonary health (lower physician-assessed WHO FC) at
visit 2 (Supplementary Table 2 and Supplementary Fig. 24).

Comparison of clinic 6MWD to FL6MWD
From comparison of FL6MWD to the values measured at the two
clinic visits (see Methods and Supplementary Fig. 25 for details),
we identified two distinct groups of individuals. In one group
(group 1: “performers”), we found excellent agreement between
the FL6MWD and the interpolated value of the clinic 6MWD (Fig.
6b), whereas in the second group (group 2: “underperformers”),
the FL6MWD was lower than the clinical values (Fig. 6c). Subjects
in group 1 were older and shorter, had lower 6MWD at visits 1 and
2, and had fewer problems in walking (lower EQ-5D Mobility score)
at visit 2 (Supplementary Fig. 26). These results suggest that the
daily activity for the “underperformers” was below their physical
capacity.
To assess changes over time during the trial, we determined the

slope of the FL6MWD (see Methods and Supplementary Fig. 27 for
details). Values ranged from −17.9 m/week to +10.2 m/week
(mean+ 1.0 ± 5.4 m/week) (Fig. 6d). The subject with the most
negative slope (PAH23) initially maintained high values of
FL6MWD for the first 13 weeks, but then recorded a much lower
value in subsequent weeks (Supplementary Fig. 22), suggesting a
significant change in lifestyle or health state. Three subjects had a
large positive slope (>4.0 m/week) (PAH3, 10, 20), and four
subjects had a large negative slope (<4.0 m/week) (PAH1, 13,
21, 23).

Free-living 6MWD (FL6MWD) and physical health state (PHS)
To estimate a subject’s physical health state (PHS), we calculated
the predicted 6MWD for an equivalent healthy individual
(H6MWD) with the same age, gender, and BMI as the subject
(see Methods for details). We defined a subject’s physical health
state as the ratio of FL6MWD/H6MWD. A plot of the FL6MWD in
week 1 versus the predicted H6MWD shows a wide range of
values of PHS, from about 0.25 to more than 1 (Fig. 7a). 13/
22 subjects had PHS values of about 0.7–0.8 (i.e. values of
FL6MWD in the range of 70–80% of the equivalent healthy
individual), 3 subjects had values around 0.6, and 5 subjects had
values below 0.5. Subject 23 had a ratio > 1 but, as described
previously, this subject recorded high FL6MWD values during the
first 13 weeks, but then maintained a much lower value in
subsequent weeks. It is evident that there is no correlation
between the FL6MWD in week 1 and the predicted 6MWD
(H6MWD) for an equivalent healthy individual (Fig. 7a).

We next assessed the change in PHS for each subject based on
the values of FL6MWD in week 1 and in the last week prior to the
second clinic visit (Fig. 7b). 11/22 subjects showed an increase in
health state, and 11/22 subjects showed a decrease (Fig. 7c). The
change in PHS was less than 10% for 15/22 subjects, and the
normalized change in PHS was less that 1%/week for 18/
22 subjects (Fig. 7d).
Two subjects showed an increase in PHS of more than 1%/week

(PAH 3, 20), and two subjects showed a decrease of more than
1%/week (PAH 21, 23). Five subjects (PAH 3, 9, 19, 12, 27)
maintained health state values greater than 0.72 for their first and
last weeks. These subjects were in the fourth quadrant of the PCA
plot with high mean and standard deviation of the step rate, and a
high value of the standard deviation of the heart rate at SR > 0.
Three subjects (PAH 30, 2, 20, 11) had health state values below
0.52 in their first and last weeks. These subjects were located

Fig. 6 Clinic 6MWD and FL6MWD. a Violin plot showing distribution of average values of FL6MWD for all subjects. Mean= 344m. Blue
bar–mean; green bars–upper and lower quartiles. b Example of a subject with good agreement between FL6MWD and interpolated clinic
values (group 1, “performer”). (Triangles) clinic values, (circles) FL6MWD. The grey line shows the linear interpolation of the clinic values.
c Example of a subject where the FL6MWD was lower than the interpolated clinic values (group 2, “underperformer”). (Triangles) clinic values,
(circles) FL6MWD. The grey line shows the linear interpolation of the clinic values. d Violin plot of the slope of the FL6MWD (m/week) over
time for all subjects. Blue bar–mean; green bars–upper and lower quartiles.

