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Computational drug repurposing based on electronic health
records: a scoping review
Nansu Zong1✉, Andrew Wen 1, Sungrim Moon 1, Sunyang Fu 1, Liwei Wang1, Yiqing Zhao2, Yue Yu1, Ming Huang1,
Yanshan Wang3, Gang Zheng4, Michelle M. Mielke 5, James R. Cerhan 1 and Hongfang Liu1

Computational drug repurposing methods adapt Artificial intelligence (AI) algorithms for the discovery of new applications of
approved or investigational drugs. Among the heterogeneous datasets, electronic health records (EHRs) datasets provide rich
longitudinal and pathophysiological data that facilitate the generation and validation of drug repurposing. Here, we present an
appraisal of recently published research on computational drug repurposing utilizing the EHR. Thirty-three research articles,
retrieved from Embase, Medline, Scopus, and Web of Science between January 2000 and January 2022, were included in the final
review. Four themes, (1) publication venue, (2) data types and sources, (3) method for data processing and prediction, and (4)
targeted disease, validation, and released tools were presented. The review summarized the contribution of EHR used in drug
repurposing as well as revealed that the utilization is hindered by the validation, accessibility, and understanding of EHRs. These
findings can support researchers in the utilization of medical data resources and the development of computational methods for
drug repurposing.
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INTRODUCTION
It takes an average of 13 years and 2–3 billion dollars to bring a
new drug from bench to bedside, with the process comprising
examination of its efficacy, toxicity, and pharmacokinetic and
pharmacodynamic profiles in cell- and animal-based studies to
safety and efficacy in human subjects in clinical trials1. The
escalating cost and length of time make drug development a less
desirable business for investment2. Drug repurposing, on the
other hand, aims to discover new medical indications for an
approved or investigational drug. As the dosing and safety of the
drug are well studied, clinical trials can be accelerated, signifi-
cantly reducing the development time and cost. There are some
successful examples of drug repurposing, such as the usage of
metformin for various cancers3, sildenafil citrate for erectile
dysfunction, and thalidomide for erythema nodosum leprosum
(ENL) and multiple myeloma.2

The most critical task of drug repurposing is to identify new
associations between drugs and diseases. Traditional biomedical
experiments are based on binding assays and phenotypic
screening, which are expensive and time-consuming. Conversely,
in-silico methods gain their popularity through the analysis of
heterogeneous data based on Artificial intelligence (AI) methods4,
such as genetic association analysis, pathway mapping, molecular
docking, and signature profile matching5, as such methods allow
for all analysis to be done computationally in a time and cost-
efficient manner. Computational drug repurposing can utilize a
diverse set of data resources, including omics data (e.g., gene and
protein expression)6, biomedical association/relation knowledge-
base7, biomedical literature8, and the electronic health record
(EHRs)6. Big EHR datasets offer a real-world perspective rooted in
clinical care that provides rich longitudinal diagnostic and
pathophysiological patient data, which can facilitate the

generation and validation of drug repurposing hypotheses (e.g.,
statistical significance)3. The unique capability of incorporating
EHR-based data into repurposing methods is the ability to test a
large number of drug repurposing hypotheses in parallel by
identifying the cohorts that either have or have not been
prescribed a particular medication using large patient populations
followed for several years9. For this reason, EHR-based drug
repurposing has been identified as a unique, cost-effective
opportunity by the drug development field, and a diverse set of
applications have been proposed, including phenome-wide
association studies (PheWAS) based on statistic tests10–12,
similarities based on disease network6,13, and association rule-
based interaction mining14.
In this survey, we reviewed current computational drug

