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A multicenter evaluation of computable phenotyping
approaches for SARS-CoV-2 infection and COVID-19
hospitalizations
Rohan Khera 1,2,16, Bobak J. Mortazavi2,3,16, Veer Sangha1, Frederick Warner2, H. Patrick Young2, Joseph S. Ross 2,4,5, Nilay D. Shah6,
Elitza S. Theel7, William G. Jenkinson8, Camille Knepper6, Karen Wang 9,10, David Peaper10,11, Richard A. Martinello12,
Cynthia A. Brandt10,13, Zhenqiu Lin1,2, Albert I. Ko 14,15, Harlan M. Krumholz 1,2,5, Benjamin D. Pollock6,8 and Wade L. Schulz 2,10,11✉

Diagnosis codes are used to study SARS-CoV2 infections and COVID-19 hospitalizations in administrative and electronic health
record (EHR) data. Using EHR data (April 2020–March 2021) at the Yale-New Haven Health System and the three hospital systems of
the Mayo Clinic, computable phenotype definitions based on ICD-10 diagnosis of COVID-19 (U07.1) were evaluated against positive
SARS-CoV-2 PCR or antigen tests. We included 69,423 patients at Yale and 75,748 at Mayo Clinic with either a diagnosis code or a
positive SARS-CoV-2 test. The precision and recall of a COVID-19 diagnosis for a positive test were 68.8% and 83.3%, respectively, at
Yale, with higher precision (95%) and lower recall (63.5%) at Mayo Clinic, varying between 59.2% in Rochester to 97.3% in Arizona.
For hospitalizations with a principal COVID-19 diagnosis, 94.8% at Yale and 80.5% at Mayo Clinic had an associated positive
laboratory test, with secondary diagnosis of COVID-19 identifying additional patients. These patients had a twofold higher
inhospital mortality than based on principal diagnosis. Standardization of coding practices is needed before the use of diagnosis
codes in clinical research and epidemiological surveillance of COVID-19.
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INTRODUCTION
The COVID-19 pandemic has led to the rapid adoption of real-
world evidence to guide the treatment of and the public health
response to a novel pathogen1–5. The identification of both SARS-
CoV-2 infection and COVID-19 hospitalization is of current clinical
and regulatory importance given the need for case identification
for epidemiologic surveillance to track the infections, mortality,
and vaccine effectiveness. Similarly, clinical predictive models that
rely on appropriate case classification and studies that track the
long-term effects of SARS-CoV-2 infection may be biased if case
definitions are inaccurate or capture only subsets of individuals
infected with SARS-CoV-2. Administrative data represent a widely
available real-world data (RWD) source to monitor COVID-19 cases
and hospitalizations using diagnosis codes.
Administrative data, a source of RWD generated from billing

claims, can be used for disease surveillance, to follow hospitaliza-
tion rates, and characterize patient outcomes on a large scale as
well as evaluate the effects of health policy for these measures6–10.
However, claims could also represent individuals tested for
infection rather those with actual disease, thereby biasing the
study of epidemiological investigations, as has been shown in
other conditions11,12. To ensure that high-quality data guide
national policy and biomedical research, there is a need to

evaluate the accuracy of the diagnostic code-based approaches
used to define cases of SARS-CoV-2 infection and hospitalization.
The adoption of health information technology systems has

positioned health systems to improve case identification by
incorporating more detailed clinical data from the electronic
health record (EHR) with diagnosis codes, which allows for the
development of more accurate computable phenotypes, as well as
the validation of computable phenotyping approaches based on
diagnosis codes13–19.
In this study from two large health systems with academic and

community-based practices, we evaluate the accuracy of various
approaches to identify people with SARS-CoV-2 infection and
COVID-19 hospitalizations based on diagnostic codes and
laboratory testing results from the EHR. We also assess how
cohort definitions affect the evaluation of outcomes through an
assessment of inhospital mortality across these cohorts.