Fig. 7 Free-living 6MWD versus the predicted 6MWD for a healthy
individual (H6MWD) of the same age, gender, and BMI. a Data for
all subjects in week 1. Each point represents the value of FLWD in
week 1. The dotted lines represent constant values of physical
health state (PHS= FL6MWD/H6MWD). Numbers represent subject
IDs. b PHS in the first and last week. The values of FL6MWD in the
last week were obtained from the value in week 1 and the slope of a
linear fit to the weekly FL6MWD following smoothing. Numbers
represent subject IDs. The arrows represent the change during the
trial. Red arrows represent a decrease in PHS, green arrows
represent an increase in PHS. c Violin plot showing the change in
PHS during the trial. d Normalized change in PHS. Blue bar–mean;
green bars–upper and lower quartiles.
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along the negative x-axis of the PCA plot, characterized by a large
fraction of time inactive.

Comparison of Fitbit metrics
Comparison of 23 Fitbit-derived metrics (Fig. 8a) revealed that
relatively few of the heart rate parameters were strongly
correlated with other parameters, suggesting that they measure
diverse aspects of health status. Although several of the metrics
derived from step rate were highly correlated to each other, there
were also significant differences. For example, the mean weekly
step rate was strongly correlated to three of the ambulation-
related metrics but less well correlated to the FL6MWD metric. In
addition, metrics such as the fitness slope were only weakly
correlated to other metrics. The skewness of the step rate was
strongly anticorrelated to the mean and standard deviation of the
step rate, ambulation intensity, and ambulation frequency. This
suggests that an increase in the mean weekly step rate introduces
asymmetry into the distribution. This rich and diverse landscape
suggests that the Fitbit metrics capture many different facets of
health status.
To determine whether we could identify subgroups amongst

the patients based on Fitbit metrics we performed Latent Profile
Analysis. 8 Fitbit metrics were used as input: daily step count,
HR(SR= 0), HR(SR= 0)sk, HR(SR > 0), ambulation P value, fitness
slope. Based on the maximum Bayesian Information Criterion (BIC)
(Supplementary Table 3), the subjects were categorized into three
groups (Supplementary Fig. 28). Group 1 had high ambulation
metrics (steps/day, ambulation product P, and FL6MWD), high
HR(SR > 0), and high fitness slope (Supplementary Table 4). Group
2 were characterized by the lowest ambulation metrics (steps/day,
ambulation product P, FL6MWD), the lowest HR(SR= 0) and
HR(SR > 0), and the highest HR(SR= 0)sk. Group 3 had the highest
HR(SR= 0) and HR(SR > 0), the lowest HR(SR= 0)sk and fitness
slope. The three groups identified from LPA analysis occupied
distinct regions of the PCA plot, with the exception of PAH 10 who
was in Group 2 (Supplementary Fig. 29).
To further explore the relationship between Fitbit metrics and

clinical parameters, we determined the correlation between 8
Fitbit metrics and the seven continuous clinical variables at the
two clinic visits (see Fig. 8b). Five Fitbit metrics had strong

correlations (Pearson r values > ±0.5). Albumin was correlated with
HR(SR= 0) and HR(SR > 0) at visit 1 (r= 0.565 and 0.627,
respectively). NT-proBNP was also correlated with HR(SR= 0) at
visit 1 (r= 0.585), and was inversely correlated with fitness slope at
visit 1 (r=−0.585). RHR at visits 1 and 2 were correlated with
HR(SR= 0), HR(SR= 0)sk, and HR(SR > 0). 6MWD at visits 1 and 2
were correlated with FL6MWD. RVSP at visit 1 was inversely
correlated with fitness slope. Notably, steps/day and ambulation P
did not have strong correlations to the continuous clinical
parameters.

