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Integrated multimodal artificial intelligence framework for
healthcare applications
Luis R. Soenksen 1,2,5, Yu Ma3,5, Cynthia Zeng3,5, Leonard Boussioux3,5, Kimberly Villalobos Carballo3,5, Liangyuan Na 3,5,
Holly M. Wiberg 3, Michael L. Li3, Ignacio Fuentes1 and Dimitris Bertsimas1,3,4✉

Artificial intelligence (AI) systems hold great promise to improve healthcare over the next decades. Specifically, AI systems
leveraging multiple data sources and input modalities are poised to become a viable method to deliver more accurate results and
deployable pipelines across a wide range of applications. In this work, we propose and evaluate a unified Holistic AI in Medicine
(HAIM) framework to facilitate the generation and testing of AI systems that leverage multimodal inputs. Our approach uses
generalizable data pre-processing and machine learning modeling stages that can be readily adapted for research and
deployment in healthcare environments. We evaluate our HAIM framework by training and characterizing 14,324 independent
models based on HAIM-MIMIC-MM, a multimodal clinical database (N= 34,537 samples) containing 7279 unique hospitalizations
and 6485 patients, spanning all possible input combinations of 4 data modalities (i.e., tabular, time-series, text, and images), 11
unique data sources and 12 predictive tasks. We show that this framework can consistently and robustly produce models that
outperform similar single-source approaches across various healthcare demonstrations (by 6–33%), including 10 distinct chest
pathology diagnoses, along with length-of-stay and 48 h mortality predictions. We also quantify the contribution of each modality
and data source using Shapley values, which demonstrates the heterogeneity in data modality importance and the necessity of
multimodal inputs across different healthcare-relevant tasks. The generalizable properties and flexibility of our Holistic AI in
Medicine (HAIM) framework could offer a promising pathway for future multimodal predictive systems in clinical and operational
healthcare settings.
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INTRODUCTION
Artificial intelligence (AI) and machine learning (ML) systems are
poised to become fundamental tools in next-generation clinical
practice and healthcare operations1. Such anticipated utility,
particularly in AI/ML systems aimed to improve clinical efficiency
and patient outcomes, will require knowledge from multiple data
sources and various input modalities2–4. Multimodal architectures
for AI/ML systems are attractive because they can emulate the
input conditions that clinicians and healthcare administrators
currently use to perform predictions and respond to their complex
decision-making landscape2,5. A typical clinical practice uses a
diverse set of information formats contained within the patient
electronic health record (EHR) such as tabular data (e.g., age,
demographics, procedures, history, billing codes), image data (e.g.,
photographs, x-rays, computerized-tomography scans, magnetic
resonance imaging, pathology slides), time-series data (e.g.,
intermittent pulse oximetry, blood chemistry, respiratory analysis,
electrocardiograms, ultra-sounds, in-vitro tests, wearable sensors),
structured sequence data (e.g., genomics, proteomics, metabo-
lomics) and unstructured sequence data (e.g., notes, forms, written
reports, voice recordings, video) among other sources6. Recently,
AI/ML models leveraging multiple data modalities have been
demonstrated for the domains of cardiology7–9, dermatology10,
gastroenterology11, gynecology12, hematology13, immunology14,
nephrology15, neurology16,17, oncology18–20, ophthalmology21,
psychiatry22, radiology23–25, public health26 and healthcare
operational analytics (i.e., mortality, length-of-stay, and discharge

predictions)27–30. Furthermore, it has been shown that multi-
modality in most of these domains can increase the performance
of AI/ML systems (accuracy: 1.2–27.7%) compared to single-
modality approaches for the same task2. However, developing
unified and scalable pipelines that can consistently be applied to
train multimodal AI/ML systems that leverage and outperform
their single-modality counterparts has remained challenging2.
This motivates the development of our Holistic Artificial
Intelligence in Medicine (HAIM) framework, a modular ML
pipeline (Fig.1) that can be adapted to receive standard EHR
information from multiple input data modalities (i.e., tabular data,
images, time-series, and text). Our HAIM framework addressed
the need for a more generalizable methodology to create this
class of systems. It can leverage user-defined pre-trained feature-
extraction models as part of a unified processing and feature
aggregation stage that allows for simple and scalable down-
stream modeling of a variety of clinically relevant predictive tasks.
Based on this pipeline, we build and test thousands of
classification models with sample EHR inputs to systematically
investigate the value of adding individual data modalities to
these systems. To our knowledge, this has not yet been analyzed
to greater detail in prior clinical multimodal AI/ML demonstra-
tions. We provide this work as an open-source codebase for
clinicians and researchers in the hope it will allow them to train
and test AI/ML systems more easily with the local datasets, pre-
trained feature extractors, and clinical questions of their choosing
to fully leverage multimodality at their institutions.
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RESULTS
Demonstration of HAIM framework on multimodal clinical
dataset
We demonstrate the feasibility and versatility of the HAIM
framework on a compiled multimodal dataset (HAIM-MIMIC-MM),

