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A machine learning framework supporting prospective clinical
decisions applied to risk prediction in oncology
Lorinda Coombs 1,3, Abigail Orlando2, Xiaoliang Wang 2, Pooja Shaw2, Alexander S. Rich2, Shreyas Lakhtakia2, Karen Titchener1,
Blythe Adamson 2, Rebecca A. Miksad2✉ and Kathi Mooney1

We present a general framework for developing a machine learning (ML) tool that supports clinician assessment of patient risk
using electronic health record-derived real-world data and apply the framework to a quality improvement use case in an oncology
setting to identify patients at risk for a near-term (60 day) emergency department (ED) visit who could potentially be eligible for a
home-based acute care program. Framework steps include defining clinical quality improvement goals, model development and
validation, bias assessment, retrospective and prospective validation, and deployment in clinical workflow. In the retrospective
analysis for the use case, 8% of patient encounters were associated with a high risk (pre-defined as predicted probability ≥20%) for
a near-term ED visit by the patient. Positive predictive value (PPV) and negative predictive value (NPV) for future ED events was 26%
and 91%, respectively. Odds ratio (OR) of ED visit (high- vs. low-risk) was 3.5 (95% CI: 3.4–3.5). The model appeared to be calibrated
across racial, gender, and ethnic groups. In the prospective analysis, 10% of patients were classified as high risk, 76% of whom were
confirmed by clinicians as eligible for home-based acute care. PPV and NPV for future ED events was 22% and 95%, respectively. OR
of ED visit (high- vs. low-risk) was 5.4 (95% CI: 2.6–11.0). The proposed framework for an ML-based tool that supports clinician
assessment of patient risk is a stepwise development approach; we successfully applied the framework to an ED visit risk prediction
use case.
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INTRODUCTION
The advent of widespread electronic health record (EHR) imple-
mentation coincided with healthcare advances that rapidly
increased the volume and complexity of information clinicians can
access about individual patients. Yet, from a clinical data synthesis
perspective, the EHR and other electronic sources of clinical
information still hold a wealth of untapped information that can
benefit overall patient care. Unlocking the promise of electronically-
stored healthcare data to improve healthcare across a population of
patients requires better development and application of tools that
collect and synthesize digitally stored data1.
The use of real-world data (RWD) from sources such as EHRs,

registries, and claims data for the development of machine
learning (ML)-based predictive risk models is an emerging
research area2–9. However, to date the vast majority of research
about the utility and value of ML approaches in the healthcare
setting has been retrospective in nature, used historical data for
model development and validation, and was limited to specific
use cases10. There is a notable lack of prospective evaluation of ML
tools in healthcare, which has hindered their widespread adoption
into real-world clinical workflows in an evidenced-based fash-
ion10,11. Indeed, in a recent systematic literature review of studies
that used ML tools to address a clinical problem, just 2% of
reviewed studies were prospective in design10. Additionally, there
is a need for a consistent ML model evaluation framework in order
to standardize approaches and facilitate comparisons across tools,
data sources, and use cases.
The use of ML-based tools to aid the preemptive identification

of patients who are at risk for an adverse clinical event could
improve overall patient care and safety through more efficient
healthcare delivery and the prompting of an early intervention to

mitigate severity. The overall objective of this paper is to put forth
a general framework to evaluate and deploy an ML-based clinical
tool that supports a clinician’s independent assessment of patient
risk for an adverse event by displaying medical information and
predicted risk level using documented EHR-derived RWD. Then, in
order to demonstrate the functionality and utility of the frame-
work, we present an example use case in the oncology setting.

RESULTS—USE CASE
Retrospective evaluation
The retrospective evaluation included 28,433 encounters (2385
patients); 53% were women, the median age was 65 years, and
87% were White (Table 1). The most common cancers (excluding
non-melanoma skin neoplasms) were breast, unspecified primary
malignant neoplasms, prostate, and non-Hodgkin's lymphoma as
defined by standard ICD mapping rules. The observed prevalence
of one or more ED visit(s) within 60 days was 10% and the ML-
based clinical tool classified 8% of encounters as high risk (pre-
defined predicted probability ≥0.20). The positive predictive value
(PPV) and negative predictive value (NPV) for future ED events was
26% and 91%, respectively. Patients identified as high risk by the
tool had 3.5 times greater odds of a 60-day ED visit than those
identified as low risk (95% CI: 3.4–3.5; Table 2).