RESULTS
SARS-CoV-2 testing and diagnosis rates
There were 69,423 individuals with either a diagnosis of COVID-19
or a positive PCR for SARS-CoV-2 infection in the Yale-New Haven
Health System between April 1, 2020 and March 1, 2021. During
this period, there were 75,748 SARS-CoV2 infections identified
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across the three Mayo Clinic sites. At Yale, the mean age of
patients was 46.0 (±22.4) years and 45.0% of patients were men.
Nearly one fourth of patients were of Hispanic ethnicity (22.8%),
57.6% of patients had a recorded race of White and 15.2% were
Black (Table 1). In contrast, patients in the Mayo Clinic were
younger (mean age, 41.8 ± 20.6 years) and were predominantly
White (80.6% vs. 4.0% Black) (Table 1).

Computable phenotype accuracy for SARS-CoV-2 infection at
Yale
Of the 69,423 individuals included in our Yale cohort, 61,023
(87.9%) had a diagnosis of COVID-19 in the EHR and 50,355
(72.7%) had a positive SARS-CoV-2 PCR or antigen test. There were
consistent differences in number of SARS-CoV-2 infections based
on the diagnosis and laboratory-based phenotyping strategies
throughout the study period, with diagnostic codes being more
common than positive laboratory test findings (Fig. 1). Similar
patterns were observed for non-specific coronavirus diagnoses
(Supplementary Table 1 in the Online Supplementary).
Of the 50,355 patients with a positive laboratory test for SARS-

CoV-2, 41,995 (83.3%) had a diagnosis of COVID-19 recorded in the
EHR (Fig. 2). Moreover, there were 19,068 patients (31.2%) who
had a COVID-19 diagnosis without a positive lab test for SARS-
CoV-2. The characteristics of patients in these groups are included
in Table 1.
In a manual chart review of a random sample of 30 patients

with a diagnosis and without a positive SARS-CoV-2 test, all had a
healthcare visit for SARS-CoV-2 testing but with a subsequent
negative laboratory test.

The use of a diagnosis code of COVID-19 as the criteria to
identify SARS-CoV-2 infection had a precision (or positive
predictive value) of 68.8% (95% CI, 68.4% to 69.1%) and recall
(or sensitivity) of 83.3% (95% CI, 83.0% to 83.6%).
There were significant differences in concordance between

patient identification strategies during the study period (Supple-
mentary Fig. 1). Among patients with either a diagnosis code for
COVID-19 or a laboratory diagnosis of SARS-CoV-2, 51% of
patients had both a diagnosis code and a positive laboratory test
between April and August 2020, while 65% of patients had both
present between September 2020 and March 2021 (P < 0.001).
There were modest differences across racial and ethnic groups
(Fig. 3a). Among Hispanics and non-Hispanic Black patients,
69.5% and 68.7% patients, respectively had both a diagnosis of
COVID-19 and a positive laboratory test, compared with 54.5% of
non-Hispanic White patients. There was also a significant
difference by sex, with more women having a concomitant
diagnosis code and positive laboratory test than men (61.4% vs.
59.1%, P < 0.001 for all) (Fig. 3b).

Accuracy of phenotypes for SARS-CoV-2 infections across
Mayo Clinic sites
At Mayo Clinic, a diagnosis of COVID-19 was associated with high
precision for SARS-CoV2 infection (95.3%, Fig. 4). However, the
recall (or sensitivity) was low (63.3%). Further, there was
substantial variation across the Mayo Clinic sites, with the
sensitivity of a COVID-19 diagnosis identifying SARS-CoV-2
infection varying between 59.2% in Rochester to 97.3% in Arizona
(Fig. 4).

Table 1. Characteristics of patients across mutually exclusive computable phenotypes from the Yale New-Haven Health System and Mayo Clinic.

