
PERSPECTIVE OPEN

The principles of whole-hospital predictive analytics
monitoring for clinical medicine originated in the neonatal
ICU
J. Randall Moorman 1✉

In 2011, a multicenter group spearheaded at the University of Virginia demonstrated reduced mortality from real-time continuous
cardiorespiratory monitoring in the neonatal ICU using what we now call Artificial Intelligence, Big Data, and Machine Learning. The
large, randomized heart rate characteristics trial made real, for the first time that we know of, the promise that early detection of
illness would allow earlier and more effective intervention and improved patient outcomes. Currently, though, we hear as much of
failures as we do of successes in the rapidly growing field of predictive analytics monitoring that has followed. This Perspective aims
to describe the principles of how we developed heart rate characteristics monitoring for neonatal sepsis and then applied them
throughout adult ICU and hospital medicine. It primarily reflects the work since the 1990s of the University of Virginia group: the
theme is that sudden and catastrophic deteriorations can be preceded by subclinical but measurable physiological changes
apparent in the continuous cardiorespiratory monitoring and electronic health record.
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INTRODUCTION
“When once the diseased skin begins to swell, you will see men
asking in vain for treatment.
Meet the disease on its way to attack you.” Persius, Satires III1

The dream of anticipatory medicine is tantalizing but largely
unrealized. We have pressing needs: patients are not only more
numerous but also more ill, representing a population that would
have died with usual care a decade or two ago. We also have
expanding opportunities: clinical data are much more voluminous
these days, presenting themselves in greater and greater variety
and at higher and higher velocity. Unchanged, though, is the
nature of day-to-day patient management: more than ever before,
we spend our time reacting to in-the-moment catastrophic clinical
deteriorations. While experienced clinicians agree that subtle
premonitory changes can be apparent to the right eyes,
automated detection of deterioration through sophisticated
analysis of already available data is yet to transform the day-to-
day practice of medicine. This notion, which we call predictive
analytics monitoring, has been under fire recently: witness the
poor performances of IBM Watson2 and the Epic Sepsis Model3,4,
and the finding that the “predictive” power of the electronic
health record (EHR) lies mainly in what the physicians ordered, not
results from the patients5.
We fear that the haste to generate academic and commercial

products has diverted focus toward the electronic health record
(EHR)—a blurry image, at best, of the bedside—and away from
the doctor, the nurse, the patient, and the continuous cardior-
espiratory monitoring. Moreover, we believe that clinical points of
view from the bedside have been subjugated to the perceived
need for Big Data, so Big that the resolution of clinical definitions
is lost. In order to realize fully the potential benefits of hospital-
wide predictive analytics monitoring, we argue for a return to
original principles, emphasizing clinical experience and reasoning,
comprehensive and well-resolved data, sound mathematics, and
the nuanced rigor of real-world practice.

THE HEART RATE CHARACTERISTICS MONITORING TRIAL
In 2011 we published the results of one of the largest individually
randomized clinical trials ever undertaken in premature infants6.
Previously, we found that premature infants who are early in the
course of sepsis often have abnormal heart rate characteristics of
reduced heart rate variability and transient decelerations7. We
developed or adapted mathematical time-series analytics that
reflected the degree to which these abnormalities were present8–11

and mapped them to the probability of sepsis in the next 24 h. We
developed a logistics regression model adjusted for repeated
measures and externally validated it at Wake Forest University12.
In the trial, we found that displaying a risk estimate based only

on continuous cardiorespiratory monitoring streaming from the
bedside monitors led to a more than 20% reduction in mortality6.
The only intervention was the display of the changing risk of
sepsis: there were no alerts, alarms, thresholds, or mandated
actions. The clinical benefits—lives saved, length of stay
reduced13, neurodevelopmental problems decreased14—have
been durable15. The mechanism was as intended—infants with
sepsis were saved16.

PRINCIPLES UNDERLYING THE DEVELOPMENT OF PREDICTIVE
ANALYTICS MONITORING
The heart rate characteristics monitoring trial was one of the very
earliest and most emphatic proofs of a general principle:
predictive analytics monitoring saves lives by detecting subacute
potentially catastrophic illness. Table 1 recalls the properties we
sought and the questions we asked when we developed
predictive analytics monitoring for neonatal sepsis 1.

Clinical fit
Sepsis is a common and potentially catastrophic illness, especially
in premature infants where it greatly increases morbidity and
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mortality. The diagnosis is elusive because it presents with non-
specific findings, but delaying antibiotics increases the death
rate17. The need for earlier detection has long been called for by
authoritative groups such as the Neonatal Research Network of
the NICHD18.
Throughout the hospital, in fact, subacute, potentially cata-

strophic illnesses are common and have adverse outcomes. For
example, we found that more than 10% of patients in a surgical
and trauma ICU had at least one such event and that the impact
on outcomes was outsized: several-fold increases in length of stay
and even larger fold increases in death rates19. Further, ward
patients who deteriorated clinically and were transferred to ICUs
had a 40-fold increase in mortality20.