DISCUSSION
Daily step count is a ubiquitous metric associated with wearable
activity monitors. However, the underlying minute-to-minute
heart rate and step rate measurements contain a rich array of
data associated with physical and cardiovascular function and
have the potential to provide much more detailed insight into an
individual’s health status based on activities of daily living. In
addition to metrics derived from the weekly distribution of
minute-to-minute heart rate and step rate data, we derived several
others, including: (1) an analog of the widely-used 6MWD, which
we termed the free-living 6min walk distance (FL6MWD), (2) an
analog of the Physical Working Capacity test used to assess
physical fitness, (3) metrics associated with the frequency,
intensity, and duration of weekly ambulations, (4) metrics
describing usage patterns, and (5) metrics associated with physical
health status based on the FL6MWD and the predicted 6MWD for
a healthy individual with the same gender, age, and BMI. These
metrics are derived from a single wearable activity monitor during
normal daily life and do not require any prescribed activities or
external monitoring. Together these parameters provide weekly
signature of an individual’s status that could be used for
identifying subgroups within patient populations or assessing
changes over time.
Principle component analysis showed that subjects could be

grouped by parameters broadly associated with physical activity
and cardiovascular function. Physical status was defined by step
rate parameters (+x axis) or fraction of time inactive (−x axis).
Cardiovascular status was defined by resting heart rate while

Fig. 8 Correlation amongst Fitbit-derived parameters and between Fitbit-derived parameters and clinical parameters. a Correlation
matrix (Pearson r value) of all the Fitbit-derived parameters and demographic variables (age, height, and BMI). b Correlation matrix (Pearson r
value) for statistically significant continuous clinical parameters (y-axis) for subgroups identified from Fitbit parameters (x-axis).
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inactive (+y axis) and the range of heart rates accessed during
normal daily activities (−y axis). Subjects were clustered in
different regions of the PCA plot both along the axes, indicating
that their status was dominated by either physical or cardiovas-
cular factors, or within a quadrant, indicating an influence of a
combination of physical or cardiovascular factors. Latent Profile
Analysis identified 3 groups located in distinct regions in the PCA
plot, with characteristics consistent with the interpretation
described above. For example, LPA Group 2 were located in the
third quadrant in the PCA plot and were characterized by the
lowest ambulation metrics and low heart rate metrics.
Device usage is an important factor in analyzing data from

wearable devices. Using physiological values of heart rate as a
proxy for a device being worn for each minute of a week enabled
detailed analysis of usage patterns. Heat maps revealed a range of
different usage patterns, such as removing the device overnight or
wearing the device almost continuously. Usage patterns are also
important in analyzing metrics related to activity. For example,
daily step count may not be significantly influenced by removing
the device overnight, whereas derived metrics such as fraction of
time inactive may be subject to error. There are three key factors
that contribute to the relatively high usage in this study: (1) the
device is wrist worn and has a small form factor, (2) the battery life
is up to 7–10 days, (3) many models are waterproof and hence do
not need to be taken off between charges. Usage patterns and
changes in usage patterns may contain additional information
about an individual’s health state.
To establish the potential for clinical relevance, we used a

thresholding approach to identify statistically significant differences
between subgroups. Even within this relatively small population we
found statistically significant differences in 18 parameters recorded
at the initial or final clinic visits and based on 8 of the Fitbit-derived
metrics. Clinical parameters included those associated with physical
status, cardiovascular function, pulmonary function, as well as
biomarkers from blood tests. The identification of statistically
significant differences in a wide range of clinical parameters
suggests that it may be possible to identify surrogate markers of
disease severity in PAH. For example, ambulation product P < 1,000,
and FL6MWD< 320m were correlated with lower clinic measured
6MWD at visits 1 and 2. Subjects with fitness slope > 0.15 had lower
NT-proBNP levels, an important biomarker of cardiac stress, at visits
1 and 2. In addition, this approach may contribute to identification
of individuals who would benefit from more frequent clinic visits or
specific medications.
Activity monitors can provide insight into an individual’s

physical capacity in terms of activities of daily living. Many of
these devices are relatively low cost and low maintenance
following deployment. Long battery life and low form factor
appear to be important in achieving high levels of compliance.
Metrics derived from the raw data can be easily displayed in a
dashboard and provide an additional tool for telemedicine.
In summary, we used the minute-to-minute step rate and heart

rate data from a Fitbit device to derive a wide range of metrics
associated with physical activity and cardiovascular function.
These metrics were used to identify clusters of subjects with
common characteristics. In addition, several Fitbit metrics were
strongly correlated to continuous clinical parameters. Using a
thresholding approach we showed that many Fitbit metrics
resulted in statistically significant differences in clinical parameters
between subgroups, including those associated with physical
status, cardiovascular function, pulmonary function, as well as
biomarkers from blood tests. These results highlight the fact that
daily step count is only one of many metrics that can be derived
from activity monitors. Importantly, this approach is generally
applicable to remote monitoring of many patient populations.
There are several limitations in this study. (1) Although heart rate

can be used to verify that a device is worn, independent validation
of specific activities of daily life remains to be established. Ultimately,

