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Machine learning-based quantitative prediction of drug
exposure in drug-drug interactions using drug label
information
Ha Young Jang 1,5, Jihyeon Song2,5, Jae Hyun Kim 3, Howard Lee4, In-Wha Kim1, Bongki Moon 2✉ and Jung Mi Oh 1✉

Many machine learning techniques provide a simple prediction for drug-drug interactions (DDIs). However, a systematically
constructed database with pharmacokinetic (PK) DDI information does not exist, nor is there a machine learning model that
numerically predicts PK fold change (FC) with it. Therefore, we propose a PK DDI prediction (PK-DDIP) model for quantitative DDI
prediction with high accuracy, while constructing a highly reliable PK-DDI database. Reliable information of 3,627 PK DDIs was
constructed from 3,587 drugs using 38,711 Food and Drug Administration (FDA) drug labels. This PK-DDIP model predicted the FC
of the area under the time-concentration curve (AUC) within ± 0.5959. The prediction proportions within 0.8–1.25-fold, 0.67–1.5-
fold, and 0.5–2-fold of the AUC were 75.77, 86.68, and 94.76%, respectively. Two external validations confirmed good prediction
performance for newly updated FDA labels and FC from patients’. This model enables potential DDI evaluation before clinical trials,
which will save time and cost.
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INTRODUCTION
A drug-drug interaction (DDI) occurs when the pharmacoki-
netics (PK) or pharmacodynamics (PD) of the victim drug is
changed by a perpetrator drug previously taken or adminis-
tered in combination. DDIs may lead to products’ withdrawal
from the market. For instance, astemizole, a drug for the
treatment of allergic symptoms, was withdrawn from the
market due to the possibility of prolongation of the QT interval
and arrhythmias when combined with cytochrome P450 3A4
(CYP3A4) inhibitors, including grapefruit juice and erythromy-
cin1. Mibefradil, a treatment for hypertension and chronic
angina, was withdrawn from the market due to bradycardia and
rhabdomyolysis when combined with various cardiovascular
drugs, such as beta-blockers or statins2. Likewise, DDIs have
been studied as one of the causes of severe adverse reactions
occurring in clinical settings3,4. Furthermore, the increasing
trend of multi-drug prescriptions increases the possibility of
side effects due to DDIs5.
However, despite this importance, numerous DDIs exist, but

have not been identified. What is worse, approximately 10% of
DDI pairs may have adverse reactions due to DDIs among all
combinations of commercially available drugs6. This is because,
first, the Food and Drug Administration (FDA) recommends that a
clinical trial for DDIs be conducted when drugs affect only, or are
affected by, a specific enzyme in an in-vitro study7. High costs and
time-consuming clinical trials may be part of the reason for the
limited number of known DDIs. Second, the mechanisms by which
DDIs occur are very diverse, and each mechanism may be
complex, so not all potential DDIs may be detected.
Various machine learning techniques have been developed to

predict DDIs to overcome the lack of known DDI pairs. In
previous studies8–42, many models have been developed to

predict the presence or absence of DDIs, discovering DDI pairs
that cause side effects, or classifying the types of DDIs using
open source databases (DBs). However, there are clear limita-
tions. First, most models have only provided a simple prediction
for the existence or classification of DDIs. These models do not
aid in complex clinical decisions, such as precise dose
adjustment or alternative drug selection. Predictions about fold
change of PK parameters are needed to help physicians and
pharmacists, but, to date, there are no models that have been
successful in predicting this. Second, a systematically con-
structed true-negative dataset does not exist. The DDI DB, such
as DrugBank, widely used for DDIs prediction, contains
information that ‘there is a DDI between drug A and B’, but
does not contain information that ‘there is no DDI’. As a result,
researchers inevitably have selected random sets of drug pairs
thinking there were no interactions9,11,19,20,28–32,34,37,42,43. Cer-
tainly, absence of evidence is not evidence of absence. Using a
model without good input makes it difficult to obtain reliable
output. If the negative set is random, it is difficult to identify the
exact cause when unexpected problematic output occurs.
Therefore, a sufficient amount of DDI information containing

fold change of PK parameters was collected by hand search from
FDA drug labels for high model performance and a reliable PK-DDI
DB was constructed (Fig. 1). Using this data, a PK DDI prediction
model (PK-DDIP model) is proposed that quantitatively predicts
the fold change of drug PK parameters in DDIs. In addition, a
standalone application, which provides predicted fold changes
and reported fold changes of PK parameters, anatomical
therapeutic chemical (ATC) code-based alternative drug choices,
and single nucleotide polymorphism (SNP) action information was
distributed.
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RESULTS
Construction of the PK-DDI DB
A total of 38,711 FDA drug label data for 3,587 prescription drugs
was downloaded in an XML format from the DailyMed website.
After applying standard operating procedures, 3,627 reliable DDI
information as a training dataset for PK-DDIP model, including

area under the time-concentration curve (AUC) fold change
values, were selected (Supplementary Fig. 1). Of the 3,627 DDIs,
1,189 were positive (765: increase; 424: decrease), and 2,438 were
negative. The median fold change value for the AUC was 1.82
(interquartile range (IQR) 1.45–2.8; min-max 1.26-190), 0.55 (IQR
0.31–0.69; min-max 0.03-0.8), and 1.0 (IQR 1.0–1.0; min-max 0.81-