Perspective. Predictive analytics monitoring fits well clinically. It
can meet a need for improved care in conditions where early
detection might lead to earlier treatment which, in turn, might
reasonably be expected to improve outcomes.

Face validity
Though it may present suddenly, sepsis in infants (and children21

and adults)19 is not a sudden illness, so we expect premonitory
changes. When clinicians look back on septic patients for whom
we made the diagnosis late, we can see subtle but consistent
findings of rising heart rates, falling blood pressures, changing
temperatures, and white blood cell counts.
While sepsis is a flagship example, there are other subacute

potentially catastrophic illnesses in which we can expect a
subclinical prodrome. These include respiratory deterioration
leading to emergency intubation19,22,23, hemorrhage leading to
large transfusion19,24,25, hypoglycemia26, and the multiple reasons
that ward patients deteriorate and require ICU transfer20,27. Their
common characteristics are (1) a natural progression of physio-
logical derangement that begins subtly, (2) a logical approach to
diagnostic testing, and (3) therapy that is most effective early in
the course of the illness. In our examples above, these include
chest X-rays, bronchodilators, diuretics, antibiotics; or angiogra-
phy, blood counts, surgery, transfusions; or fingersticks, feedings,
glucose; or any of the many tests and treatments for the diverse
and idiosyncratic modes of clinical deterioration. In each case, an
early start to diagnosis and treatment seems likely to help some
patients. These treatable conditions are better targets for early
detection than, say, all-cause mortality within the following year28,
which has no clinical urgency, or ventricular fibrillation in the
Coronary Care Unit, which has no prophylactic therapy.

We note, though, that not all clinical deteriorations are of this
kind. Some acute illnesses in the hospital are genuinely of
sudden onset—vascular catastrophes like acute myocardial
infarction, cerebrovascular accident, pulmonary embolism, or
arrhythmias such as ventricular fibrillation. For them, we expect
no prodromes and no opportunities for forewarning. In fact, the
absence of premonitory changes in the continuous cardiore-
spiratory monitoring delimits the differential diagnosis of sudden
clinical deterioration.

Perspective. We expect subclinical prodromes for some subacute
potentially catastrophic illnesses, so predictive analytics monitor-
ing has face validity as a means for early detection.

Signatures of illness
We built on the earlier observations of reduced heart rate variability
in infants with respiratory distress29–31. In premature infants with
late-onset sepsis at the University of Virginia, we saw something
new. Transient decelerations, many of them too small to generate a
bradycardia alarm, punctuated the otherwise unvarying heart rate
record7. This is the same abnormality that distressed fetuses
display32,33, and it is perhaps not, after all, surprising that premature
infants might report illness in the same way. This signature of acute
neonatal illness applies not just to sepsis but also to necrotizing
enterocolitis34, respiratory distress, and bleeding19.
Note that this illness signature requires continuous cardior-

espiratory monitoring to detect. It is not apparent by glancing at
bedside monitors, nor is it captured in the EHR. Beaulieu-Jones
and coworkers made the seminal observation that much of the
predictive nature of the EHR lay in the orders placed by physicians
on the day of admission5. They pointed out that such clinician-
initiated actions reflected the thinking of the physicians rather
than findings from the patients, and thus that EHR-only-based
statistical models might be lagging indicators rather than leading
ones. Delays in recording vital signs35 and in reporting lab results
further increase the lag.
We endorse their view that telemetric real-time physiological

monitoring is a source of non-clinician-initiated information that is
more likely to reflect the patient’s status. The notion resonates
clinically—why would we not use the patient’s physiologic data to
make decisions about his or her physiologic status? We know well
how the autonomic nervous system collects information from
throughout the body and fine-tunes the heart and lungs in
response36, and a new body of knowledge points to the
sophistication of regulation of the sinus node and the heartbeat
by intrinsic mechanisms37.
While sensible to consider in any clinical setting, continuous

cardiorespiratory monitoring data are rarely used in illness scoring
systems38 despite adding information by themselves7,19,22,23,39–41

or by adding to the EHR20,24,42–44. While we went on to find in the
NICU that lab tests and clinical findings added independent
information42,43,45, we stand by the practice of always using
continuous cardiorespiratory monitoring data wherever we find it
in the hospital.

Perspective. Signatures of illness are better detected when we
record the right signals, those that tell us more about the patient
than the clinician. For this task, models that use continuous
cardiorespiratory monitoring will always be better than those
that don’t.