repurposing approaches utilizing EHR-based data. We retrieved
1145 combined results containing 1370 publications from four
databases (i.e., Embase, Medline, Scopus, and Web of Science)
between January 2000 and January 2022, in which 33 articles were
included in the final review. Compared to the existing sur-
veys5,13,15,16, we systematically investigated the relevant studies
from four perspectives, (1) publication venue, (2) data types and
sources, (3) method used for data processing and drug repurpos-
ing prediction, and (4) disease targeted, the validation for the
experiment, and tools released. We learned that, compared to
validation, EHR is mainly used for building the predictive models,
where drug effects on laboratory tests, drugs used for diseases,
genetic mutations related to diseases, and disease-laboratory tests
associations were the most popular data used among all the
studies. While EHR datasets have gained popularity in drug
repurposing, the utilization is hindered by the validation (e.g.,
discoveries are unverifiable using other available knowledge
derived from published literature and clinical trial and application),
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the accessibility (e.g., the release and sharing of datasets and tools
due to patients’ privacy), and understanding (e.g., adaptations of
NLP tools and standardization). This study enabled us to gain a
more concrete understanding of how the EHR is utilized in a drug
repurposing context and to provide potential guidelines for
designing the EHR-based drug repurposing methods.

RESULTS
We abstracted 33 articles based on four themes with the following
flow, (1) journal and articles, (2) data used, (3) methods, and (4)
results of repurposing. During the process for each theme,
important data elements were identified by the first author and
validated by all seven reviewers. The synthesis of the articles for
each data element was conducted by each reviewer. The results
were finally validated and organized by the first author. The
disagreements in synthesis were resolved among all the reviewers
in the consensus meeting. The general summarization of the
articles is shown in Supplementary Table 1. The flow details for
each article can be found in Supplementary Method 1.

Publication venue
The 33 papers reviewed consisted of 29 journals and four
conference articles (see Fig. 1). We manually categorized those
articles into three types: (1) Computer Science, (2) Informatics/
Biomedical Informatics, and (3) Medicine/Biology/Pharmacology.
The majority of the articles were Informatics/Biomedical (n= 22)
and Medicine/Biology/Pharmacology (n= 10). We also noticed

that the conference articles were Informatics/Biomedical, suggest-
ing this topic or methodology is more popular among the
Biomedical Informatics community. Most studies were conducted
in the United States (n= 22), with the remainder being scattered
amongst Asian and European countries. In addition, the topic of
EHR-based drug repurposing gains popularity from the year 2012
(n= 1) to 2021 (n= 10).

Data
The majority of studies relied on the EHR from an institution
affiliated with either the authors themselves (e.g., Vanderbilt
University Medical Center17–19) or one of their collaborators (e.g.,
Mayo Clinic18,19). Only three studies utilized publicly available
datasets, including IBM Watson Health Explorys database20,
MIMIC-II21, and adverse event reporting systems (AERSs)22. Most
of the studies used only EHR, while others utilized multiple kinds
of sources to facilitate the drug repurposing, such as knowledge
bases (N= 11), Omics databases (N= 7) (Please note, we
distinguished Omics data from EHR data) (see Supplementary
Fig. 2a). Among all the association knowledge bases, drug-gene
information was the most popular (see Supplementary Fig. 2b).
Drugbank23 was the main source of drug-gene (protein) informa-
tion in the studies (N= 11). We noticed widespread usage of
biomedical repositories, such as Sider24 for side effect information
(N= 3) and OMIM25 for gene-disease relations (N= 2).
Amongst all the 22 EHR data types covered in our survey,

medication (N= 22), diagnosis (N= 19), lab test (N= 17), and
demographic (N= 16) were the most frequently used (see Fig. 2a).

Fig. 1 Distribution of publication type, stratified on the year of publication and country of origin.

Fig. 2 Distribution of EHR types and number of patients. a shows the distribution of the EHR types, and b shows the distribution of the
number of patients.
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Most studies were conducted based on patient cohort sizes of
less than 10,000 (N= 8), 10,000 to 100,000 (N= 6), and 100,000
to 1,000,000 (N= 6) (see Fig. 2b). We note that a few studies did
not specify the size of the patient cohort used (N= 3).
Supplementary Table 2 shows the detailed information of the
data in the reviewed studies.