Bias assessment
The observed calibration factors for the majority groups in the
datasets were as follows: White race: 0.005 [−0.006, 0.014]; Female
gender: −0.001 [−0.013, 0.011]; Non-Hispanic ethnicity: 0.004
[−0.006, 0.013] (Table 3). Patient demographic groups constituting
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minorities along the lines of race, gender, and ethnicity are also
reported in Table 3. In all cases, 0 laid within the bootstrapped
95% confidence interval for the metric (i.e., ideal calibration). In
the analysis, using calibration factors to assess the model’s fairness
performance, the model appeared to be largely calibrated across
racial, gender, and ethnic groups, although, as noted previously,
the relevant point estimates for some groups have wide
confidence intervals (Fig. 1).

Prospective evaluation
The prospective evaluation included 1236 patients; 53% were
women, the median age was 65 years, and 84% were White
(Table 4). The most common cancers (excluding non-melanoma
skin cancer) were breast, prostate, lung, and multiple myeloma.
The observed prevalence of an ED visit within 60 days was 7%. The
ML-based clinical tool classified 10% of patients as high risk; of
these higher risk patients, 76% were confirmed by a Huntsman at
Home nurse practitioner review of the EHR that their clinical
course would qualify them for admission to the Huntsman at
Home program (95% CI: 0.62–0.89). The PPV and NPV for future ED
events was 22% and 95%, respectively. Patients identified as high
risk by the tool had 5.4 times greater odds of a 60-day ED visit
than those identified as low risk (95% CI: 2.6–11.0; Table 2).

Table 1. Baseline patient characteristics for model training and retrospective evaluation.

Characteristics Categories Model training cohort
N= 5139 patients

Retrospective cohort
N= 2385 patients

Age, years Median (range) 64 (18–100) 65 (18–101)

Gender Male 47% 47%

Female 53% 53%

Ethnicity Hispanic 7% 7%

Non-Hispanic 93% 93%

Race White 88% 87%

Black 1% 1%

Asian 2% 2%

Other 8% 8%

Unknown 1% 2%

Cancer Sitesa Breast 24% 23%

Unspecified primary malignant neoplasms 22% 21%

Non-melanoma skin neoplasms 20% 22%

Prostate 15% 16%

Lung 8% 10%

Multiple myeloma 7% 8%

Non-Hodgkin’s lymphoma 11% 11%

Leukemia 8% 9%

Colon 6% 6%

Melanoma of skin 9% 8%

Bone/connective tissue 8% 9%

Brain <5% 5%

Head and neck 6% 6%

aOnly cancer sites with ≥5% prevalence at baseline are listed in the table.

Table 2. Retrospective and prospective evaluation results.

Model
performance metric

Retrospective result Prospective result

ED prevalence 10% 7%

Predicted risk level,
proportion of patients
classified as “high risk”

8% 10%

Sensitivity (sens) [aka:
recall]

19% (95% CI: 19–20) 32% (95% CI: 18–48)

Specificity (spec) 93% (95% CI: 93–93) 92% (95% CI: 90–94)

PPV 26% (95% CI: 26–26) 22% (95% CI: 12–34)

NPV 91% (95% CI: 91–91) 95% (95% CI: 93–97)

OR of ED visit (high-risk
vs. low-risk patients)

3.5 (95% CI: 3.4–3.5) 5.4 (95% CI: 2.6–11.0)

Prospective evaluation metrics are at the patient level and retrospective
evaluation metrics are calculated at the encounter level.
ED emergency department, NPV negative predictive value, PPV positive
predictive value.

Table 3. Calibration factor results.

Group type Group Estimated calibration factor
[95% confidence interval]

Ethnicity Hispanic 0.024 [−0.023, 0.064]

Not Hispanic 0.004 [−0.006, 0.014]

Gender Female −0.001 [−0.013, 0.011]

Male 0.014 [−0.002, 0.029]

Race Asian 0.003 [−0.048, 0.046]

Black −0.064 [−0.134, 0.011]

Other 0.033 [−0.009, 0.072]

Unknown −0.023 [−0.068, 0.015]

White 0.005 [−0.006, 0.015]
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We also conducted exploratory stratified analysis by encounter
dates before or after 01-13-2020 (60 days prior to national
response date on 03-13-202012) to assess whether the model
performance was affected by the impact of COVID-19 on patient
behaviors and healthcare delivery. The outcome forecast precision
(PPV) was lower after the date cut-off chosen to identify patient
encounters whose 60 day “at risk” period overlapped the starting
of the pandemic.