Fig. 1 Drug-drug interaction (DDI) Prediction Pipeline Overview. (Step 1) Reliable Food and Drug Administration (FDA) drug labels were
used through the DailyMed website to build the pharmacokinetic (PK)-DDI dataset. A total of 38,711 FDA drug labels were obtained
(Evaluation date: May 2020) from sentences/pictures/tables in the clinical pharmacology and drug interaction sections. (Step 2) Information on
various drug properties from DrugBank (Evaluation date: March 2021) was obtained. Drug properties data may be arranged around the
perpetrator and the victim drugs, and various polypeptides are radially linked. Polypeptide-PD (pharmacodynamics)-Drug-Type (PPDT)
tokenization was proposed to represent drug pairs. A bag-of-words containing 2830 unique tokens was obtained. Each drug-drug pair was
encoded as a 2830-dimensional vector through normalization with a Term Frequency-Inverse Document Frequency (tf-idf ) matrix of bag-of-
words. (Step 3) The Bagged (Bootstrap Aggregation) Tree method was used as an application model. The tree consisted of 615 branches and
had 308 nodes for which fold change values were determined. (Step 4) A standalone application PK-DDI prediction (PK-DDIP) model is
provided. Through this application, users may obtain predicted and reported fold change values, drug polypeptide information and its plot,
single-nucleotide polymorphisms action, and alternative drug recommendation information at the 4th anatomical therapeutic chemical level.
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1.25) for categories of increase, decrease, and negative,
respectively.

Model performance
Figure 2 is the evaluation of the PK-DDIP model against various
criteria. Figure 2a shows the DDI class distribution of predicted
fold changes and label fold changes of victim drug AUCs. The
distribution of DDI class predicted by the model was generally
very similar to the DDI class distribution of the label. However, the

values predicted by the model were less distributed for a strong
DDI class.
Figure 2b more explicitly shows which class the PK-DDIP model

predicts. Among the seven classes, classes with a moderate
increase, moderate decrease, negative predictions, and a weak
increase were accurately predicted. Among them, the prediction
accuracy of a negative prediction was 90.2%. In the case of the
strong decrease class, although only 22.4% of the pairs were
predicted as the correct class, 72.4% of the drug pairs were
predicted as the moderate decrease class. However, similar to the

Fig. 2 Model performance. a Distribution of predicted and labeled drug-drug interactions (DDIs) according to the Food and Drug
Administration’s (FDA) classification criteria. A strong DDI means that the perpetrator drug increases the area under the time-concentration
curve (AUC) of the victim drug by more than 5-fold or decreases the AUC to less than 0.2-fold. In moderate DDI, the perpetrator increases the
victim drug AUC by 2- to 5-fold or decreases the victim drug AUC by 0.2 to 0.5-fold. When weak DDI occurs, the perpetrator increases the
victim drug AUC by 1.25- to 2-fold or decreases it by 0.5- to 0.8-fold. The AUC fold change (FC) between 0.8- and 1.25-fold, which does not
belong to any criteria, is defined as a negative DDI. b Heatmap for the predicted percentage of DDI classes correctly called among each DDI
class in the label. Cells with higher percentages are colored red for each prediction class. c Percentage rank of a given value in a data set.
d Scatter chart. e Evaluation for quantitative AUC FC. Case 1-1: {0.8 × FClab ≤ FCpre} ∧ {1.25 × FClab ≥ FCpre}. Case 1-2: {0.67 × FClab ≤ FCpre} ∧ {1.5 ×
FClab ≥ FCpre}. Case 1-3: {0.5 × FClab ≤ FCpre} ∧ {2 × FClab ≥ FCpre}. Case 2: Classlab= Classpre. Case 3: Case 1-1 ∨ Case 2. Lab, Label from FDA; Pre,
Prediction from DDI prediction.
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problem in Fig. 2a, for the strong increase class, it was confirmed
that only 1.2% of the strong increase classes could be correctly
predicted, but 79.5% were predicted as the moderate
increase class.
The model obtained a 5-fold cross-validation result of a root-