which includes a total of 34,537 samples involving 7279
hospitalization stays and 6485 unique patients. We summarize
the general characteristics of HAIM-MIMIC-MM (i.e., number of
samples and features) in Table 1. Qualitatively, our HAIM frame-
work appears to improve on previous work in this field30 by
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including scalable patient-centric data pre-processing and
enabling standardized feature extraction stages that allow for
rapid prototyping, testing, and deployment of predictive models
based on user-defined prediction targets. Our HAIM framework
displays consistent improvement on average AUROC (Fig. 2a color
gradient) across all models as the number of modalities and data
sources increases. Furthermore, the trend of reducing AUROC
standard deviation (SD) values also appears to follow from
increasing the number of modalities and data sources (Fig. 2a
greyscale gradient). We also report Receiver Operating Character-
istic (ROC) curves for the best found single-modality predictive
models (Fig. 2c) as compared with typical multimodal predictive
models based on the HAIM framework (Fig. 2b). All 14,324
individual model AUROCs (10,230 for chest diagnosis prediction
tasks, 2047 for length-of-stay and 2047 mortality prediction) are
shown along with their respective SDs in Supplementary Fig. 1A–D.
These results suggest that our HAIM framework can consistently
improve predictive analytics for various applications in healthcare
as compared with single-modality analytics. Quantitatively, Fig. 3a,
b shows that our HAIM framework produces models with multi-
source and multimodality input combinations that improve from
average performance of canonical single-source (and by extension
single-modality) systems for chest x-ray pathology prediction
(ΔAUROC: 6–22%), length-of-stay (ΔAUROC: 8–20%) and 48 h mortality
(ΔAUROC: 11–33%). Specifically, for chest pathology prediction, the
minimum per task improvements include: Fracture (ΔAUROC= 6%),
Lung Lesion (ΔAUROC= 7%), Enlarged Cardio mediastinum

(ΔAUROC= 9%), Consolidation (ΔAUROC= 10%), Pneumonia
(ΔAUROC= 8%), Atelectasis (ΔAUROC= 6%), Lung Opacity (ΔAUROC=
7%), Pneumothorax (ΔAUROC= 8%), Edema (ΔAUROC= 10%) and
Cardiomegaly (ΔAUROC= 10%). Furthermore, the average percent
improvement of all multimodal HAIM predictive systems is 9–28%
across all evaluated tasks (Fig. 3a). All AUROC-related results
displayed in Figs. 2a and 3a, b are grouped and ordered by number
of modalities (range= 1–4, encompassing tabular, time-series, text,
and images), number of data sources (range= 1–11, including
each individual data source in HAIM-MIMIC-MM) and sample size
(N) for ease of analysis.

Analysis of source and multimodality contributions on model
performances
To understand how each data source and modality contributes
to the final performance, we calculate Shapley values31 of each
of the 11 sources and 4 modalities as it contributes to the final
AUROC test-set performance. Since our demonstrated predic-
tive tasks are treated as binary classification problems, we
assumed that the AUROC of a model with no data source is 0.5,
and the AUROC of the model of a particular modality is the
average AUROC of the models of all sources that belong to such
modality. Aggregated Shapley values for all data modalities per
predictive task are reported in Fig. 3c, while Shapley values for
all data sources per predictive task are shown in Supplementary
Fig. 2. Different tasks exhibit distinct distributions of aggre-
gated Shapley values across data modalities and sources. In
particular, we observe that vision data contributed most to the
model performance for the chest pathology diagnosis tasks, but
for predicting length-of-stay and 48 h mortality, the patient’s
historical time-series records appeared to be the most relevant.
Shapley values also provide a way to monitor errors and
information loss propagation during the feature extraction and
model training phases of our HAIM framework. Data modalities
associated with small (or negative) Shapley values indicate
either an absence of extracted information or error propagation
leading to detrimental local effects on downstream model
performance (Fig. 3b and Supplementary Fig. 2). This situation
can be potentially addressed by removing such input data
modalities or by selecting different pre-trained feature extrac-
tion models specific to that data modality. Nevertheless, we see
that across all tasks, in our specific sample HAIM-MIMIC-MM
demonstrations, every single-modality contributes positively to
a monotonic trend with diminishing returns on the predictive
capacity of the models (Fig. 3a and c), likely due to multimodal
data redundancy. These observations attest to the potential
value (and limitations) of using multimodal inputs and pre-
trained feature extraction modules in frameworks like HAIM,
which could be used to generate predictive models for diverse
clinical tasks more cost-effectively than previous strategies. A