Drug repurposing methods
Figure 3 shows the number of papers with different data
processing methods for EHR data regarding natural language
processing (NLP), standardization, or temporal data processing. Of
the surveyed studies, five studies utilized NLP to process their
data, seven used standardization, and four dealt with temporal
data. We note that three studies implemented more than one data
processing method (e.g., MedEx and RxNorm CUI were used to
extract and standardize medication information19, and the
Observational Medical Outcomes Partnership Common Data
Model (OMOP CDM) was used for both drug prescription and
laboratory tests26).
NLP pipelines were used to extract a diverse set of information

that differed depending on individual study needs. For example,
drugs and diseases were extracted from triads of sentences by
using MetaMap21. Regarding the adoption of standardization
methods, standardization efforts are mainly focused on using
standard terminologies for medical concepts. For example,
Proteomics Standard Initiative—Molecular Interactions (PSI-MI)
codes were used for proteomics, Gene Ontology (GO) for
genomics, Anatomical Therapeutic Chemical (ATC) codes for
drugs, and ICD-10 and Online Mendelian Inheritance in Man
(OMIM) for disease data27. Similarly, Systematized Nomenclature
of Medicine-Clinical Terms (SNOMED CT) was also used for
diseases, RxNorm for drugs, logical observation identifier names
and codes (LOINC) for Laboratory tests20, standard billing codes
for clinical phenotypes28, and Unified Medical Language System
(UMLS) for multiple kinds of biomedical related concepts29.
Temporal information was primarily used to track disease
progression. For example, temporal data was used in one study
to analyze the association between the virological status of
patients and all-cause mortality as well as other individual-level
factors30. Supplementary Table 3 shows the summary information
of data processing in the studies.
As shown in Fig. 3, statistical analysis and machine learning are

two predominant computational approaches used for drug
repurposing through mining a large set of health data. In
statistical analysis methods, statistical models and tests are used

to determine the effect of drugs on disease targets or other
related clinical variables such as genes and laboratory tests. For
example, Wang et al.31 searched drug and gene information from
public pharmacological and genomic databases as well as private
EHRs for glaucoma diseases. It used p values based on the chi-
square tests and false discovery rates (FDR) of drugs targeted to
glaucoma genes/diseases to detect potential treatment candi-
dates. For example, the prevalence of glaucoma was 0.11% in
theophylline-treated patients, and 0.058% in celecoxib-treated
patients, suggesting these drugs may have antiglaucoma effects
as the incidence of glaucoma was significantly lower in these
drug-use cohorts than in healthy individuals. Wu et al.19 classified
a patient cohort into two comparison groups—an exposure group
with drug prescription and a non-exposure group without drug
prescription and applied cox regression to measure the associa-
tion of drugs with cancer survival for suggesting repurposing
candidates. Goldstein et al.17 used logistic regression (or multi-
variate regression) and derived p values to examine the
association between drug candidates and genetic mutation (or
glucose tolerance test) data for identifying drug repurposing
candidates for gestational diabetes.
Machine learning is another type of common computational

approach for predicting new disease targets of existing drugs.
Three popular machine learning methods are based on similarity/
interaction network, the least-square optimization method, and
deep learning. For instance, Zhou et al.20 developed a network-
based prediction system of disease-target interactions by model-
ing phenotypic and genetic relationships among drugs, side
effects, diseases, and genes for identifying repositioned drug
candidates. Ghalwash et al.32 formulated the problem of finding
drugs that have an effect on the levels of laboratory test results as
a regularized least-square unconstrained convex optimization
problem. Liu et al.33 created a high-throughput screening frame-
work with existing large-scale real-world data. The framework
extracted potential repurposing drug ingredients, identifies the
corresponding user and non-user sub-cohorts, computes features
and disease progression outcomes for all patients in both sub-
cohorts, and estimates the treatment effects using deep learning
methods. Supplementary Table 4 summarizes the computational
methods in detail.
Evaluation of EHR-based computational drug repositioning

research is critical to ensure valid and reliable computation
methods and new signals. Unlike predictive modeling or adverse
drug reaction detection, where the gold standard outcomes can
be well defined, there may be a lack of well-established evidence