mean-squared error (RMSE) of 0.5959 (Supplementary Table 1) and
predicted the fold change within 0.5959 on average (Fig. 2c, Fig.
2d). Median percent error of the predicted fold change from the
label was 7.9%, with an IQR of 2.4–23.9%. When the PK fold
change value was at an extreme level such as the strong increase
or strong decrease category, the percent error value tended to
increase, whereas in negative or weak increase/decrease, the
percent error value was small (Supplementary Table 2). However,
this is only an average, the fold change range varies, and the fold
change corresponding to a negative or weak class was
significantly affected by even a tiny error. Therefore, numerical
values were evaluated according to pre-specified DDI classification
criteria. Figure 2e shows the accuracy according to five DDI
classification criteria. Case 1-1 had the most rigorous evaluation
where 75.77% of pairs entered the interval, followed by 86.68% for
Case 1-2 and 94.76% for Case 1-3. The accuracy of predicting the
exact class (Case 2) and achieving a combined task (Case 3) was
74.33% and 80.29%, respectively.

External validation of model 1: Comparison with newly
updated FDA labels
Newly reported DDI information was collected and compared with
prediction results from the PK-DDIP model (Table 1). Twenty-one
drug pairs contained new information on the change in the AUC
of victim drugs. Among the 21 drug pairs, seven of ten DDIs in

newly approved drugs were closely predicted and evaluated as
‘good’. Six of 11 newly updated drug labels and the remaining five
were evaluated as good, and moderate, respectively. All 21 drug
pairs achieved at least a ‘moderate’ grade, which meant that the
PK-DDIP model satisfactorily predicted the DDI direction and
extent.

External validation of model 2: Comparison with real patients’
results
Data from 8,684 patients who used tacrolimus at a tertiary hospital
were collected (Supplementary Fig. 2). After excluding patients
without tacrolimus lab data, the 18 eligible cohorts included 2,143
patients. The value of correlation coefficient (R-squared) between
predicted values and observed values was 76.9% (Fig. 3). The 11 of
18 DDI pairs were satisfactorily predicted except for the failure of
the 7 pairs (atorvastatin, ciprofloxacin, esomeprazole, finasteride,
fluconazole, fluvastatin, and rifampin). The significant differences
between the two values were observed as follows. (Predicted
value: observed value = 1.08:0.69 [atorvastatin], 1.72:0.9 [cipro-
floxacin], 0.97:1.25 [esomeprazole], 1:1.44 [finasteride], 2.03:1.51
[fluconazole], 1.14:0.83 [fluvastatin], and 0.29:0.54 [rifampin])

Standalone application
A standalone application provided the following features (Fig. 4).
Users may search by entering perpetrator and victim drugs. In a
protein-protein interaction network, the application helps the user
identify the fold change and polypeptide bond relationship
between the perpetrator drug and the victim drug, which can also
be shown graphically as a relational network. The application also
provides SNP action information of the entered perpetrator drug

Table 1. Comparison of newly updated drug interaction information with area under the time-concentration curve (AUC) fold changes in the label
and predicted AUC fold changes by the pharmacokinetic drug-drug interaction prediction (PK-DDIP) model.

Perpetrator drugs Victim drugs AUC fold change from updated FDA label AUC fold change from PK-DDIP model Evaluation1

Newly approved drugs

Gemfibrozil Ozanimod 1.58 2.43 Moderate

Rifampin Ozanimod 0.42 0.34 Good

Itraconazole Pemigatinib 1.88 2.28 Good

Rifampin Pemigatinib 0.15 0.32 Moderate

Esomeprazole Pemigatinib 1 0.92 Good

Ranitidine Pemigatinib 1 1.01 Good

Itraconazole Ripretinib 1.99 2.09 Good

Rifampin Ripretinib 0.39 0.36 Good

Efavirenz Ripretinib 0.44 0.56 Moderate

Pantoprazole Ripretinib 1 0.83 Good

Drugs with updated drug labels

Cannabidiol Stiripentol 1.42 1.52 Good

Rifampin Darolutamide 0.28 0.33 Good

Itraconazole Darolutamide 1.7 2.21 Moderate

Enasidenib Rosuvastatin 3.44 1.35 Moderate

Enasidenib Digoxin 1.22 1.16 Good

Cimetidine Hydroxychloroquine 2 1.18 Moderate

Fluconazole Macitentan 4 1.63 Moderate

Cabotegravir Rilpivirine 0.99 1.02 Good

Rilpivirine Cabotegravir 1.12 1.02 Good

Tafamidis Midazolam 1 1.08 Good

Tafamidis Rosuvastatin 1.96 1.17 Moderate

1If 0.8*fold change < machine learning prediction result < 1.25*fold change, it is judged as good. If only classification of whether AUC fold change is > 1 (or < 1)
is successful, then the evaluation value is moderate. FDA Food and Drug Administration.
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and victim drug. The table provides information on the Korean
allele frequency (wild type allele and variant allele) of SNPs related
to the drugs. Furthermore, it contains information on the clinical
impacts of the variant that are expected, thereby enabling
clinicians to get useful insights into how often side effects from
DDI will occur. The application also helps identify alternative drugs
when the fold change is more significant than expected. This table
provides the fold change for alternative drug pairs. The suggestion
for an alternative pair of drugs was proposed as a result of
selecting drugs with the same 4th ATC level of perpetrator/victim
drug.