DISCUSSION
We have developed a standardized framework to evaluate and
deploy an ML-based clinical tool that supports a clinician’s
independent assessment of patient risk for adverse clinical events
by displaying medical information and predicted risk level using
documented EHR-derived RWD. As a collaborative multidisciplin-
ary team, we tested the ML-based clinical tool retrospectively on a
representative target patient population, evaluated it for potential
algorithmic bias, and—importantly—piloted its use in a prospec-
tive healthcare system quality improvement study that demon-
strated clinically-useful model performance.
Several important learnings were derived from the develop-

ment of the framework. A key takeaway was that prospective
validation (framework step 5) was important for gaining clinician
trust in the output of the ML-based adverse event risk prediction
tool, which is critical for successful implementation of ML tools in a
healthcare setting13,14. In our use case, results of the prospective
validation did not indicate additional model changes were
necessary for clinical usefulness beyond that suggested in the
retrospective analysis. This finding raises the question of when
prospective validation of an ML model is useful for deploying the
model in different settings, for different patient populations, or for
different endpoints. When previous prospective evaluation of the
same (or a very similar) model was reassuring in a generally similar
population, we believe appropriate rigorous prospective, ongoing
monitoring of performance and adequate education to ensure
user trust in the model are appropriate guardrails. However, it
should be noted that this is speculative based on our experience
deploying the ML model prospectively, and additional evaluations
of ML-based tools in clinical practice can help to clarify the
settings for which prospective research evaluation is necessary.
Additionally, groups responsible for assessing ML models to

improve health outcomes should weigh both the upfront
resources required for model development and validation, as well
as the ongoing resources needed to responsibly monitor changes
in performance and bias over time once embedded in the clinical

workflow14. In the early stage of model development, it is critical
to have upfront engagement from the clinical team who will
utilize the tool, as well as to seek clinical feedback throughout the
whole process. Discussions with all stakeholders on the practicality
and clinical impact of each step will help to prioritize resources
and steer the focus of model development. As we demonstrated
in the use case, the ML-based clinical tool was focused on
increasing the efficiency of surfacing high-risk patients to clinical
staff in a timely manner, compared to no information provided by
the ML-based clinical tool. Therefore, although the model did not
perfectly predict all patients who truly had a 60-day ED visit, the
PPV was largely improved compared to the baseline prevalence of
risk. Additionally, the choice of modeling approach should be
determined early on in the model development process. In this
study, random forest and logistic regression models were both
tested in the prototype phase. While the random forest model
demonstrated slightly better performance than the logistic
regression model (Supplementary Table 1), the logistic regression
model was chosen for the prospective evaluation because it was
better suited to the use case needs (i.e., easily interpretable and
communicated to all users, including clinical partners involved in
its development). Any modeling choice is accompanied by
tradeoffs. In using a logistic regression, our model had high
transparency and parsimony, but slightly lower performance. This
could be because a logistic regression does not automatically
capture interactions amongst features as a tree-based model can.
Such tradeoffs between model performance, interpretability, and
feature interactions and exhaustiveness should be considered in
the context of the use case and different models should be tested
prior to carrying out prospective evaluations using the final model.
There are few published articles that present a standardized

framework or guidance for developing ML-based tools in a
healthcare setting11,13,14, and we were unable to find any that
included a prospective evaluation of the framework in a real-world
use case study. Our proposed framework has several areas of
strength. It is comprehensive, standardized, and versatile in its
adaptability to various diseases and healthcare data types (e.g.,
EHR, claims, or registry data). A key strength is the pre-
specification of the ML model design and evaluation plan.
Additionally, the framework differentiates between retrospective
and prospective validation steps, and it highlights the utility of a
pilot program prior to full implementation, as demonstrated
through our use case. Importantly, the framework emphasizes the
necessity of bringing together a multidisciplinary team to develop
the ML-tool collaboratively and iteratively. Integrating technical
knowledge with clinical knowledge helps to break down

Fig. 1 Calibration factor, by stratification. Calibration factor with 95% confidence intervals, stratified on different race, gender and ethnicity
values.
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information silos between team members. This approach
improves human explainability of the ML model, so that all
involved have a strong understanding of the tool in order to best
serve patients, which is critical for early acceptance and broad
adoption.
There are limitations to consider regarding the use of any ML

tool in a healthcare setting14. First, ML models are not perfect tools
for predicting the risk of an adverse clinical event. Accordingly,
they should be used to support clinician assessment, not to
replace it, and transparency is critical. Additionally, care would
need to be taken to preserve model fairness and interpretability.