Fig. 1 Holistic Artificial Intelligence in Medicine (HAIM) framework. Under this framework, databases and tables sourced from specific
healthcare institutions such as HAIM-MIMIC-MM combined from MIMIC-IV and MIMIC-CXR-JPG for this work are processed to generate
individual patient files. These files contain past and present multimodal patient information from the moment of admission. For processing
under the HAIM framework, every data modality is fed to independent embedding generating streams. In this work, tabular data is minimally
processed using simple transformations or normalizations to produce encodings or embedding-like categorical numerical values (ETabular(n,t),
where n= unique stay/hospitalization/patient and t= sampling time). Selected time-series are processed by generating statistical metrics on
each of the time-dependent signals to produce embeddings representative of their trends (ETimeSeries(n,t)) from the moment of admission until
the sampling time. Natural language inputs such as notes are processed using a pre-trained transformer neural network to generate text
embeddings of fixed size (EText(n,t)). Furthermore, image inputs such as X-rays are processed using a pre-trained convolutional neural network
to also extract fixed-size embeddings out of the model output probability vectors and dense features (EImages(n,t)). While not done in this work,
thanks to the modularity of the embedding extraction process in the HAIM framework, other pre-trained models or systems could be added
to generate embeddings from other types of data sources if needed (EOther(n,t)). All generated embeddings are concatenated to generate a
fusion embedding, which can be used to train, test, and deploy models for predictive analytics in healthcare operations. For this work, we
tested and utilized only XGBoost as a canonical type of architecture for building the downstream predictive models based on fusion
embeddings. CNN Convolutional Neural Network, CT Computerized Tomography, ECG Electrocardiogram, ECO Echocardiogram, MRI Magnetic
Resonance Imaging, NN Neural Network, O2 Oxygen, ReLU Rectified Linear Unit, RNN Recurrent Neural Network, US Ultrasound.

Table 1. General characteristics of the HAIM-MIMIC-MM database.

Characteristic MIMIC-IV-MM

# Samples 34537

# Demographic Variables 6

# Chart Event Variables 9

# Laboratory Event Variables 23

# Procedure Event Variables 10

# X-ray Variables 1

# Text Note Variables 3

HAIM-MIMIC-MM is a combination of MIMIC-IV and MIMIC Chest X-ray
filtered to only include patients that have at least one chest X-ray
performed with the goal of validating multimodal predictive analytics in
healthcare operations. The number of samples and quantities of variables
are described. Demographic features correspond only to a tabular data
modality, while chart, laboratory, and procedure events correspond to
time-series. X-ray variables correspond to types of medical images, while
text note variables correspond to the test in radiology, electrocardiogram,
and echocardiogram natural language reports.
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high-level schematic of the complete HAIM pipeline for training
and evaluation of models throughout this work is described in
Fig. 3d. The general process of HAIM-MIMIC-MM database
preparation, as well as embedding extraction and fusion that
serves as input for this pipeline, can be found in Fig. 1.

DISCUSSION
Inferring latent features from rich and heterogeneous multimodal
EHR information could provide clinicians, administrators, and
researchers with unprecedented opportunities to develop better
pathology detection systems, actionable healthcare analytics, and
recommendation engines for precision medicine. Our results
directly illustrated that different data modes are more useful for
different tasks, and thus a multimodal approach to construct a
comprehensive pipeline for AI/ML in healthcare. In addition to
leveraging multimodal inputs, our HAIM framework attempts to
solve several bottleneck challenges in this kind of AI/ML pipeline
for healthcare in a more unified and robust way than previous
implementations, including the possibility of working with tabular
and non-tabular data of unknown sparsity from multiple
standardized and unstandardized heterogeneous data formats.
The use of fusion embeddings obtained directly from individual
patient files suggests that a HAIM framework can potentially
facilitate the definition, testing, and deployment of AI/ML models
that may be useful for managing complex clinical situations and
day-to-day practice in healthcare systems. More specifically, if

implemented across many predictive tasks while using the same
patient embeddings, this approach could potentially help accel-
erate the advent of scalable predictive systems to improve patient
outcomes and quality of care. From these observations, our work
distinguishes itself from previously published systems in three
main ways: (A) First, our work systematically investigates the value
of progressively adding data modalities and sources to clinical
multimodal AI/ML systems in much greater detail and larger
combinatorial input space than any prior investigation of such
class systems. Previous works in this field assume advantageous
properties to multimodality without clear validation of the
dynamics of such expected performance benefits as data
modalities are added. Through our investigation by conducting
14,324 model experiments with different input modalities and
data source combinations, we provide strong empirical evidence
that supports the potential for reaching such positive monotonic
trends in performance from multimodal AI/ML systems as data
modalities are added. However, our investigation also unveils
previously unreported local non-monotonic and diminishing
return effects on the predictive capacity of these models under
certain conditions of data source availability, error, and redun-
dancy, which are relevant and can become interpretable through
our use of aggregated Shapley values during analysis. (B) Second,
our data pre-processing and modeling pipeline expands on the
notion of high modularity from previously published work, that
tend to employ ad-hoc multimodal architectures trained directly
on fused data inputs, which are usually closed, less compatible