DISCUSSION
A machine learning model was proposed for the quantitative
prediction of DDIs with high accuracy while constructing a highly-
reliable PK-DDI DB. The PK-DDIP model satisfactorily predicted PK
parameter fold changes when a perpetrator and a victim drug
were simultaneously administered. The in-sample mean-squared
error was 0.2494 and the RMSE of 5-fold cross-validation was
0.5959. Traditionally, a drug interaction between two drugs was
determined by conducting clinical trials or designing a physiolo-
gically based pharmacokinetic (PBPK) model. It was impossible to
perform drug interaction tests for all possible drug pairs. Our
machine learning approach to predict PK parameter fold change is
not constrained to a given gene list and thus improves model
flexibility. It is expected that this model will enable the evaluation
of potential interactions before performing human-based trials,
which will significantly save time and cost. Furthermore, it will be
possible to use machine learning techniques in evaluating DDIs
for new drug approval.
One of the strengths of this study is that reliable data sources

were manually collected and utilized. There are several well-
known DBs widely used for developing models to predict DDIs,
including DrugBank44, Kyoto Encyclopedia of Genes and Gen-
omes45, NDF-RT46, and BioSNAP47 data with positive DDIs used for
classification prediction8–11,13–15,17–25,29,31,32,34–38,40,43,48. Sem-
MedDB contains DDI information extracted from PubMed49.
TWOSIDES DB provides PD DDI information that utilizes DDI side

effects data from the FDA adverse event reporting system50.
SemMedDB and TWOSIDES have also been commonly used for
classification prediction12,15,16,20,23,27,28,30,33,41,42,48. For the
DeepDDI DB presented by Ryu et al.,36 DDIs are classified into
86 types by processing DDI information provided by DrugBank.
The DeepDDI DB has been widely used in the development of
multi-classification task models20,28,30,39,41,42,51. Most DDI informa-
tion in these DBs often contains a large amount of data that have
not been tested in actual clinical trials, only providing speculative
information based on each drugs’ metabolic information or
mechanical characteristics. For this reason, there is no information
that includes drug pairs without an interaction (a true negative
dataset). The PK-DDI DB was constructed from reliable FDA labels,
whose data was based on actual clinical trials. Furthermore, the
PK-DDI DB contains negative DDI pairs where DDIs did not occur
and is the DB containing PK parameter change information. We
hope this freely available PK-DDI DB will be widely used for various
DDIs prediction studies to increase model performance. A more
accurate and predictive model may be implemented if PK-DDI DB
updated information is continuously collected. Another strength is
that this PK-DDIP model has been externally validated by
comparison with newly updated FDA labels. Furthermore, the
results were confirmed with the validation of real-world patients
taking drugs.
Quantitative prediction of drug exposure has usually been

performed by using a PBPK model52–55. However, the PBPK
method has poor versatility because it predicts a method limited
to a specific drug or enzymes. Additionally, it takes a lot of time
and technical expertise to construct a specific PBPK-based DDI
model. The PK-DDIP model performed quantitative DDI prediction
for all drugs with better performance for all-available drugs. In
PBPK model studies, Waters et al. have evaluated a CYP450-
mediated DDI prediction model for therapies used in the oncology
setting and obtain RMSE values of 0.24-4.67 (combined model)
and 0.20-2.45 (liver only model)52. Another study developed an in-
vivo mechanistic static model (IMSM) with an RMSE range of
1.48-5.6553. Tod et al. show that their IMSM model predicts the
proportion of predictions within 0.67- to 1.5-fold (corresponding
to the Case 1-2) and within 0.5- to 2-fold (corresponding to the
Case 1-3) as 79% and 93%, respectively (for DDIs mediated by
P-glycoprotein and CYP3A4 only)54. In another study, the
proportions are 90% and 99%, respectively (for DDIs mediated
by organic anion transporting polypeptides, breast cancer
resistance protein, and CYP2C8 only)55. In the PK-DDIP model,
the RMSE value was 0.596, similar or lower than that in the PBPK
models. The PK-DDIP model showed prediction proportions of
86.7% and 94.8% in Case 1-2 and Case 1-3, respectively, and this
result was not limited to specific DDI types.
Using the PK-DDI DB, quantitative AUC fold changes were

predicted. Many studies have used a graph neural network to
capture molecular structural features of drug pairs that generate
DDIs20,30,42,51 and there has been an attempt to express the overall
drug network by the occurrence of DDIs, and then extract the
properties that cause interactions41. However, there is a funda-
mental problem with these attempts: they do not understand the
underlying mechanisms of why DDIs occur. Although not used in
this study, drugs have numerous properties other than their
molecular structure; for example, properties, such as indication,
adverse effects, molecular weight, and signaling pathway do not
depend solely on the molecular structure. Therefore, it may be
stated that a drug is an abstract concept that encompasses these
characteristics and results. Unfortunately, there is no obvious data
explaining why DDIs occur. Therefore, it is essential to use as many
features as possible to preserve important information that might
be missed, and at the same time, to include features that are
expected to have the most significant impact on DDIs. In that
respect, the relationship between the substrate, inhibitor, and
inducer was analyzed in the description of fold changes in the