AI could be used to indicate the likelihood of specific types of
activity. (2) Neither heart rate nor step rate measurements were
independently validated. One approach to address this issue would
be to perform independent measurements of resting heart rate
while ambulating at fixed gait speed at the beginning of a trial.
Independent laboratory studies of heart rate and step rate
signatures in response to specific types of activities of daily life
will also be important in refining data analysis. However, we note
that comparison of Fitbit data to parameters from the two clinic
visits (e.g. resting heart rate and 6MWD) provide support for the
validity of the measurements. (3) In comparing Fitbit parameters to
clinical parameters we did not consider factors such as a patient’s
medication, or adjust for other covariates. Incorporating factors such
as medications would likely improve the correlations to clinical
parameters and provide insight into the role of these factors in
activities of daily life, however, the sample size was too small. The
threshold values used for comparison of clinical parameters were
either guided by previous studies or selected arbitrarily. Studies in
larger cohorts and in other patient populations will be essential to
establishing the clinical relevance of this approach. (4) This is a small,
single center study and the results remain to be reproduced in other
patient populations. Nonetheless, these results show the potential
for defining metrics beyond daily step count that can contribute to
assessing an individual’s health status.

METHODS
Study details
Data were obtained from a prospective, observational study where
PAH patients wore a wrist worn activity monitor (Fitbit Charge
HR®) between two outpatient visits. The study was approved by
the IRB at the Cleveland Clinic (IRB number 15–1392). Participants
provided written informed consent. Thirty subjects were enrolled
in the study; two patients withdrew consent after enrollment.
Study details have been published elsewhere17. Outpatient visits
occurred during two consecutive routine appointments where
patients received various tests. Overall, the clinical data included
19 categorical and 7 continuous variables. Categorical variables
included eight scores from questionnaires associated with health
related quality of life (HRQOL), modified Borg dsypnea score, and
RV function scores, physician and patient assessed WHO Func-
tional Class, and seven binary scores associated with presence or
absence of a symptom, and six assessments of organ function.
Continuous measurements included heart rate measurements, six
minute walk distance (6MWD), right ventricular systolic pressure
(RVSP), and three biomarkers from blood tests. A complete list of
clinical parameters is provided in Supplementary Table 1.

Analysis
For each subject the minute-to-minute heart rate and step rate data
were obtained from the Fitbit server. 22 of 30 data sets were
included for analysis: these data sets had clinical data for both visits
and at least 4 weeks of Fitbit data between the two visits. 3 subjects
were excluded because they had no data on the Fitbit server,
3 subjects did not have a second clinic visit, and 2 subjects had only
1 week of Fitbit data. Data were analyzed in weekly blocks from
00:00 on Sunday to 23:59 on Saturday. Therefore, depending on the
day of the week of the clinic visits, there is a gap between the clinic
visit and the first and last week of Fitbit data. Each data point
represents the step rate (SPM) and average heart rate (BPM) over
one minute. The device was considered worn if the average heart
rate for any minute was greater than or equal to 20 BPM and less
than or equal to the age predicted maximal heart rate
(HRmax(BPM)= 208–0.7 × age)38. The number weeks of Fitbit data
between the two clinic visits was 18.4 ± 12.2 (range from 7 to
65 weeks). In total we analyzed 3.5 × 106min of data over 405 weeks.
Overall, this corresponds to 85% of the total time.
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Statistical analysis
Baseline metrics from the week-long blocks of data were derived
from the weekly values of step rate (SR), heart rate at step count
equal zero (HR(SR= 0), i.e. no activity), and heart rate at step rate
greater than zero (HR(SR > 0), i.e. active). From the distributions of
these three metrics we obtained the mean, standard deviation,
and the skewness. The heart rates were fit to a normal distribution,
and the step rate was fit to a log normal distribution. A scatter plot
of step rate versus heart rate provided a weekly signature of
cardiovascular activity for each individual. From a linear least-
squares fit to the data we obtained the slope (heart rate per step
rate (BPM/SPM)). The effective area of the heart rate versus step
rate (HR vs. SR) plot was determined by first calculating the upper
(lower) envelopes. Each point in the upper and lower envelopes
represents the average of the maximum (or minimum) HR values
at each value of step count in a bin width of 10 SPM. The envelope
point is located at the average step rate for all values with HR
values. Step rates with no HR values are omitted from the
calculation. Bins with no HR values do not have an envelope point.
We then performed a linear least-squares fit to the envelopes to
determine the area of the HR-SC plot.
The skewness of the step rate and heart rate distributions were