Fig. 2 Performance of the multimodal HAIM framework on various demonstrations for healthcare operations. a Average and standard
deviation values of the area under the receiver operating characteristic (AUROC) for all demonstrations including pathology diagnosis (i.e.,
lung lesions, fractures, atelectasis, lung opacities, pneumothorax, enlarged cardio mediastinum, cardiomegaly, pneumonia, consolidation, and
edema), as well as length-of-stay and 48 h mortality prediction. The number of modalities refers to the coverage among tabular, time-series,
text, and image data. The number of sources refers to the coverage among available input data sources (10 for pathology diagnosis, while 11
for length-of-stay and 48 h mortality prediction). Thus, the position (Modality= 2, Sources= 3) corresponds to the average AUROC of all
models across all input combinations covering any 2 modalities using any 3 input sources. Increasing gradients on average AUROC appear to
follow from increasing the number of modalities and number of sources across all evaluated tasks. Decreasing gradients on AUROC standard
deviations follow from less variability in performance as a higher number of modalities and data sources is used. b Receiver operating
characteristic (ROC) curves for typical HAIM model across all use cases exhibiting input multimodal. c ROC curves for a best-performing model
with single-modality inputs across the same use cases. Consistent averaged improvements across all tasks are observed in multimodality as
compared to single-modality systems. AUROC Area under the curve, AUROC Area under the receiver operating characteristic curve,
CM Cardiomediastinum. Dx Diagnosis, HAIM Holistic Artificial Intelligence in Medicine, Ops Operations, SD Standard deviation.
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with other datasets, and modeling changes across users. Instead,
our approach leverages externally validated open-sourced models
as feature extractors to create unified vector representations of
patient files that allow for much simpler downstream modeling of
target variables. Furthermore, this framework enables and
encourages users to update selected feature extractors more
easily with new state-of-the-art (SOTA) or more advantageous
methods as the community develops them, without requiring to
re-train other feature extractors. (C) Finally, our work demonstrates
one of the highest numbers of sources and data modalities used
so far in multimodal clinical AI/ML systems for EHRs, including
tabular data, time-series, text, and images along with the use of

interpretability techniques such as Shapley values. Using aggre-
gated Shapley values, we can quantitatively establish the
importance and heterogeneity of different data sources and
modalities across a large number of experiments in different
healthcare tasks. Thus, we demonstrate the potential of learning
from multiple data sources and modalities, underscoring the need
to collect more holistic patient data that facilitates the application
of multimodal ML in the healthcare domain. Our system is also
provided as an open-source codebase to allow clinicians and
researchers to train and test their own multimodal AI/ML systems
more easily with local datasets, pre-trained feature extractors, and
their own clinical questions. While our systematic evaluation of the

Fig. 3 Multimodal HAIM framework is a flexible and robust method to improve predictive capacity for healthcare machine learning
systems as compared to single-modality approaches. a Average percent change of area under the receiver operating characteristic curve
(Avg. ΔAUROC) for all tested multimodality HAIM models as compared to their single-source single-modality counterparts. While different
models exhibit varying degrees of improvement, all tested models show positive Avg. ΔAUROC percentages. The number of modalities refers
to the coverage among tabular, time-series, text, and image data. The number of sources refers to the coverage among available input data
sources (10 for pathology diagnosis, 11 for length-of-stay, and 48 h mortality prediction). Thus, the position (Modality= 2, Sources= 3)
corresponds to the average AUROC of all models across all input combinations covering any 2 modalities using any 3 input sources.
b Expanded Avg. ΔAUROC percentages for all tested multimodality HAIM models and ordered by the number of used modalities (i.e., tabular,
time-series, text, or images) as well as the number of used data sources. c Waterfall plots of aggregated Shapley values for independent data
modalities per predictive task. While Shapley values for all data modalities appear to be positively contributing to the predictive capacity of all
models, different tasks exhibit distinct distributions of aggregated Shapley values. d High-level schematic of the HAIM pipeline developed to
support the presented work. After data collection or sourcing (HAIM-MIMIC-MM for this work), a process of feature selection and embedding
extraction is applied to feed fusion embeddings into a process of iterative architecture engineering (model and hyperparameter selection).
After particular models are selected and trained, they can be benchmarked to test and report results. This process concludes by the selection
of a model for deployment in a use case scenario.
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effects of multiple data modality additions to our AI/ML frame-
work was based on the MIMIC-IV dataset, this input was only used
to exemplify our pipeline and to provide strong empirical
evidence on the dynamics of performance from the use of
different data modalities in a canonical HER scenario. The
downstream trained models generated for this investigation
could potentially be used in the future by people interested in
predicting the demonstrated clinical tasks within intensive care
units (ICUs) using multimodal data. However, we primarily
encourage users to use our codebase to process their own EHR
datasets and train predictive tasks of interest to them with the
help of our pipeline. We envision a broad utility for the HAIM
framework and its subprocesses focusing on driving cost-effective
AI/ML activities for clinical and non-clinical operations. We hope
that our HAIM framework can help reduce the time required to
develop relevant AI/ML systems while efficiently utilizing human,
financial, and digital resources in a more timely and unified
approach than the current methods used in healthcare
organizations.