Fig. 3 Distribution of different data processing methods and the predictive model.
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or ground truth to validate the newly discovered target signals in
drug repositioning research. Therefore, the evaluation may rely on
multiple internal and external sources of evidence. Figure 4
summarizes the sources for training and validation. Of the 33
papers reviewed, six did not present any methods for assessing
drug performance. Of the 27 that did, the most common
performance metrics used were machine learning related (e.g.,
precision-recall, AUC-ROC). Risk ratios (e.g., hazard, odds, and
relative risk) were commonly reported to evaluate the effective-
ness of candidate drugs. With respect to validation, 12 papers
performed validation of any hypothesis candidate drugs against
other data sources based on EHR data, ten based on biomedical
literature, and nine based on public knowledge bases.
The EHR is the most frequently reported source for training and

validation since it contains rich, dense, and longitudinal informa-
tion. The drug effects on laboratory tests were mainly used in
building predictive models (N= 12). For validation, Drug-Disease
information (N= 6) observed in the EHR is mainly used. Please
note, that a dataset can be both used for training and validation.
The validation can be conducted by retrospectively analyzing EHR
data to estimate the usage and effects of the candidate drug. For
example, Wang et al. searched EHR data to obtain information on
the usage of the candidate drugs and glaucoma31. Due to
potential issues of data quality or information representation (e.g.,
unstructured text), manual chart reviews are often required when
leveraging EHR for evaluation. Cai et al. conducted a chart review
of EHRs based on randomly selected 20 participants to determine
the accuracy of newly identified phenotypes34. In addition to
EHRs, external databases such as Drugbank and clinical trials
databases can be great resources for evaluation purposes. One
common way of leveraging these databases is through study
replication, a method by which target associations are reproduced
using the same computational methods on a different dataset,
and the difference in the study outcomes is statistically compared.
Cai et al.34 used two additional external data sources BioVU and
UK Biobank to cross-examine the association between a genetic
variant and coronary heart disease phenotypes. Xu et al.35

performed a comprehensive performance comparison to the
existing state-of-the-art drug repositioning methods to reveal the

advantages of the proposed methods. Out of 33 articles, two
studies27,35 conducted an additional laboratory study to validate
the potential therapeutic effect on animal models and demon-
strated additional validity to the proposed methods.
Due to the lack of ground truth and potential EHR-related data

quality issues, we recommend having multiple evaluations on
different data sources. We found that 13 out of 33 studies reported
more than one evaluation method. For example, Wu et al.19

incorporated two different validation methods: (1) supporting
evidence from biomedical literature, and (2) supporting evidence
from human interventional cancer trials. Paik et al. 27 used
computational evaluation (tenfold cross-validation) on known
associations in a vivo zebrafish model of ALS. Hsieh et al. 36

validated the candidate drugs through both in vitro drug screening
and real-world population-based studies leveraging EHRs. Supple-
mentary Table 5 summarizes the validation methods in detail.

Drug repurposing results
Figure 5 shows the disease targeted. The most common
repurposing target was diabetes-related, consisting of 10 out of
the 33 publications17,26,29,32,37–42, including type 2 diabetes37,41,42,
gestational diabetes17, diabetes (unspecified)26,29, diabetes-related

Fig. 4 Distribution of resources for training and validation.