Fig. 3 Comparison with real patients’ result. The comparison of
pharmacokinetic drug-drug interaction prediction (PKDDIP) model
results (predicted fold change values) and observed real-world
patients’ results using tacrolimus as a victim drug in a tertiary
hospital clinical data warehouse. SNUH, Seoul National University
Hospital.
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Fig. 4 Standalone application. ATC anatomical therapeutic chemical, AUC area under the time-concentration curve, PK-DDIP
pharmacokinetic drug-drug interaction prediction.
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meta dataset. Using this information, it was confirmed that
interaction occurrence was very clearly divided according to the
type of action and the AUC fold change was predicted with high
accuracy.
However, there were some cases where an exception to this

rule occurred, and the prediction failed. Rosuvastatin and
fluconazole share cytochrome P450 2C9 and act as an enzyme-
substrate and an enzyme inhibitor, respectively56,57. From the
model, it would be expected that fluconazole would increase the
rosuvastatin AUC fold change; the model predicted the AUC fold
change to be 1.79. However, the rosuvastatin AUC fold change by
fluconazole is 1.1 on the label58. In terms of quantitative modeling,
it cannot be assumed that all enzymes cause an interaction, so it
may be estimated that cytochrome P450 2C9 induces a wimpy
interaction. Alternatively, cytochrome P450 2C9 mediates an
interaction, but the effect is very insignificant, and it is speculated
that some reaction between rosuvastatin and fluconazole inhibits
the interaction. Another prediction error between ramelteon and
fluvoxamine was caused by not having high enough expectations.
These two drugs share a total of four CYP enzymes (1A2, 2C19,
2C9, and 3A4)59,60. Since the victim drug has all of these enzymes
as a substrate and all of the perpetrator drugs have inhibitors, it
was inferred that fluvoxamine would greatly raise the ramelteon
AUC fold change. The model also expected a high ramelteon AUC
fold change at 3.51. Nevertheless, the ramelteon AUC fold change
by fluvoxamine is 190 on the label61, which is exceptionally high.
Likewise, it was speculated that there were some other reactions
or causes that need to be additionally considered. If many drug
pairs share various enzymes or if an unknown influence is
identified by adding various drug features to the features used for
modeling, it will be possible to improve irregular pairs. However,
this must be considered very carefully, as dimensionality is deeply
bound by quantitative modeling.
It was not the goal for this model to be used for individual-level

patient care. The PK-DDIP model was developed based on the PK-
DDI DB from the FDA drug label. The PK fold change in the newly
updated FDA label was predicted with high accuracy. However,
the recommendation in the FDA drug label rely on a mean
population recommendation, sometimes performed in healthy
volunteers whom do not always reflect patient characteristics.
Furthermore, tacrolimus is characterized by a wide range of inter-
individual variability in its bioavailability62. Various clinical condi-
tions have also been reported to affect tacrolimus PK, such as
concomitant drugs, genotypes (e.g., SNPs), diet, and clinical
values63,64. For this reason, the patients pool observed in a
tertiary hospital clinical data warehouse (CDW) could be quite
different from the ideal patient group, which might have caused
the differences in predicted AUC fold change and the observed
fold change for actual patients. Therefore, caution should be
exercised when applying this model directly to a patient. Instead,
we could reinforce therapeutic drug monitoring (TDM) of narrow
therapeutic index (NTI) drugs such as tacrolimus after adding a
perpetrator drug which is predicted to have a significant effect on
the NTI drug.
Despite the several strengths, this study also has several

important limitations. First, the DDI information was collected
under specific controlled conditions in clinical trials. Different
doses or usages usually result in different DDI results65. For
instance, the effect of rifampin on the atorvastatin differs
depending on the timing of administration and the duration of
concurrent use66. Steady-state rifampin markedly decreases
exposure when administration is separated, but slightly increases
exposure when both drugs are given simultaneously; whereas,
single-dose rifampin markedly increases exposure. However, it is
not possible to predict different results when these conditions
change; thus, the model only provides a rough average estimate.
Second, the purpose of the study was to quantitatively predict the
PK parameter fold change. The PK parameter fold change does

not always result in a PD change or a side-effect occurrence.
Therefore, another study might be needed to reveal the
correlation between PK-PD. Lastly, the PK-DDIP model showed a
poor performance in predicting extreme changes in AUC,
reinforced TDM in the case of using a strong perpetrator drug is
needed.
In conclusion, a PK-DDIP model was developed for the

quantitative prediction of DDIs while constructing a PK-DDI DB.
It is expected that many future studies will be conducted using
the PK-DDIP model and PK-DDI DB. Further research is needed to
elucidate the specific mechanisms of DDIs and improve model
limitations.