Sound mathematical time-series analysis and statistical
modeling
The existing tools of heart rate variability analysis did not serve to
detect records with abnormal heart rate characteristics because
the decelerations inflate the standard deviation7. We have used
time-domain7,10,46–48, frequency-49,50 and wavelet-domain51,52,

Table 1. Properties and key questions for predictive analytics
monitoring research and development.

Property Key question

Clinical fit If we detect the problem early, can
we do something about it?

Face validity Can we expect a subclinical prodrome
detectable early on?

Signature of illness Do we record the right signals?

Mathematical
foundations

Do we analyze those signals in the right way?

Ground truth events Is the model trained on the complete,
undiluted set of actual cases?

Dynamicity Does the risk estimate rise as the
disease nears?

Clinical trial Does it work in real life?
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phase-domain53, nonlinear dynamical-domain8,9, and other math-
ematical tools47,48,54 to characterize the dynamics of the heart and
lungs from bedside continuous cardiorespiratory monitoring. Our
final strategy11 comprised the standard deviation to detect long
records with only reduced heart rate variability; sample asymme-
try10, new measures of the decelerations and accelerations; and
sample entropy8, which here serves to capture the phenotype of
flat baselines with spikes9.
These approaches have irrefutable mathematical foundations

not subject to changing points of view. We note the promise of a
comprehensive strategy of Fulcher and coworkers that they
named highly comparative time-series analysis55,56. Our recent
work points to a reduced set of calculations on heart rate and
oxygen saturation time series that captures many facets of
cardiopulmonary physiology in premature infants57.
These kinds of quantitative methods can reliably and

reproducibly lead to the optimal development of features that
relate physiologic dynamics to outcomes. Such mathematical
approaches differ from point scores using thresholds picked by
experts, such as the Apgar score58, Score for Neonatal Acute
Physiology (SNAP)59, or the Sequential Organ Failure Assessment
(SOFA)60 and its neonatal version61, APACHE, and others, all made
problematic by the need for thresholds and dichotomization62.
To optimize combinations of predictors, we have used mainly

logistic regression in our work. We know of the proliferation of
other machine learning and the newer recurrent neural network
approaches of Deep Learning. (Indeed, we used a neural
network in our first work on neonatal heart rate analysis in
1994)46. While the newer approaches have revolutionized
radiology with image analysis, we find no clear and consistent
superiority of one method over another in this field of classifying
the risk of patients from clinical data63. We posit that newer
machine learning and deep learning approaches64–73 should
complement rather than replace traditional statistical pattern
recognition methods.

Perspective. Once armed with the right signals, we should exercise
the right analytic methods to quantify what they are telling us, ones
that assay the physiological dynamics of the patient.

Ground truth cases in the training sets
Chart review by clinicians is the gold standard for identifying cases
on which to train statistical models. This observation stands to
reason clinically, and multiple studies have quantified the short-
comings of automated detection strategies for infection74. There
are two—failure to include cases in the training set, and dilution of
the training set by non-cases. The impact depends on how the
sensitivity and positive predictive accuracy compare to the
incidence rate of the event. Say a good computer strategy for
identifying events from the medical records has 70% sensitivity
and 70% positive predictive accuracy75, but the event rate is only
1%. In that case, a study of 10,000 patients identifies 70 of the 100
events, reducing the richness of the training set, and includes 30
patients without the event, diluting the training set by nearly half
with irrelevant cases. In addition to concerns about the robustness
and precision of models trained on impure data sets, the new
focus on explainability is endangered70,76. Confusion will follow
when trying to understand the attributes of patients who did not
have the targeted condition and failing to identify the attributes of
those who did.

Perspective. Predictive models trained on all the actual cases and
no others will always be better than those that aren’t.

Dynamics of the model that match the course of the illness
While statistical testing of the performance of the heart rate
characteristics index was essential77, there should be more to it

than threshold-based evaluations like sensitivity and specificity
or even areas under curves that evaluate multiple thresholds.
(When a patient says s/he feels unwell, do you ask about their
predictive performance?) We find that inspecting the time course
of the model prediction as a function of the time until the event
tells us much about what clinicians would see at the bedside.
The phenotypes of the trajectories can say a great deal about the
patient’s prognosis. For example, we identified trajectories of
heart rate characteristics monitoring that differentiated septic
patients into higher and lower risk categories78, a result
presaged as long ago as 200312. Indeed, it is often the trend
over time more so than the magnitude of the risk that leads
clinicians to act79,80.
While highly problematic statistically62, alerts based on

threshold-crossings are not without value. The field of predictive
analytics monitoring was recently advanced by Escobar and
coworkers at Kaiser-Permanente who broadly adopted a very
successful systems approach of alerts and informed intermedi-
aries to reduce mortality at 19 hospitals81. But the problems of
alert fatigue are well-known, and few risk estimates have true
thresholds, where the risk steps up but is constant on either side
of the breakpoint.