In our use case, the PPV of 22% in the prospective study leaves an
opportunity for improvement of the model's predictive perfor-
mance. Potential directions for improvement of model perfor-
mance include introducing additional clinical features to the
model such as those extracted from unstructured clinical text, and
exploring more sophisticated, nonlinear ML techniques. Second,
an ML-based clinical tool may not include all possible clinical
factors that may be predictive of the defined clinical event.
Sensitivity analysis should be conducted during the retrospective
evaluation to determine whether the inclusion and exclusion of
certain factors affect the model performance. Third, an inherent

Table 4. Baseline characteristics among Huntsman patients with cancer in the prospective validation study.

Characteristics Categories Hold out cohort
N= 633

Deliverable cohort
N= 603

Overall High risk
n= 61

Low risk
n= 572

Overall High risk
n= 44

Low risk
n= 559

Age (years) Median 65 63 65 65 64 65

Mean (range) 63
(20–95)

62
(29–95)

63
(20–95)

63
(20–93)

62
(28–88)

63
(20–93)

Gender, n (%) Male 300 (47) 27 (44) 273 (48) 278 (46) 24 (55) 254 (45)

Female 333 (53) 34 (56) 299 (52) 325 (54) 20 (45) 305 (55)

Ethnicity, n (%) Hispanic 51 (8) 8 (13) 43 (8) 41 (7) 5 (11) 36 (6)

Non-Hispanic 582 (92) 53 (87) 529 (92) 562 (93) 39 (89) 523 (94)

Race, n (%) White 529 (84) 49 (80) 480 (84) 512 (85) 33 (75) 479 (86)

Black 10 (2) 1 (2) 9 (2) 10 (2) 3 (7) 7 (1)

Asian 15 (2) 3 (5) 12 (2) 16 (3) 2 (5) 14 (3)

Other 66 (10) 8 (13) 58 (10) 52 (9) 6 (14) 46 (8)

Unknown 13 (2) 0 (0) 13 (2) 13 (2) 0 (0) 13 (2)

Medicaid, n (%) Yes 76 (12) 28 (46) 48 (8) 63 (10) 16 (36) 47 (8)

No 557 (88) 33 (54) 524 (92) 540 (90) 28 (64) 512 (92)

H@H enrollment at index encounter, n (%) Yes 20 (3) 9 (15) 11 (2) 26 (4) 9 (20) 17 (3)

No 613 (97) 52 (85) 561 (98) 577 (96) 35 (80) 542 (97)

Number of cancer diagnosis, n (%) 1 309 (49) 28 (46) 281 (49) 295 (49) 17 (39) 278 (50)

2 175 (28) 13 (21) 162 (28) 150 (25) 14 (32) 136 (24)

3 80 (13) 7 (11) 73 (13) 75 (12) 6 (14) 69 (12)

4 31 (5) 6 (10) 25 (4) 40 (7) 4 (9) 36 (6)

≥5 38 (6) 7 (11) 31 (5) 43 (7) 3 (7) 40 (7)

Cancer Sitesa, n (%) Breast 129 (20) 3 (5) 126 (22) 129 (21) 2 (5) 127 (23)

Unspecified primary malignant neoplasms 123 (19) 18 (30) 105 (18) 152 (25) 14 (32) 138 (25)

Non-melanoma skin neoplasms 111 (18) 9 (15) 102 (18) 117 (19) 6 (14) 111 (20)

Prostate 95 (15) 8 (13) 87 (15) 83 (14) 6 (14) 77 (14)

Lung 63 (10) 11 (18) 52 (9) 66 (11) 5 (11) 61 (11)

Multiple myeloma 56 (9) 2 (3) 54 (9) 70 (12) 8 (18) 62 (11)

Non-Hodgkin’s lymphoma 54 (9) 6 (10) 48 (8) 65 (11) 5 (11) 60 (11)

Leukemia 53 (9) 7 (11) 46 (8) 57 (9) 3 (7) 54 (10)

Colon 46 (7) 11 (18) 35 (6) 31 (5) 5 (11) 26 (5)

Melanoma of skin 42 (7) 5 (8) 37 (6) 45 (7) 3 (7) 42 (8)

Bone/connective tissue 40 (6) 5 (8) 35 (6) 43 (7) 4 (9) 39 (7)

Kidney/renal pelvis 35 (6) 6 (10) 29 (5) 26 (4) 1 (2) 25 (4)

Rectum 33 (5) 9 (15) 24 (4) 21 (3) 2 (5) 19 (3)

Ovary 31 (5) 3 (5) 28 (5) 28 (5) 4 (9) 24 (4)

Uterus 30 (5) 2 (3) 28 (5) 22 (4) 3 (7) 19 (3)

Brain 29 (5) 4 (7) 25 (4) 26 (4) 3 (7) 23 (4)