Fig. 5 Distribution of diseases targeted.
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tests including glycated hemoglobin32 and Fasting Blood Glu-
cose38–40. Six publications did not focus on any specific
diseases21,22,27,28,43,44. For example, Dang et al.21 aimed to
establish a generic process and method to integrate phenomic
data in EHR with omic and drug data.
Cardiovascular-related diseases are also focused on in seven

publications. Specifically, Jang et al.41 targeted congestive heart
failure, myocardial ischemia, and stroke, Ghalwash et al.32 targeted
low-density lipoprotein, which is a risk factor for cardiovascular
and vascular diseases, Kim et al.26 targeted dyslipidemia, Cai
et al.34 targeted cardiovascular disease, Liu et al.33 targeted
coronary artery disease, Nordon et al.29 targeted hypertension,
and 366 targeted coronary heart disease, congestive heart failure,
heart attack, and stroke. In addition, there are four publications
targeting at cancer18,19,35,45, three targeting at COVID36,46,47, two
targeting at asthma41,42.
It is worthwhile to note that some of the reviewed articles did

not report on specific drugs, but rather presented a selection of
top n repurposed drug candidates as determined by their
respective methodologies. Of those that did subset reported
drugs, they were typically sub-selected by certain drug types, such
as statins, triptans, PPIs, and nasal steroids in one study, α1‐
adrenoceptor antagonists in another, and antihypertensive
calcium channel blockers in a third. Of the 33 studies reviewed,
only five reported results focused on a single drug, metformin in
the case of Xu et al.18, febuxostat in the case of Muraki et al.48,
terbutaline sulfate in the case of Paik et al.27, Fluoxetine in the case
of Bi et al.45, and Dextromethorphan in the case of Cummings
et al.49. Intuitively, this finding makes sense as most methods are
focused on presenting candidates for further screening rather
than having a pre-existing drug that should be further studied,
and as such methods would result in a selection of candidates that
should then be cross-validated against known clinical indications
for method validity, rather than a clinical validation of an
individual drug itself selected from said list of candidates.
Supplementary Tables 1, 6 show the drugs explored and the
corresponding diseases targeted in detail.

Data and tools published
Despite the widespread and vital use of EHR data for drug
repurposing research, datasets and tools were not readily
electronically available to the public in many of the surveyed
studies. Table 1 shows the publically shared data and tools among
the reviewed studies. Only 1 study33 of the 33 reviewed studies
can be fully reproducible with publically available EHR and the
tool so as to verify the original studies to follow-up studies.

In terms of the dataset, seven of these studies used publicly open
EHR datasets: IBM Watson Health Explorys database20,50,51, IBM
Health MarketScan database33,45,51, and MIMIC-II21, which are the
only research that shared their original dataset, Vanderbilt
Synthetic Derivatives database17, through data use agreement.
From the perspective of sharing developed tools, five studies
shared their own tools28,29,33,36,42. In contrast, others indicated
open software, which they used, without their practical
implementations20,27,45. Lastly, some of the studies shared the
analysis and results in the form of supplements or separated
links19,26,27,31,33,35,36,41,42,44–47,49–52.

DISCUSSION
EHRs are an invaluable source of large-scale clinical data capable
of simulating drug repurposing strategies in an uncontrolled, real-
world environment as opposed to the controlled environment of
clinical trials, which is one of the biggest benefits of drug
repurposing. EHRs were gaining popularity in diverse applications
for drug repurposing, such as COVID 1953, or the upstream
applications (e.g., providing a support/input resource for other
applications, medical cost reduction43) and downstream applica-
tions (e.g., utilizing the results from other applications as an input).
In this paper, we systematically reviewed the literature published
between 2000 and 2022 to better understand how EHR datasets
are directly utilized to facilitate drug repurposing. In the course of
our review, we noted the following considerations when applying
EHR data to drug repurposing tasks:
Firstly, as the real-world evidence (RWE), EHRs provide clinical

evidence with a heterogeneous set of healthcare data captured
outside the existing paradigms and standards of the drug
development process, which has tremendous value by improving
the applicability of the results to a real-world environment54. As
such, more than 90% of pharmaceutical companies make RWE
investments across the entire life cycle in drug development55.
Compared to pharmaceutical companies, research organizations
have limited resources to leverage heterogeneous healthcare
datasets from multiple sources. The risk of biased results caused
by the limited EHR drives the academic organizations to focus
more on the studies in a controlled environment (e.g., clinical
trials), which is the main reason that we have only 33 articles
fitting the inclusion criteria.
Secondly, a substantial (50%) proportion of reviewed papers

performed their validation tasks via cross-referencing data, either
against the EHR itself when the hypothesis generation methodol-
ogy did not incorporate that data, or other data sources such as
biomedical literature, clinical trials, public knowledge bases, and

Table 1. Summary of publically shared data and tools.