METHODS
Dataset
For this work, we utilize the Medical Information Cart for Intensive
Care (MIMIC)-IV32,33, an openly accessible database that contains
de-identified records of 383,220 individual patients admitted to
the ICU or emergency department (ED) of Beth Israel Deaconess
Medical Center (BIDMC) in Boston, MA, USA, between 2008 and
2019 (inclusive). MIMIC-IV’s most recent version (v1.0) improves on
MIMIC-III34 to provide public access to the EHR data of over 40,000
hospitalized patients based on the BIDMC’s MetaVision clinical
information system. We selected MIMIC-IV due to its large-scale,
detailed documentation, generalizable formatting, corroborated
use in AI/ML applications35, and prior evaluations in terms of AI/
ML interpretability, fairness, and bias36. To augment BIDMC’s
MIMIC-IV v1.0, we used the MIMIC Chest X-ray (CXR) database
v2.0.037 containing 377,110 radiology images with free-text
reports representing 227,835 medical imaging events that can
be matched to corresponding patients included in MIMIC-IV v1.0.
Both databases have been independently de-identified by
deleting all personal health information, following the US Health
Insurance Portability and Accountability Act of 1996 Safe Harbor
requirements. After getting credentialled access from PhysioNet,
we combined MIMIC-IV v1.0 and MIMIC-CXR-JPG v2.0.0 into a
unified multimodal dataset (HAIM-MIMIC-MM) based on matched
patient, admission, and imaging-study identifiers (i.e., subject_id,
stay_id, study_id from MIMIC-IV and MIMIC-CXR-JPG databases).
We used HAIM-MIMIC-MM throughout this study to test all the
presented ML use cases analyzing various combinations of
structured patient information, time-series data, medical images,
and unstructured text notes, as presented in the following
sections.

Patient-centric data representation
We generated the individual files containing patient-specific
information for single hospital admissions by querying the
aggregated multimodal dataset HAIM-MIMIC-MM. Every HAIM-
EHR file contains the details of current and previous patient
admissions, transfers, demographics, laboratory measurements,
provider orders, microbiology cultures, medication administra-
tions, prescriptions, procedure events, intravenous and fluid
inputs, sensor outputs, measurement events, radiological images,
radiological reports, electrocardiogram reports, echocardiogram
reports, notes, hospital billing information (e.g., diagnosis and
procedure-related codes), as well as other time-stamped and
charted information. The samples, therefore, include all available
patient data collected within a specific admission and stay with all

prior information occurring before the discharge or death time
stamp. We stored all the individual patient files in HAIM-MIMIC-
MM as “pickle” python-language object structures for ease of
processing in subsequent sampling and modeling tasks. The code
to generate the aggregated HAIM-MIMIC-MM dataset from
credentialled access to MIMIC-IV v1.0 and MIMIC-CXR-JPG v2.0.0
datasets is available at our PhysioNet repository (https://doi.org/
10.13026/dxcx-n572)38 as well as our GitHub repository (https://
github.com/lrsoenksen/HAIM). In addition, samples of pre-
processed pickle patient files of HAIM-MIMIC-MM can be found
in our PhysioNet project page https://doi.org/10.13026/dxcx-
n572)38. A schematic of this patient-centric data representation
as multimodal input for our HAIM framework is shown in Fig. 1.

Patient data processing and multimodal feature extraction
We processed each HAIM-EHR patient file individually to generate
fixed-dimensional vector embeddings for each of the possible
input types, including all patient information from the time of
admission until the selected inference event (e.g., time of imaging
procedure for pathology diagnosis or end-of-day for 48 h mortality
predictions). The generated embeddings from input modalities
include: tabular data such as demographics (Ede= demographics),
structured time-series events (Ece= chart events, Ele= laboratory
events, Epe= procedure events), unstructured free text (Eradn=
radiological notes, Eecgn= electrocardiogram notes, Eecon= echo-
cardiogram notes), single-image vision (Evp= visual probabilities,
Evd= visual dense-layer features) and multi-image vision (Evmp=
aggregated visual probabilities, Evmd= aggregated visual dense-
layer features). From these, patient signals used as time-series for
embedding extraction (classified by type of event) can be found in
Supplementary Table 1. We then implemented fixed embedding
extraction procedures based on standard data modalities (i.e.,
tabular data, time-series, text, and images) to reduce its
dependence on site-specific data architectures and allow for a
consistent embedding format that may be applied to arbitrary ML
pipelines. Note that throughout this work, we refer to data
“modality” as a distinct term to data “source”, where the former is
used to define broad classes of data usually digitalized in different
format types, while the latter simply refers to different input
variables belonging to a data modality as defined in Supplemen-
tary Table 2.
We extracted the embeddings based solely on tabulated