METHODS
DDI information data source
FDA drug labels were used to build a reliable DDI dataset as a training and
validation dataset. The data were considered to be reliable in the following
cases: 1) results of clinical trials performed on human subjects, 2) results
using PBPK models. DDI information that has not been tested in actual
clinical trials, only providing speculative information and not having any
apparent fold change was not considered reliable. DDI information was
collected using the DailyMed website (https://dailymed.nlm.nih.gov/
dailymed/), which contains information on insert papers of drugs approved
by the FDA. Information was extracted from 38,711 FDA drug labels
(accessed date: May 2020), and the extracted items included: perpetrator
drug, victim drug, and the AUC fold change. The perpetrator drug was a
drug that caused a DDI, and a victim drug was affected by the interaction.
If the perpetrator was reported to not affect the victim drug AUC, the AUC
fold change value was 1. If the fold change had a ratio value other than 1, it
meant that the ratio of the victim drug AUC with a perpetrator drug was
divided by the one without the perpetrator drug. DDI information was
manually obtained from sentences, figures, and tables in the clinical
pharmacology and drug interaction sections in the drug label and
collected by ten trained researchers. All data were reviewed twice by HJ
and JS. The data were further processed based on principles discussed by
the researchers to ensure data consistency.

Data preprocessing
To determine the fold change of PK parameters in DDIs required for
learning, the following data pre-processing standard operation procedure
was defined as below. a) Absent a fold change in AUC: Cases were
excluded that suggested an interaction between a drug class and a specific
drug without presenting an apparent fold change (e.g.: ‘Antacids reduce
the AUC of drug A’). b) Various dose and dosing times: If there were
different AUC fold change values according to different dosing times, the
AUC fold change values with simultaneous dosing times were selected. If
there were different values according to different drug doses, results using
the standard dose were selected. However, if several doses were standard,
the geometric mean of the reported AUC fold changes was used. c)
Interaction among three or more drugs: If drug A and drug B acted as
perpetrator drugs and drug C acted as a victim drug, the features of drug A
and drug B were combined and a new drug entity was assigned.

Feature extraction
All drug features used in model development were obtained from the
March 2021 version of DrugBank44. The most important feature was the
binding relationship between the drug and the target/enzyme/carrier/
transporter. This data was combined with information about polypeptide
targets, enzymes, carriers, or transporters that ultimately were used to
speculate which polypeptides might be involved in physiological effects
and mechanisms of action. Polypeptides were identified using the
Universal Protein Resource (UniProt) identifier. The gene name of a
polypeptide, such as prostaglandin-endoperoxide synthase 1 (PTGS1), did
not always have a one-to-one correspondence to the UniProt ID. If so, the
gene name was manually matched. The second most important feature is
its pharmacodynamics. The DrugBank defines the following 11 types of PD
for drug pairs. We classified a drug pair as 11 types of PD action; otherwise,
it was classified as negative PD (decrease adverse effects, decrease
dynamics, decrease specific adverse effects, decrease specific effects,
decrease therapeutic efficacy, increase adverse effects, increase dynamics,
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increase risk of hypersensitivity, increase specific adverse effects, increase
specific effects, increase therapeutic efficacy).

Feature vector encoding
The structure of a general sentence describing DDI was reflected when
expressing the relationship between perpetrator and victim drugs. For
example, DDIs are often described as follows: ‘The metabolism of silodosin
can be decreased when combined with luliconazole67. Silodosin under-
goes extensive metabolism via oxidative pathways mediated by CYP3A4.
Potent CYP3A4 inhibitors may interfere with silodosin metabolism,
resulting in increased serum concentrations of the drug and an elevated
risk for developing drug-related adverse effects. Co-administration of 8 mg
of silodosin and 400mg of ketoconazole led to a 3.2-fold increase in AUC
of silodosin68.’ As demonstrated in the description, CYP3A4 mediated the
DDI between the perpetrator drug luliconazole and the victim drug
silodosin, leading to a moderate effect on the increase of silodosin AUC.
Furthermore, there is a substantial interplay between PK and the PD69.
There is a PD interaction between luliconazole and silodosin, where the
resulting drug concentration of silodosin at the site of action ultimately
contributes to the PD response. The label DDI data were arranged where
the perpetrator drug and the victim drug were centered, and various
polypeptides/PD interactions were radially linked. Assuming that DDIs
occurred according to the relationship of polypeptides and PD interactions
linked to each drug, the primary information was summarized as the
following four types.