Paper Type Description of resource Link

Goldstein et al. 17 EHR BioVU of Vanderbilt University Medical Center https://www.vumc.org/dbmi/biovu

Zhou et al. 20 EHR IBM Watson Health Explorys database https://www.ibm.com/products/explorys-ehr-data-analysis-tools

Dang et al. 21 EHR Medical Information Mart for Intensive Care - II https://mimic.physionet.org/

Zhou et al. 50 EHR IBM Watson Health Explorys database https://www.ibm.com/products/explorys-ehr-data-analysis-tools

Bi et al. 45 EHR IBM Health MarketScan database https://www.ibm.com/products/marketscan-research-databases

Liu et al. 33 EHR IBM Health MarketScan database https://www.ibm.com/products/marketscan-research-databases

Ozery-Flato et al. 51 EHR IBM Watson Health Explorys database
IBM Health MarketScan database

https://www.ibm.com/products/explorys-ehr-data-analysis-tools
https://www.ibm.com/products/marketscan-research-databases

Challa et al. 28 Tool https://github.com/judytlewis/drugRepurposing

Hsieh et al. 36 Tool https://github.com/yejin jkim/drug-repur posing-graph

Liu et al. 33 Tool https://github.com/ruoqi-liu/DeepIPW

Nordon et al. 29 Tool https://github.com/TechnionTDK/repurposing

Wen et al. 42 Tool https://github.com/HoytWen/CCMDR
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drug information datasets when it did. Fundamentally, this
suggests that the knowledge contained in any one of these data
sources is likely to be present within some amalgamation of the
others. This observation reflects the reality of the EHR itself—the
EHR contains a record of clinical decision making, which, with
some rare aberrations, is typically reflective of contemporaneous
best practices which are themselves reflections of known medical
knowledge derived from published literature and empirical
observations and evaluated through clinical trial and application.
It is therefore rare that a hypothesis generated by some in-silico
EHR-based framework will be unverifiable using other available
knowledge—instead, we postulate that the value in bringing in
EHR data for drug repurposing tasks lies in its reflection of real-
world considerations such as evaluating and alleviating the impact
of socioeconomic determinants of health on drug choices and
identifying alternative therapies, as opposed to other knowledge
sources which are typically conducted in more controlled
environments (particularly those studies involving pure physical/
chemical simulation).
Thirdly, the biggest issue of EHR-based methods is the

inaccessibility of any data involved56. Thus only primary
academic medical centers can fully leverage any advantages of
utilizing EHR-based methods. While sharing data and tools across
collaborating healthcare providers or institutions as a small group
may be feasible while the study is ongoing, there is a rare
movement to deposit the data and tools for public usage. The
main barrier is rooted in protecting the privacy of patient health
data. Therefore, significant burdens and efforts are additionally
required for researchers to provide freely available resources. For
example, additional funds and efforts are required to perform the
de-identification process of the given EHR (e.g., MIMIC-II21) or
further ongoing management to process restricted data use
agreement (e.g., Vanderbilt Synthetic Derivatives database17) is
essential. Furthermore, advanced data processing methods (e.g.,
NLP) are needed for handling unstructured data, different data
formats, bias (e.g., more expensive drugs are more likely to be
prescribed like lenalidomide for multiple myeloma)3, and missing
data5. Standardization of EHR (e.g., Fast Healthcare Interoper-
ability Resources and OMOP Common Data Model) to represent
data elements in a standardized format (e.g., terminologies or
coding systems) may be a good investment to support
computational pipelines.
Lastly, EHR provides large longitudinal medical records in