Head and neck 27 (4) 4 (7) 23 (4) 34 (6) 4 (9) 30 (5)

aOnly cancer sites with >5% prevalence at baseline are listed in the table.
H@H Huntsman at Home Program.
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limitation of using EHR-derived RWD to develop an ML-based
clinical tool is the potential for missingness in the dataset; data not
documented in the dataset cannot be taken into consideration by
the risk model. Fourth, the model performance and real-world
utility may vary with the time period of assessment. Our
exploratory analysis stratified by COVID response date suggests
that different factors (or a different impact of existing model
factors) may improve model performance for near-term ED visits
in the COVID setting. These performance changes can sometimes
be mitigated through rigorous monitoring and model recalibra-
tion or retraining15,16; this updating could be more difficult in the
face of large, sudden changes such as a pandemic. Fifth, there
might be a trade-off between computational efficiency, practical
usability, and clinical relevance. The ML-based tool demonstrated
in this use case was built using retrospective encounter-level data
and applied to weekly encounter-level data for computational
efficiency and workflow fluency during clinical practice. However,
the tool was prospectively evaluated using patient-level data for
model validation and clinical impact on patients. Therefore, it is
important to evaluate the ML-based tool from various aspects
throughout the whole process. Finally, while the framework
outlined in this paper is generalizable, the resulting algorithm may
not be. Specific analyses and data used to build the model and
analyze the performance should be localized to the specific
healthcare setting in which it will be implemented. For instance,
this model was trained using only data from patients from the HCI,
and is thus applicable prospectively to that setting. Should this
framework be used to create solutions for other patient
populations, the steps of the framework should be repeated
using target data from the relevant population and any models
should be customized to meet the unique and specific objectives
of the healthcare system.
In conclusion, we have developed a general framework to

evaluate and deploy an ML-based clinical tool that supports a
clinician’s independent assessment of patient risk and applied it in
a real-world oncology setting retrospectively and prospectively.
Future additional applications of the framework should be
explored and can help to inform and refine approaches to
developing ML tools for prospective use in healthcare settings.

METHODS
In the following sections, the steps of the proposed ML-based clinical tool
evaluation framework are described, followed by the methods for
application of the framework to a healthcare system quality improvement
use case at a large cancer center.

ML-based clinical tool evaluation general framework steps
The ML-tool evaluation general framework was developed by a multi-
disciplinary team of software engineers, data scientists, clinicians,
researchers, administrators, and managers. Each step of the framework
along with considerations is outlined in Table 5. In order to obtain value
from the framework and to prevent wasted efforts, the following
assumptions should be considered: (1) pursuit of the defined clinical
quality improvement goal will meaningfully enhance patient care while
maintaining or improving the efficiency and sustainability of healthcare
delivery; (2) prediction of the defined clinical event enables care teams to
make progress towards this goal; and (3) the ML-based clinical tool can be
implemented in a way that improves technology utilization rather than
contributing to provider burn-out.

Application of the framework to an oncology use case
To demonstrate the steps described in the general framework, we applied
it to a real-world oncology setting. Together, the Huntsman Cancer
Institute and Flatiron Health evaluated whether a Flatiron Health-
developed supplemental ML-based clinical tool and monitoring framework
could support the clinical program staff at the Huntsman Cancer Institute
to enhance identification of potentially eligible patients for Huntsman at
Home, a program providing acute level “hospital at home” care along with

palliative and hospice services17. We followed best practices for model
transparency and validation and the minimum information about clinical
artificial intelligence modeling (MI-CLAIM) checklist is provided in
Supplementary Table 218,19. This study complies with all relevant ethical
regulations. The study protocol was submitted to the University of Utah
Institutional Review Board (IRB_00127233), which determined that this
quality improvement project did not meet the definitions of Human
Subjects Research according to Federal regulations and therefore IRB
oversight was not required or necessary for the study.