demographics data (Ede) by querying normalized numerical values
from the patient record. We obtained time-series embeddings
using time-stamped data from the structured patient chart,
laboratory, and procedure event lists (i.e., Ec Ele, Epe, respectively).
We selected a set of key clinical signals for each type of event list
and constructed the corresponding time sequences from the time
of patient admission to the time-stamp allowable for each
individual feature (see Supplementary Table 1). The embeddings
encode the signal length, maximum, minimum, mean, median, SD,
variance, number of peaks, and average time-series slope and
piece-wise change over time of these metrics. The time-series
signals for Ece include: heart rate (HR), non-invasive systolic blood
pressure (NBPs), non-invasive diastolic blood pressure (NBPd),
respiratory rate, oxygen saturation by pulse oximetry (SpO2),
Glasgow coma scales (GCS) for verbal, eye, and motor response
(GCSV, GCSE, GCSM respectively). Moreover, time-series Ele include:
glucose, potassium, sodium, chloride, creatinine, urea nitrogen,
bicarbonate, anion gap, hemoglobin, hematocrit, magnesium,
platelet count, phosphate, white blood cells, total calcium, mean
corpuscular hemoglobin (MCH), red blood cells, mean corpuscular
hemoglobin concentration, mean corpuscular volume, red blood
cell distribution width, platelet count, neutrophils, vancomycin.
Lastly, time-series Epe procedures include: foley catheter, periph-
erally inserted central catheter (PICC), intubation, peritoneal
dialysis, bronchoscopy, electroencephalogram (EEG), dialysis with
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continuous renal replacement therapy, dialysis with catheter,
removed chest tubes, and hemodialysis.
We obtained embeddings for the unstructured free text (Eradn,

Eecgn, and Eecon) by concatenating all available text from each of
these types of notes as continuous strings and then by processing
them using Clinical BERT39, a transformer-based bidirectional
encoder model pre-trained on a large corpus of biomedical and
medical text. This transformer-based model generates a single
768-dimensional vector, or embedding, per unstructured text
type. We split notes longer than the maximum input token size for
Clinical BERT (i.e., 512 tokens) into the smallest number of
processable text chunks to generate various embeddings sequen-
tially, all of which are averaged to produce a single 768-
dimensional output embedding for the entire text.
Finally, we processed vision data included in this work using a

pre-trained Densenet121 convolutional neural network (CNN)
previously fine-tuned on the X-ray CheXpert dataset40 (i.e.,
Densenet121-res224-chex)41. We selected this model because
the availability of at least one time-stamped chest X-ray per
patient file within the HAIM-MIMIC-MM database as its core visual
component. Densenet121-res224-chex is part of TorchXRayVision,
a unified library, and repository of datasets and SOTA pre-trained
models for chest pathology classification using X-rays41. While
other computer vision models pre-trained on large sets of
medical imaging data may be utilized to extract embeddings
within the HAIM framework, for the purpose of experimentally
validating our pipeline, we used Densenet121-res224-chex as a
canonical method to extract visual embeddings. We obtained the
single-image embeddings per HAIM-EHR patient file by rescaling
each image into 224 × 224 size using a standard interpolation
method with resampling using pixel area relations, and then
feeding it into the selected network to extract: (a) output class
probabilities and (b) final dense-layer features. The output classes
per image are the 18-dimensional diagnosis probability vector
generated directly by Densenet121-res224-chex, which produces
the embedding Evp. The dense network features per image are
the 1024-dimensional vector generated by extracting the outputs
of the last dense layer of the model, which produces the
embedding Evd. Multi-image embeddings are also obtained by
averaging feature-wise the output class probabilities and dense-
feature embeddings of all available images per HAIM-EHR patient
file (e.g., X-ray studies with multiple planes and past X-ray
studies). This produces an aggregated multi-image diagnosis
probability embedding (Evmp) and multi-image dense-layer
embedding (Evmd) per patient that considers all available X-rays
and not only the most recent one.
There are various advantages of using SOTA pre-trained models

specific to each data modality (i.e., tabular, time-series, text, and
images) such as Clinical BERT39 and Densenet121-res224-chex41 as
feature extractors in our HAIM framework. First, every single-data
pre-trained SOTA model can be user-defined and easily
exchanged with updated ones, as long as their respective dense
features or embeddings are accessible. This departs from other
multimodal AI/ML strategies that attempt to directly fuse
heterogeneous input data, which makes these systems less
modular and usually incompatible with the use of high-
performing open-source single-data-type models produced by
other organizations and researchers10,29. A second advantage of
using SOTA feature extractors within our framework is that users
can easily generate unified input vectors to focus primarily on
downstream modeling and rapid training of their predictive
systems of interest, which can accelerate deployment.
In our sample demonstration of the HAIM framework using the