Perspective. Illnesses are dynamic, and the risk estimate should
dynamically rise as the signature becomes more clear.

A large randomized clinical trial
While RCTs have been criticized for expense, failure of scope, and
limited applicability to clinical practice82, the design remains
inarguably persuasive. While new designs are welcome83, the
individually randomized trial remains a gold standard required to
alter practice for many clinicians. The trial results overcome
questions about metrics such as sensitivity and specificity and are
antidotes to anecdotal reports.
For example, there were important reassurances in the heart

rate characteristics trial about the possibility of increased sepsis
work-ups. To be sure, since the event is rare, most positives are
false84, and a review of a small subset of heart rate characteristics
scores from one center had a negative conclusion85. We found,
though, no significant increase in blood cultures or antibiotics6.
We can surmise that low-risk scores must have averted about as
many sepsis work-ups and rule-outs as high scores initiated, an
opinion voiced by practitioners in the study80. This property of
predictive analytics monitoring to reassure clinicians about the
low-risk patients as well as to alert them to the high-risk ones is an
additional utility not contemplated initially but emphatically
present in the statistical analysis77.

Perspective. Randomized clinical trials of predictive analytics
monitoring in the real world remain of premium value. Unless
repeated, there can be no gainsaying the result.

CURRENT AND FUTURE DIRECTIONS
A new area of work is implementing and integrating predictive
analytics monitoring into the complex arena of clinical care. We
note a bare-bones education in the neonatal ICU and an organic
spread of its use mainly driven by word of mouth80. Our current
implementation efforts in adult ICUs and wards of two hospitals
and an eICU employ a systematic and principled approach86, and
we note the applicability of the monitoring to a learning health
systems approach79. Another new area is algorithmic equity. We
propose that continuous cardiorespiratory monitoring may be less
biased and less vulnerable to data shifts than the EHR as a data
source, though work remains to test the ideas. The interpretability
of models is another desirable feature70. We found that physicians
and other clinicians wish to know the origins of rising risk as
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estimated by computers79,86. Finally, we anticipate studies of the
utility of Deep Learning on the continuous cardiorespiratory
monitoring time-series data, where new patterns undetected by
domain experts might yet be found.

LIMITATIONS OF PREDICTIVE ANALYTICS MONITORING
Statistical models do not make diagnoses or tell us what to do
next—all they can do is relate data to probability. It stands to
reason that more data in more dimensions will improve the risk
estimate, especially if the sampling is continuous, like bedside
cardiorespiratory monitoring. Barriers to universal monitoring of
hospital patients include the cost and the cumbersome nature of
the devices. Several trends may change this picture. The
pandemic has threatened the number of bedside clinicians
who now serve to monitor patients closely, and technological
advances have resulted in remarkably capable wearable devices
that serve as cardiorespiratory monitors. Some day, perhaps one
may need only to put an app on a watch to benefit from
predictive analytics and other forms of continuous monitoring in
the hospital.
Here is a more critical limitation: the data collected may not

accurately paint the clinical picture of the patient. Like pointillism,
a larger number of data points, and more strategically placed
ones, better capture the identity of the illness. For a given patient,
different clinicians might order different tests if their differential
diagnoses differ. Each of the resulting data sets partially captures a
competing view of the patient, further complicating the problem
of making a statistical model for the classification of future
patients. In the worst-case scenario, if a patient has sepsis but the
chart has no recorded vital signs, labs, or other relevant data, then
no scoring system can make an assessment. Beam and coworkers
recently addressed the scenario when the predictive model has
nothing to say on the matter87. A potential limitation of predictive
analytics monitoring is that an irrelevant EHR record cannot assess
the patient in the present, let alone for the future.

CONCLUSION
We began our predictive analytics monitoring work more than 20
years ago by focusing on neonatal sepsis, a common and deadly
illness with a subclinical prodrome and a signature of illness in
continuous cardiorespiratory monitoring. We used mathematics to
analyze non-clinician-initiated data in ground truth cases. The
population- and illness-specific predictor changed dynamically with
the risk of imminent illness, and its use improved outcomes in a
large randomized trial. We believe that heart rate characteristics
monitoring for neonatal sepsis is the earliest success of predictive
analytics monitoring for subacute potentially catastrophic illness.
We offer this perspective as the template for our ongoing

predictive analytics monitoring research, development, and imple-
mentation throughout the hospital. The guiding principles call for
continuous cardiorespiratory monitoring, predictive models tailored
for conditions and populations rather than just one model for the
whole hospital, models trained on clinician-identified cases, sound
mathematical foundations, display of changing risks rather than
sounding alarms and alerts, and detailed schemes for implementa-
tion and integration that meld the predictive monitoring into the
complex world of the hospital bedside.

Reporting Summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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