Use case step 1: Define healthcare system quality
improvement goal met by predicting clinical event
A key healthcare system quality improvement goal for the Huntsman
Cancer Institute is to reduce emergency department (ED) and hospital
utilization for patients with cancer. To make progress towards this goal, the
Huntsman Cancer Institute established the home-based Huntsman at
Home program in 2018, which provides acute-level care to patients with
cancer for conditions that commonly require ED evaluation and/or
rehospitalization, such as poorly controlled symptoms, pain, dehydration,
or infections. Episodic palliative or supportive care visits and/or end of life
hospice care are also provided. The intent of this suite of comprehensive
services is to improve patient quality of life, lengthen time at home, reduce
avoidable ED visits and hospitalization stays, and improve family caregiver
well-being17,20. Patients considered for enrollment to the Huntsman at
Home program are identified by two pathways, direct clinician referral or
as part of a hospital discharge plan either at the end of a stay or as part of
an early discharge pathway. Since a large volume of unplanned
hospitalizations occur through the ED, Huntsman at Home was interested
in proactively identifying patients who were likely to have a near-term ED
visit (60-day ED visit).
After aligning on key goals outlined in Step 1 of the framework, we were

able to state the following: If the Huntsman at Home team anticipates that a
patient who is being treated for cancer at Huntsman Cancer Institute may
have a near-term ED visit, they will enroll the patient in Huntsman at Home,
which will improve the patient experience and reduce the total cost of care.

Use case step 2: Build or acquire ML-based clinical tool that
predicts defined clinical event
The ML-based clinical tool development was led by a multidisciplinary
team at Flatiron Health. The probability of near-term ED visit was estimated
based on demographic and clinical characteristics, using a logistic
regression model with L2 regularization. We also tested model perfor-
mance in the retrospective analysis (described in Step 3 below) using a
random forest model in order to compare performance of the two models
(Supplementary Table 1). The outcome of interest was narrowly defined in
service of the broader quality improvement objective in Step 1. In defining
the outcome of interest, care was taken to avoid any measurement error
that could come from using proxies, as discussed in work by Mullainathan
and Obermeyer21. Thus, near-term ED visits captured directly through the
EHR were chosen as the model’s outcome of interest. In addition, this step
presents as an opportunity to assess what qualitative factors such as model
explainability, transparency, and fairness should be considered.
Demographic and clinical features were pre-determined based on

Flatiron Health oncology data expertise and informed by Huntsman at
Home clinical experience, and the final feature list included in the model
was determined based on the data quality and feature importance
(Supplementary Table 3). Demographic features included gender, race/
ethnicity, and history of Medicaid enrollment. Clinical features included
cancer diagnosis, comorbidities, lab test results for albumin, bilirubin,
hematocrit and hemoglobin, weight loss, recency and frequency of prior
visits, and prior medication orders and clinic administrations.
The model was trained on all patient encounters with the University of

Utah Health System (e.g., office visits, diagnostic visits, emergency visits)
from 01-01-2016 to 12-31-2018 using cross-validation to select model
hyperparameters (Supplementary Material Notes). Prediction estimates
were calculated only for patients who met the inclusion/exclusion criteria
(Supplementary Table 4), (based on Huntsman at Home program guide-
lines) at the time of the index encounter for which a prediction was made.
The model produces risk scores for visits, which represent the predicted
probability of a subsequent ED visit by that patient within 60 days of the
visit. A separate validation set of patients was used to assess initial model
performance and to set a risk threshold such that visits with risk scores
above it would be classified as “high risk”. A pragmatic risk threshold was
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chosen tailored to the Huntsman at Home program size and patient review
capacity. A predicted probability of 0.20 was selected so that 10% of all
visits were classified as high risk in order to make the manual effort
associated with weekly review of predictions feasible for clinical experts in
the Huntsman at Home program. The same risk threshold of 0.20 was
applied in the prospective validation study (described below).
The model was trained on individual encounters, and thus included

multiple observations per patient. This methodological decision was driven
by the use case in which repeated risk assessments were needed over time
because the patients' risk factors may change relatively quickly. Since the
goal of the ML-based clinical tool was to predict an updated risk score for
each eligible patient following any clinical interaction with the University
of Utah Health System, we developed the model to capture a diversity of
patient states along their care journeys. In other words, training a model
on all encounters (e.g., office visits, diagnostic visits, emergency visits)
meant that the team was able to learn from information that was gained
between encounters (e.g., an updated lab result). This choice also
necessitated the use of temporal features (e.g., patient had a visit to the

ED in the 30 days before the current encounter). Including temporal
features allowed the model to account for the recency of certain
information, which was important because we made new predictions for
each patient encounter over time rather than one prediction for all time. In
determining what features were best suited to being coded temporally
and what time bins to create for them, we consulted with clinical experts at
Flatiron Health and HCI and performed a literature review. For example, we
created binary features for albumin lab test results being abnormal in each
of the recent windows (e.g., 5, 30, 90 days leading up to the encounter) in
order to account for both very recent changes (e.g., what happened in the
last 5 days before an encounter) that could elevate patient risk, as well as
more long term features (e.g., 90 days) that could set a temporal baseline.