clinical settings, which improves the applicability/reliability of the
predictive models. However, temporal information is seldom
incorporated into the experiment. The data model that incorpo-
rates temporal information will reduce the bias in the validation.
Another issue of EHR-based methods is that they cannot reveal
causality56. More mechanisms (e.g., biological pathways related to

drug targets) need to be studied to better understand the toxicity
and tolerability of drugs in humans. The leverage of genetic
information provides another potential to improve the perfor-
mance and interpretability of drug repurposing. For example, both
the eMERGE network and the All of US Initiative link EHR to
genetic information for multisite studies11. The integration of EHR
and patients’ genetic information will increase the number of
features (e.g., phenotypes and genotypes) to further promote the
development of drug repurposing.
There are a few limitations in this review that must be

mentioned. Firstly, while the authors tried their best to conduct
a comprehensive review, the authors acknowledge that some
bias may still exist in the selection, filtering and review of the
papers due to the perspectives and backgrounds of the authors.
Additionally, some related articles published may not be
included due to the selection of search strings, databases, and
language. For instance, in some studies57–59, where usage of
EHR is not explicitly mentioned in the text and inferred by a
human reader, thus causing them to not be retrieved by our
search query. Secondly, this review only focused on the studies
that directly used EHR for drug repurposing, and studies that
used EHR (e.g., a follow-up study based on a study utilizing EHR
to explore epilepsy and twelve autoimmune diseases60)
indirectly to facilitate drug repurposing are excluded. We
acknowledged that some studies excluded may be potentially
important and provide new methods of leveraging EHR. It is
worth noting that the scope of our review is limited only to the
methodologies involved in drug repurposing utilizing EHR data.
There are, however, other factors that can affect the viability
and efficiency of such methods, including questions surround-
ing the source EHR data itself, such as how patients relevant to
the studies in question are identified, computational represen-
tation of EHR data, and varying methods to render EHR data
more computationally accessible, such as natural language
processing. While studies on these topics have been excluded
from our review due to being out of scope, their importance to
the overall topic cannot be understated, and we would
encourage readers to further review existing works on the
different applications of EHR (e.g., refs. 61–64) as such topics will
have a profound impact on the feasibility and performance of
many of the methodologies discussed in this review. In addition,
while there are sub-topics in EHR-related studies (e.g., EHR data
harmonization, high dimensionality, confounding adjustment,
patient matching) critical to our survey, we are unable to discuss
them in our manuscript as those topics are not sufficiently
presented in the reviewed papers. We further suggest the
readers refer to the surveys on those topics (refs. 65–68) for a
more comprehensive discussion.

Fig. 6 Flow chart for article selection and filtering.
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METHODS
We followed Preferred Reporting Items for Systematic reviews and
Meta-Analyses extension for Scoping Reviews (PRISMA-ScR)
guidelines69 to perform our review. We conducted a thorough
search which was restricted to the full-length research articles
published in journals and conference proceedings from four
databases (Embase, Medline, Scopus, and Web of Science)
published within 22 years (i.e., January 1, 2000, to Jan 10, 2022).
We only included the original research articles written in English
and excluded those in the forms of review, abstract, poster,
podium, commentary, perspective, note, and editorial. The
detailed keywords used as tailored for each database are provided
in Supplementary Note 1.
Our literature search obtained 1145 combined results that

consisted of 1370 distinct articles (one result may contain multiple
articles in one conference proceeding). Seven reviewers (Y.Z., S.M.,
S.F., L.W., M.H., Y.Y., and A.W.) independently reviewed the titles
and abstracts of these articles and filtered out those studies which
are (1) not computational drug repurposing, (2) did not utilize EHR
data in the modeling or experimenting, (3) are not full research
article (e.g., conference and journal) with two round reviews. The
excluded articles were double-checked by the first author, NZ. Any
disputation of the exclusion is discussed and resolved among the
reviewers. This survey focuses on the remaining 33 research
articles. A flow chart of how the articles were filtered and reviewed
is shown in Fig. 6.
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