HAIM-MIMIC-MM database, the dimensionality of each of these
embeddings is Ede= 6, Ece= 99, Ele= 242, Epe= 110, Eradn= 768,
Eecgn= 768, Eecon= 768, Evp= 18, Evd= 18, Evmp= 1024, and
Evmd= 1024. Detail on the presence and handling of missing
input data is provided as part of Supplementary Table 3. Once all

single-modality embeddings are generated, we flatten, normalize,
and concatenate them into a single one-dimensional multimodal
fusion embedding per HAIM-EHR patient file, which constitutes
the input for all downstream modeling tasks in our HAIM
framework (see Supplementary Fig. 3 for algorithmic detail of
such process). This deep patient representation in vector form can
be made of fixed size within or across healthcare institutions
(4845-dimensional for this work), which can allow for rapid
iteration in the development of generic ML systems for relevant
predictive analytics in various applications.

Modeling
After we extracted all multimodal fusion embeddings for all HAIM-
EHR patient files in the HAIM-MIMIC-MM database, we generated
classification models across various clinical and operational tasks,
including: (a) chest pathology diagnosis, (b) length-of-stay and (c)
48 h mortality predictions. For each of these modeling tasks, we
split the available embeddings randomly into training (80%) and
testing (20%) sets 5 times (with 5 different splits), stratifying by
patients during our experiments to avoid data leakage of patient-
level information from training to testing, compute SDs, and to
ensure adequate comparison of recorded predictive values. For
the chest pathology diagnosis tasks, we applied an additional
stratification by pathology to balance the target ratios. We then
conducted experiments to compare the effect of all different
combinations of input data modalities and sources using the
extracted multimodal fusion embeddings as presented in further
sections. An algorithmic formulation of our HAIM framework in the
context of the data processing, feature extraction, and down-
stream predictive task modeling stages is provided as part of
Supplementary Fig. 3. Detail on the sensitivity of missing input
data to downstream predictions is also provided as part of
Supplementary Fig. 4.

Tasks of interest
Chest pathology diagnosis prediction. Early detection of certain
pathologies in CT scans and other diagnostic imaging modalities
enables clinicians to focus on early intervention rather than
delayed treatment for advanced stages of relevant pathologies.
Within this task of interest, we chose to target the prediction of 10
common thorax-level pathologies (i.e., fractures, lung lesions,
enlarged cardio mediastinum, consolidation, pneumonia, lung
opacities, atelectasis, pneumothorax, edema, and cardiomegaly)
that can be typically assessed by radiologists through chest X-ray,
to demonstrate that HAIM outperforms image-only approaches.
The ground-truth values for each chest pathology included in
HAIM-MIMIC-MM are derived from MIMIC-CXR-JPG v2.0.0, where
radiology notes were processed to determine if each of these
pathologies was explicitly confirmed as present (value= 1),
explicitly confirmed as absent (value= 0), inconclusive in the
study (value=−1), or not explored (no value). We only selected
samples with 0 or 1 values, removing the rest from the training
and testing data. Thus, for this specific task, we utilized the
multimodal fusion embeddings as input and the ground-truth
chest pathology HAIM-MIMIC-MM values as the output target to
predict. From these embeddings, we only excluded the unstruc-
tured radiology notes component (Erad) from the allowable input
to avoid potential overfitting or misrepresentations of real
predictive value. We trained and tested independent binary
classification models for each target chest pathology and input
source combination as described in the general model training
setup section. Final sample sizes for each pathology diagnosis task
are: Fracture (N= 557), Lung Lesion (N= 930), Enlarged cardio
mediastinum (N= 3206), Consolidation (N= 4465), Pneumonia
(N= 7225), Lung opacity (N= 14,136), Atelectasis (N= 15,213),
Pneumothorax (N= 17,159), Edema (N= 17,182) and Cardiome-
galy (N= 18,571).
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Length-of-Stay prediction. Projected patient length-of-stay plays a
vital role for both patients and hospital systems in making
informed medical and economic decisions. An accurate forecast of
patient stay enhances patient satisfaction, hospital resource
allocations, and doctors’ ability to make more effective treatment
planning42. Particularly, predicting next 48 h discharges is critical
for physicians to identify and prioritize patients ready for
discharge and for case management teams to accelerate
discharge preparations, which ultimately reduces patient burden
and direct operating costs in healthcare systems43. To demon-
strate the HAIM framework for healthcare operations tasks, we
predicted whether or not a patient will be discharged without
expiration during the next 48 h as a binary classification problem:
discharged alive ≤48 h (1) or otherwise (0). In case of patient
death, we set the class label to 0. Each sample in this predictive
task corresponds to a single patient-admission EHR time point
where an X-ray image was obtained (N= 45,050).