Use case step 3: Conduct retrospective evaluation of ML-based
clinical tool
After determining that use of a logistic regression model with L2
regularization best suited the use case needs, we retrospectively evaluated

Table 5. ML-based clinical tool evaluation framework steps.

Step 1: Define clinical quality improvement goal and opportunity unlocked by predicting the clinical event

Considerations Impact

• Define patient care/quality goals
• Identify actionable clinical events that if predicted help achieve goals
• Establish metrics and results required to identify “at risk” patients
• Evaluate if this type of tool is useful for furthering goals
• Determine how the tool will embed into clinical workflow, and what
actions need to be taken based on predicted clinical event

• Define key metrics for evaluating clinical impact of risk predictions

All stakeholders (clinicians, business leaders, data scientists, etc.,) will have a
clear understanding of how deployment of an ML-based clinical tool will
help to achieve quality improvement goals.
Teams should be able to fill in this statement: “If the care team knows that X
event will happen, they will take Y action, to increase Z value”.

Step 2: Build/acquire ML-based clinical tool that predicts defined clinical event

Considerations Impact

Decide whether to build a custom ML-based tool or acquire an existing
ML-based tool that is practical, customizable, and suited for the
practice’s local data patterns

Organization will be equipped with the right ML-based clinical tool for their
intended goals

Step 3: Conduct retrospective evaluation of ML-based clinical tool

Considerations Impact

Retrospectively apply model to a representative historical patient
population from the institution and then compare predictions with
known past observed events to confirm if the tool meets desired
metrics

Allows the organization to expediently assess the suitability of the ML-
based clinical tool for the prediction task at hand

Step 4: Conduct bias assessment

Considerations Impact

• Proactively evaluate for bias, including treatment pattern disparities or
lack of representation, choice of modeling approach, or choice of
predicted clinical event

• Make necessary adjustments to the tool before there is any impact on
patients

Ensures that the ML-based clinical tool algorithms do not reproduce real-
world inequalities that can occur as a result of treatment pattern disparities
or a lack of representation encoded in datasets, the choice of modeling
approach, or the choice of predicted clinical event

Step 5: Conduct prospective evaluation of ML-based tool

Considerations Impact

• Conduct a prospective evaluation on a present-day, real-world patient
population in a randomized setting to understand how well the model
is likely to perform in real time

• Note: This step may not be necessary in every case if the ML-based
tool has been prospectively evaluated and its performance in real-
world setting monitored

Prospective validation is considered the “gold standard” of ML model
validation when applied to the point-of-care setting because it shows the
clinical team how well the model is likely to perform in real time where
several factors can affect model performance, such as recent pattern
changes in the real world (e.g., occurrence of a pandemic), care delivery
(e.g., updates to clinical standards), or technical or operational issues (e.g.,
data entry delays that can make a system unusable in practice)

Step 6: Embed and monitor tool in clinical workflow

Considerations Impact

• Adopt tool into standard clinical workflow
• Conduct data quality monitoring, performance monitoring, and bias
monitoring

• The ML-based tool should not replace traditional patient identification
processes, but support them with a data-driven approach that also
enhances their efficiency

The ML-based tool can now be used to achieve the quality improvement
goal defined in Step 1. Ongoing monitoring ensures the model’s suitability
in the dynamic clinical environment of the real world where patterns of care
seeking and care delivery evolve, and that model predictions are not
impacted by manual or technical errors that could inadvertently affect a
patient’s predicted risk and/or access to supplemental care.

ML machine learning.
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the ML-based clinical tool on an independent test set of 28,433 samples
representing encounters at the University of Utah Health System from 03-
01-2019 to 09-30-2019 for the 2,385 patients who met the inclusion/
exclusion criteria (Supplementary Table 4). Testing on data not used to
train the model is common in ML to prevent model overfitting. Baseline
metrics were calculated to describe the test set and included age (median
[minimum–maximum; IQR]), gender (female, male), ethnicity (Hispanic/
Latino), race (White, Asian, Black, Other), documented Medicaid payer prior
to the index encounter date, and cancer diagnosis (categorical with
categories based on ICD codes mapped to cancer groupings as per
standard Flatiron Health data processing procedures22,23). An exploratory
post-hoc analysis assessed model accuracy with standard metrics, as
defined in Table 6.