obtained from:

Sk ¼
PN

i¼1 xi � xð Þ3
σ3

1
N

(1)

where x is the mean, σ is the standard deviation, N is the number
of points, and xi is the value. The skewness can be positive or
negative. A positive skewness has an extended tail to the right of
the distribution (median and mean to the right of the most
probable value), and a negative skewness has an extended tail to
the left of the distribution (median and mean to the left of the
most probable value). Sk ¼ 0 indicates a perfect fit to the
distribution. In general, jSkj< 0:5 is considered small, Skj j from
0.5–1.0 is considered moderate and Skj j> 1:0 is considered large.

Principal component analysis
To assess how heart rate and step rate metrics were distributed
across the subjects we performed principal component analysis
(PCA). Analysis was performed using the PCA function in MATLAB,
and for all parameters the mean was set to 0 and standard
deviation= 1 using the “Normalize” function. Patients with at least
10 weeks of data were included in the analysis (N= 20). Two
subjects (PAH4 and 22) were excluded as they had 8 and 7 weeks
of data, respectively. Here we report analysis based on 5 metrics:
HR(SR= 0):mean, HR(SR > 0):SD, SR(SR > 0):mean, SR(SR > 0):SD,
time inactive (fraction of minutes with SR= 0). These parameters
were selected to represent heart rate and ambulation metrics and
to avoid redundancy. For each parameter we used the average
weekly value. The variance for the first two principal components
were 48.6% and 30.0%, respectively. For 100 independent runs
where we randomly selected different weeks, the mean variance
of PC1 and PC2 was 77.5 ± 0.58%.

Latent Profile Analysis (LPA)
LPA was used to identify the clusters of individuals (i.e. latent
profiles) based 8 Fitbit metrics: daily step count, HR(SR= 0),
HR(SR= 0)sk, HR(SR > 0), ambulation P value, fitness slope,
FL6MWD, and usage. LPA was performed through package
‘mclust’ (version 5.4.10) in R (version 4.2.1). The optimal number
of clusters was determined based on the maximum Bayesian
Information Criterion (BIC) through the function ‘mclustBIC’.

Derived parameters
From the baseline metrics for step rate and heart rate we obtained
the following derived parameters.

Usage. The subjects were instructed to wear the device on the
non-dominant wrist, for as long as possible, except during
exposure to water. The device was considered worn for any given
minute if the average heart rate was within the defined range
from 20 to the age-determined maximal heart rate. From the
complete data set (3.5 × 106 min) there were no HR values less
than 20, and only 148 values (4.2 × 10−7%) above the age
predicted heart rate maximum. To visualize the usage for each
individual we created heat maps showing the average usage over
each hour of each day between the two clinic visits. We also
determined the maximum length of time during the week when
the device was not worn, which varied from less than one hour to
more than 12 h. The change in weekly usage was determined from
a linear least-squares fit to the weekly usage following smoothing
using single exponential smoothing with α= 0.3. To assess
whether there was a linear relationship between Fitbit parameters
we used the Pearson correlation method.

Fraction of time inactive. We assessed the fraction time that a
subject was inactive each week from the number of minutes with
SR= 0 divided by the total number of minutes that the device was
worn, based on the criteria described above.