● P-1 The linkage between each drug and polypeptide (e.g., related
polypeptide in each perpetrator or victim drug)

● P-2 Types of polypeptides belonging to the drug (e.g., target, enzyme,
carrier, or transporter)

● P-3 How the drugs affected each other’s polypeptides (e.g., inhibitor,
inducer, or substrate)

● P-4 Types of PD action

Therefore, a polypeptide-PD-drug-type (PPDT) tokenization was pro-
posed that as much as possible expressed DDI flexibly while reflecting the
causal relationship. PPDT tokenization combined polypeptide, PD interac-
tion, drug, and type into one word. For example, silodosin has {ATP
binding cassette subfamily B member 1 [ABCB1], ABCB4, aldo-keto
reductase family 1 member A1 [AKR1A1], aldehyde dehydrogenase 2
family member [ALDH2], CYP3A4, and UDP glucuronosyltransferase family
2 member B7 [UGT2B7]} as substrates and {adrenoceptor alpha 1A
[ADRA1A], ADRA1B, and ADRA1D} as inhibitors67. However, luliconazole
has {CYP2C19, CYP3A4, and lanosterol 14-alpha-demethylase [ERG11]} as
inhibitors70. Therefore, the DDI of silodosin and luliconazole would be 13
tokens, including “CYP3A4PDinh CYP2C19PDinh ERG11PDinh CYP3A4VD-
sub UGT2B7VDsub ALDH2VDsub ADRA1AVDinh ADRA1BVDinh ADRA1DV-
Dinh ABCB1VDsub ABCB4VDsub AKR1A1VDsub decrease_dynamics” (PD,
perpetrator drug; VD, victim drug; inh, inhibitor; sub, substrate; decrea-
se_dynamics. pharmacodynamic interaction type). Each token contained
information on the relationship between each drug and polypeptide (P-1).
The second information type, the type of polypeptide belonging to each
drug, was reflected (P-2). The third information type included how the
drugs affected each other’s polypeptides (P-3). The last information type
included whether there is PD action or not (P-4). The extracted DDI
information was PPDT-tokenized to obtain one document with 3,627 sen-
tences with 2,830 unique tokens. After that, each DDI was encoded into a
2,830-dimensional vector through normalization using Term
Frequency–Inverse Document Frequency (tf-idf).

PK-DDIP model development
The AUC was selected as a proper PK parameter for prediction because
various PK studies frequently rely on PK measures, such as the AUC to assess
the extent of systemic exposure71. Therefore, the PK-DDIP model focused on
predicting the effect of the perpetrator drug on the victim drug AUC. Of the
extracted DDI information, 3627 pairs with feature information were used for
training and tested. Log2 was used to transform the fold change to relax the
distribution of values and then it was used for training. The regression
bagged (bootstrap aggregation) trees method, which had the best
performance, was used as the application model. The data characteristics
needed to learn were as follows: First, it had a high dimension compared to
the size of the data. Second, there were outliers on a specific range (strong
increase/decrease). Small trees in bagged trees increased the level of
decision-making. Therefore, an average performance improvement was

expected because the abrupt change in variance by outliers did not
significantly impair the tree bias. In addition, the lack of data was partially
resolved through bootstrap aggregation, which repeatedly selected sample
data. The tree consisted of 615 branches, and there were 308 nodes for
which fold change values were determined. According to a decision rule, a
branch was responsible for moving instances to the next level. If there was
no branch in the node, the instance that arrived at the node had the fold
change suggested by the node. If one DDI was predicted, it was decided as
one fold change out of 308 values. The results of many decision trees were
combined because individual decision trees tended to overfit. Therefore, the
tree used bootstrap data samples to grow a decision tree from the
ensemble. This process enabled an increase in the number of samples to
3627, which was small compared to 2830 dimensions. The number of
trained learners in the ensemble was 30.

Predictive model evaluation
Model evaluation was performed by calculating the difference between
the fold change value presented in the label and the predicted value as the
RMSE. The model was developed to have the lowest RMSE value. Further
evaluation of model performance was conducted in two ways. First, DDIs
were classified into several classes according to strength and whether the
model predicted it correctly was evaluated using the modified FDA’s
classification criteria7 as follows:

● A strong perpetrator drug increased the AUC of a victim drug ≥ 5-fold.
● A moderate perpetrator drug increased the AUC of a victim drug by

≥ 2- to <5-fold.
● A weak perpetrator drug increased the AUC of a victim drug by ≥ 1.25-

to <2-fold.
● A strong perpetrator drug decreased the AUC of a victim drug by ≥ 80

percent.
● A moderate perpetrator drug decreased the AUC of a victim drug by

≥ 50 to <80 percent.
● A weak perpetrator drug decreased the AUC of a victim drug by ≥ 20

to <50 percent.