Use case step 4: Conduct bias assessment of ML-based clinical
tool
Different definitions of fairness within the context of racial/ethnic bias and
ML have been proposed, including anti-classification, classification parity of
specific metrics, and calibration (Corbett-Davies and Goel)24. Calibration
measures the gap between predicted risk for an outcome and observed
outcomes for a given group across different levels of predicted risk. An
ideally fair model from this perspective would be one where this gap is
non-existent for all groups of interest. Based on precedent in the literature
for problems of risk prediction, such as the analysis in Obermeyer et al.25

we mitigated bias through assessment of calibration fairness. To assess
calibration fairness, we produced calibration curves that compared, by
group, the predicted risk of utilizing the ED against the observed rate of
doing so. Using the same test set that was used to evaluate model
performance, we also calculated a summary statistic for each group, a
“calibration factor” that measured the difference between the mean
predicted risk and the mean observed outcome for a group26. Models
satisfying calibration fairness should have a calibration factor of zero
(Supplementary Material Notes). We reviewed overall calibration curves for
indications of subtler forms of bias that might not be captured by the
calibration factor. In addition to avoiding measurement error and assessing
the model for calibration fairness, we minimized other risks of bias by

choosing transparent and interpretable modeling techniques (e.g., logistic
regression). This was done to preclude other unforeseeable harm that
could be a by-product of black box techniques27.

Use case step 5: Conduct prospective evaluation of ML-based
clinical tool
Given the additional goal of evaluating impact on patient outcomes
prospectively in the clinical setting, we assessed model performance at the
patient level. A prospective quality improvement study of 1236 patients
was conducted to evaluate the accuracy and the usability of this ML-based
model among patients with a visit to the Huntsman Cancer Institute
between 01-04-2020 and 02-07-2020. Otherwise applying the same
inclusion/exclusion criteria as the retrospective portion of the study,
patients were randomly selected, in a 1:1 ratio, to be in either the
independent “hold out” sub-cohort to assess model accuracy, or the
“deliverable” sub-cohort to assess real-world accuracy (Fig. 2). Patient-level
index encounter was defined as the encounter that corresponded to the
first high-risk classification for high-risk patients and first encounter for
low-risk patients to ensure that each observation was statistically
independent and capable of yielding valid, clinically meaningful infer-
ences. Each patient was followed up for 60 days after the index encounter.
We assessed model accuracy in the “hold-out” cohort using the metrics
summarized in Table 6.
To evaluate prediction accuracy of the risk stratification model, we

compared patients with predicted risk classification against their observed
outcomes of ED visit within 60 days of the index encounter. For real-world
accuracy, the clinical expert reviewed the charts of patients who were
identified as high-risk by the risk stratification model and were in the
“deliverable” cohort to classify their eligibility for the Huntsman at Home
program based on Huntsman at Home standard protocol. We estimated
the risk model’s clinical accuracy by the proportion of eligible patients
among all the identified high-risk patients in the “deliverable” cohort.
Baseline characteristics were described for both the “hold-out” and
“deliverable” sub-cohorts to evaluate the success of randomization.

Table 6. Definitions of metrics to assess model accuracy.

Metrics Definition

ED prevalence (%) Prevalence of observed 60-day ED visit: proportion (0–100%)

Predicted risk level Binary, high/low; proportion (high risk %)

Sensitivity (sens) [aka: recall] Proportion of encounters classified as high risk among those with ED visit

Specificity (spec) Proportion of encounters classified as low risk among those without ED visit

Positive predictive value Proportion of encounters followed by an ED visit among those classified as high risk

Negative predictive value Proportion of encounters without a subsequent ED visit among those classified as low risk

Odds ratio Odds ratio of ED visit among high-risk encounters vs. low-risk encounters

ED emergency department.

Fig. 2 Prospective evaluation randomization approach. ED emergency department. aIf the patient’s predicted probability of risk is greater
than the classification threshold the patient will be classified as “high risk”, otherwise the patient will be classified as “low risk”. The
classification threshold is selected using retrospective data prior to the start of the prospective evaluation.
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Use case step 6: Embed and monitor ML-based clinical tool in
clinical workflow
Based on successful outcomes from preceding steps, the Huntsman at Home
team is operationalizing the ML-based clinical tool, which will be used to
supplement traditional referral pathways (e.g., clinician referrals) to the
Huntsman at Home program by displaying relevant information. Once a
patient is surfaced for evaluation (from any source), all decisions for Huntsman
at Home enrollment are made by the clinical care team, based on
standardized clinical evaluation processes, and not solely on the risk prediction
result from the tool. Transparency was ensured through clear documentation
and the clinician could independently review the basis of the risk prediction.
To support the ML-based clinical tool in production, Flatiron Health developed
a solution that continuously monitors the ML-based clinical tool predictions to
ensure that the algorithms developed on retrospective data do not lead to
unanticipated outcomes in a prospective real-world setting.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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