Free-living 6MWD. A proxy of the standard 6MWD was obtained
by identifying the 6-minute window with the maximum cumula-
tive number of steps during a given week. The step count was
converted to a distance from the following relations: step length
(m)= 0.413 x height (m) for females and 0.415 x height (m) for
males39. The free-living 6MWD (FL6MWD) was then obtained from
the step length and the total number of steps in the 6min
window. Comparison of step length from different methods is
provided in Supplementary Fig. 19.
To compare the FL6MWD to the 6MWD obtained at the clinical

visits, we used the k-means algorithm (Python 3.8, sklearn.clus-
ter.KMeans). For every week i, we determined the difference, Δyi
(m), between the FL6MWD and the interpolated clinic value. The
average difference over all weeks for an individual was defined as
Δy. Using the silhouette method (Python 3.8, sklearn.metrics
module), we identified two sub-groups: subjects with FL6MWD
close to the interpolated clinic values (small Δy, group 1:
“performers”), and those with FL6MWD values below the
interpolated clinic values (large Δy, group 2: “underperformers”).
An example is provided in Supplementary Fig. 25. The change in
weekly FL6MWD with time between the two clinic visits was
determined from a linear least-squares fit to the weekly values
following smoothing using an exponential smoothing function
with α= 0.3 (see Supplementary Fig. 27 for details).

Ambulations. Parameters related to intensity, endurance, and
frequency of ambulations were obtained from analysis of the
weekly step rate data. An ambulation event was defined by a
sustained step rate of ≥60 SPM for at least 2 min. For a healthy
individual, a step rate of 60–79 SPM is considered slow walking23.
The ambulation intensity was defined as the standard deviation of
a lognormal fit to the weekly step rate histogram. We defined
endurance as the 1/e value of an exponential fit (starting at 2 min)
to a histogram of the ambulation duration. Ambulation frequency
was defined as the total number of ambulations during the week.
Finally, we defined a characteristic ambulation parameter P for
each subject, based on the product of the average values of
intensity, endurance, frequency.

Fitness. A proxy of fitness was obtained using an approach
similar to the Physical Working Capacity PWC170 protocol40. In the
submaximal PWC170 test, an individual is asked to spin on a
stationary bike at two or more power outputs that maintain the
heart rate within a defined range. The power output at an
extrapolated heart rate of 170 bpm is then considered a proxy of
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VO2,max. We used a similar approach to define a metric of fitness,
taking the step rate as a proxy for level of effort, and hence
assuming that that higher step count corresponds to higher
power output. The mean and standard deviation of the step count
per minute in 20 SPM bins was plotted versus the mean and
standard deviation of the heart rate in that bin for each week. We
then determined the slope (HR/SPM) and intercept (HR at SR= 0)
from the weekly plots. To compare subjects, we plotted the mean
and standard deviation of step rate and heart rate in each bin for
each subject averaged over all weeks. We then identified the
mean and standard deviation for all subjects within each bin.

Physical health state. An estimate of the physical health state of
each individual was determined from FL6MWD/H6MWD, where
H6MWD is the value of the 6MWD predicted for an equivalent
healthy individual. Various studies have shown that 6MWD values
for healthy individuals are dependent on age, gender and BMI
(height and weight)33,41. H6MWD (m) was calculated from41:

H6MWT ¼ 890:46� ð6:11xageÞ þ ð0:0345xage2Þ þ ð48:87xgenderÞ � ð4:87xBMIÞ
(2)

where age is in years, gender= 0 (female) and 1 (male), and BMI is
in units of kg m−2. This empirical relation was derived from
measurements of 617 subjects (52% female) aged 29–79 with BMI
in the range of 18 kgm−2–40 kgm−2 who completed two 6MWTs.
The fit to the data captured 46% of the variance. Other studies of
healthy individuals were excluded because they had a narrower
age range42,43 or a narrower range of BMI44.

Comparison to clinical data
To identify clinical parameters that were statistically significant
between sub-groups determined from Fitbit-derived metrics we used
a Mann-Whitney test. If a subject did not have a value for a specific
clinical parameter, then that parameter was excluded from the
analysis. Comparisons between groups were only made if there were
at least 5 subjects in each group. No other corrections were made.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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