48 h mortality prediction. Due to its time and outcome-critical
environments, clinicians in ICU units often need to make rapid
evaluations of patient conditions to inform treatment plans44.
However, current standards of estimating patient severity, such as
the Acute Physiologic Assessment and Chronic Health Evaluation
score, fail to incorporate medical characteristics beyond acute
physiology45. Accurate mortality prediction can give clinicians
advanced warnings of possible deteriorations and share the burdens
of making information-heavy decisions44. To further demonstrate
the versatility of the HAIM framework, we also built models to
predict the probability that a patient will expire during the next 48 h
as a binary classification problem: expired ≤48 h (1) or otherwise (0).
In the case of a patient whose hospital exit status is not expiration,
we set the class label to 0. It should be noted that a patient can
acquire different target class labels at different time points during
their stay due to changes in status and proximity to the discharge or
time of death. Similar to the length-of-stay modeling, each sample in
this predictive task corresponds to a single patient-admission EHR
time point where an X-ray image was obtained (N= 45,050).

General model training setup
We initially explored seven ML architectures, including logistic
regression, classification and regression trees, random forest,
multi-layer perceptron, gradient boosted trees (XGBoost), gradient
boosting machines (LightGBM), as well as attentive tabular
networks TabNet to heuristically decide on the best model choice
for follow-up experiments. Since XGBoost supports fast computa-
tions for large-scale experiments and consistently outperformed
other architectures during preliminary observations, we selected
this canonical methodology for all further tests. Our XGBoost-
based modeling experiments were conducted using every
possible combination of input embeddings, extracted as
described in previous sections, from the allowable 11 data sources
(i.e., Ede, Ece, Epe, Ele, Eecgn, Eecon, Eradn, Evp, Evd, Evmp, and Evmd) and 4
modalities (i.e., tabular, time-series, text, and images). In this
process, we concatenated each data stream permutation to
produce fusion embeddings and train XGBoost models using
single-modality (N1M= 52), double-modality (N2M= 392), triple-
modality (N3M= 972) and quadruple-modality (N4M= 630) combi-
nation of inputs. This corresponds to the generation of 2047
models (per predictive task) for the cases of length-of-stay and
48 h mortality. As previously mentioned, in the case of chest
pathology diagnosis, the embeddings corresponding to all
radiology notes (Eradn) are not included as part of the input
fusion embeddings to allow for fair comparison with the output
target, which was originally determined from examining notes in
MIMIC-CXR-JPG. This reduced the total number of possible models
per chest pathology diagnosis task to 1023 (N1M= 26, N2M= 196,
N3M= 486, N4M= 315). Since there are ten chest pathologies,

defined as binary classification problems for our experiments, we
trained a total of 1023*10= 10,230 models for chest pathology
diagnosis prediction. As mentioned previously, all XGBoost models
were trained five times with five different data splits to repeat the
experiments and compute average metrics and SDs.
All defined models (NModels= 14,324) were trained and tested to

evaluate the advantage of multimodal predictive systems, based
on the HAIM framework, as compared to single modality ones for
the aforementioned clinical and operational tasks. We capture
average trends of model performance by reporting the average
area under the receiver operating characteristic (AUROC) curve on
the testing set (20%) over five consecutive iterations of
randomized train-test data splitting and model training. The
hyperparameter combinations of individual XGBoost models were
selected within each training loop using a fivefold cross-validated
grid search on the training set (80%). This XGBoost tuning process
selected the maximum depth of the trees (5–8), the number of
estimators (200 or 300), and the learning rate (0.05, 0.1, 0.3)
according to the parameter value combination leading to the
highest observed AUROC within the training loop. This model
cross-validation strategy at the level of each data source
combination ensures that the respective test sets are never used
for model training, model selection, model comparison, or
reporting across any of the 14,324 uniquely trained models. Thus,
throughout this study, the test set remains unseen at the level of
each model for all models, which minimizes the potential for data
leakage or model selection overfitting.
The aggregated test set performance metrics (fivefold test

averages and SDs) of all these models grouped by the number of
data sources and modalities can be found in Fig. 2. We conducted
all embedding generation and computational experiments using a
parallelization strategy under MIT’s Supercloud server (https://
supercloud.mit.edu) with 30GB RAM and 1 NVIDIA Tesla V100
Volta graphics processing unit per instance. A high-level
schematic representation of the HAIM framework, from data
sourcing to model benchmarking, can be found in Fig. 3.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The multimodal dataset in Pickle file format used for this work (HAIM-MIMIC-MM) can
be fully generated by combining the openly accessible MIMIC-IV v1.0 (https://
physionet.org/content/mimiciv/1.0/) and MIMIC-CXR-JPG v2.0.0 (https://
physionet.org/content/mimic-cxr-jpg/2.0.0/) using credentialed access and the
resources found in our PhysioNet online repository (https://doi.org/10.13026/dxcx-
n572)38. All the extracted feature embeddings per subject from HAIM-MIMIC-MM are
also available for download in our PhysioNet online repository.

CODE AVAILABILITY
All the code used to prepare the dataset, generate models and evaluate the
conclusions of this work can be found in our GitHub repository (https://github.com/
lrsoenksen/HAIM), as well as the Supplementary Materials of this work.
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