Furthermore, the fold change between 0.8- and 1.25-fold, which did not
belong to any of the criteria, was defined as negative. Another model
evaluation examined whether the predicted value was located within the
pre-defined range. The numerical values were evaluated according to the
following criteria, where FClab is the label AUC fold change, FCpre is the
predicted AUC fold change, Classlab is the label class, and Classpre is the
predicted class.

● Case 1-1: {0.8 × FClab ≤ FCpre} ∧ {1.25 × FClab ≥ FCpre}
● Case 1-2: {0.67 × FClab ≤ FCpre} ∧{1.5 × FClab ≥ FCpre}
● Case 1-3: {0.5 × FClab ≤ FCpre} ∧{2 × FClab ≥ FCpre}
● Case 2: Classlab= Classpre
● Case 3: Case 1-1 ∨ Case 2

The fold change uses the equation FC= (victim drug AUC in the
presence of perpetrator)/(victim drug AUC in the absence of the test
perpetrator). The FCs in decreased fold change of victim drug AUC are
distributed between (0, 1), while the FCs in increased fold change of victim
drug AUC are distributed between (1, ∞). Therefore, to compare the
appropriate FC ranges, the values were compared by taking the inverse of
the decreased fold change of victim drug AUC in DDIs in the (0, 1) interval.
The interval range [0.8, 1.25] of Case 1-1 refers to the negative interval of
the FDA, and the criteria [0.67, 1.5] and [0.5, 2] is used refer to the criteria in
the PK DDI prediction study using a PBPK model55.

Predictive model external validation
External validation of the predictive model was performed in two ways. First,
newly updated FDA labels containing the DDI information section were
collected using the ‘Drug Safety-related Labeling Changes’ search platform
(https://www.accessdata.fda.gov/scripts/cder/safetylabelingchanges/) (assessed
date: Jul 2021). The date range was set after the learning data collection period
(after May 2020). Among them, label information that reported AUC changes
of victim drugs were extracted and compared to the results predicted by the
PK-DDIP model. The prediction results were defined as ‘good’ if AUC fold
changes of the PK-DDIP model prediction were between 0.8- and 1.25-fold
change of the newly updated drug label. If the only classification of whether
the AUC fold change was >1 (or <1) was successful (meaning that the PK-DDIP
model correctly predicted increase/decrease in AUC of victim drug), then the
prediction results were considered ‘moderate’.
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Another validation of the PK-DDIP model was performed by examining
whether the prediction results of the PK-DDIP model were clinically
observed in patients. The main object of this retrospective real-world study
was to determine if there was a change in the blood concentration of the
victim drug before and after taking the perpetrator drug.
Tacrolimus was selected as a victim drug for validation. Tacrolimus is an

immunosuppressant drug widely used in most organ transplants, and its
concentration is measured at regular intervals under a TDM system in a
tertiary hospital72. For the list of perpetrator drugs, 18 drugs were selected
by the research team among drugs predicted to affect the tacrolimus
blood concentration. The study population included all patients who had
been treated with tacrolimus using a CDW at a tertiary hospital between
2001 and 2021. The tacrolimus trough blood concentration is generally
used as a simplified marker of drug exposure, and this correlates well with
the AUC73,74. Therefore, the measured tacrolimus trough blood level was
collected just before and every 1–2 days after initiating perpetrator drugs
for seven days75. Because the physician applied adjusted doses of
tacrolimus in response to changed blood levels, the tacrolimus concentra-
tion/dose (C/D) ratio was calculated seven days after initiating perpetrator
drugs when the tacrolimus blood levels had stabilized. The changed C/D
ratio at day seven was divided by the one at day 0, and the obtained value
was compared with the prediction value from the PK-DDIP model.
Approval from the Institutional Review Board at Seoul National University
hospital was obtained prior to collecting and analyzing the data (IRB No.
2107-233-1240). Written informed consent was not required for CDW-
based studies using anonymized data.

Standalone application
The following additional information for an all-around understanding of
the user’s DDI was provided in a standalone application. The application
provides SNP actions from DrugBank and its allele frequency in Koreans
obtained from KRGDB76 SNPs associated with drug activity or metabolism
can affect pharmacological activity. The SNP information of each
perpetrator or victim drug can be considered for dose escalation or
therapy change when administering the drug to a patient. The application
additionally recommends alternative drugs whose ATC 4th levels are same
with perpetrator or victim drugs. The hierarchical structure of ATC can be
found at https://www.whocc.no.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The PK-DDI DB is freely available from Github repository: https://github.com/
harryscpt/pk-ddip. The standalone application can be operated by connecting to
https://pk-ddi.snu.ac.kr/en. Access to the standalone application website is possible
after obtaining an access code through a request to the corresponding author, JO.

CODE AVAILABILITY
The source code used to develop our PK-DDIP model is available from Github
repository: https://github.com/harryscpt/pk-ddip.
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