Characteristics Overall Diagnosis PLUS PCR/Antigen+ Diagnosis only PCR/Antigen+ only

Yale New Haven Health System

Number of patients 69423 41,955 19,068 8400

Age (mean (SD)) 46.0 (22.4) 51.2 (23.8) 52.4 (24.6) 42.6 (20.7)

Men, n (%) 31271 (45.0) 19,300 (46) 8335 (43.7) 3636 (43.3)

Race, n (%)

Black 10,582 (15.2) 7219 (17.2) 732 (12.1) 1171 (13.9)

White 39,976 (57.6) 22,462 (53.5) 4221 (70.0) 4320 (51.4)

Asian 1248 (1.8) 732 (1.7) 87 (1.4) 144 (1.7)

Native Hawaiian/Other Pacific Islander 242 (0.3) 151 (0.4) 11 (0.2) 37 (0.4)

American Indian or Alaska Native 144 (0.2) 83 (0.2) 10 (0.2) 20 (0.2)

Other race 11,833 (17.0) 8207 (19.6) 619 (10.3) 1586 (18.9)

Unknown 5398 (7.8) 3101 (7.4) 354 (5.9) 1122 (13.4)

Hispanic ethnicity (%) 15,829 (22.8) 11,037 (26.3) 838 (13.9) 2072 (24.7)

Mayo Clinic (all three sites)

Number of patients 75,748 46,522 2455 26,771

Age (mean (SD)) 41.8 (20.6) 54.8 (22.2) 58.2 (22.3) 33.5 (16.4)

Men, n (%) 37,340 (49.3) 22,475 (48.3) 1225 (49.9) 13,640 (51.0)

Race, n (%)

Black 3064 (4.0) 2395 (5.1) 110 (4.5) 569 (2.1)

White 61,063 (80.6) 37,161 (79.9) 2070 (84.3) 21,832 (81.6)

Asian 1685 (2.2) 1218 (2.6) 50 (2) 411 (1.5)

Native Hawaiian/Other Pacific Islander 115 (0.2) 85 (0.2) 0 (0) 22 (0.1)

American Indian or Alaska Native 353 (0.5) 249 (0.5) 45 (1.8) 53 (0.2)

Other race 3177 (4.2) 2403 (5.2) 78 (3.2) 696 (2.6)

Unknown 6291 (8.3) 3010 (6.5) 93 (3.8) 3188 (11.9)

Hispanic ethnicity (%) 6057 (8.0) 4603 (9.9) 216 (8.8) 1238 (4.6)
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Computable phenotype accuracy for COVID-19 hospitalization
at Yale
Based on visit start date, there were a total of 5555 discharges
using our overall phenotyping strategy from April 1, 2020 and
January 31, 2021 at Yale. Of these, 5109 (92.0%) discharges had a
principal diagnosis of COVID-19 and the remaining 446 had a
principal diagnosis for a COVID-19 related severe presentation and
a secondary diagnosis of COVID-19 on the same visit. Finally, there
were 343 individuals who had a secondary, but not primary,
diagnosis of COVID-19 which were excluded from analysis as these
diagnoses were incidental findings or hospital-acquired infections.
Those with a COVID-19 primary diagnosis were less frequently
male (50.9% vs. 59.6%, P < 0.001) and were more frequently Black
(20.9% vs. 17.3%, P= 0.02).
The vast majority of patients had a positive SARS-CoV-2 PCR or

antigen test during their hospitalization across both patients
hospitalized with a COVID-19 primary diagnosis (94.8%, n= 4843)
or a secondary diagnosis (91.9%, n= 410). A manually abstracted
sample of ten charts of hospitalized individuals without a positive
laboratory test but with a principal diagnosis of COVID-19 found
that seven of these patients had a positive COVID-19 test at
another healthcare facility prior to presentation and three had a
strong clinical suspicion for COVID-19 but a negative PCR test.

COVID-19 hospitalization phenotypes across Mayo Clinic sites
A smaller proportion of patients with a principal diagnosis of COVID-
19 in the Mayo Clinic System, as compared with those at Yale, had a
positive SARS-CoV-2 PCR or antigen test during the hospitalization

Fig. 2 Overlap of SARS-CoV2 case counts by computational phenotyping strategies. Computable phenotypes for SARS-CoV-2 infection
across the study period at Yale New Haven Health System.

Fig. 1 SARS-CoV2 case counts by phenotyping strategy. The
absolute cumulative SARS-CoV-2 cases by adjudication strategy
across the study period. The cases are based on either principal
diagnosis or any diagnosis, compared with a polymerase chain
reaction or antigen test for SARS-CoV-2.
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(80.5%, n= 2378), but the proportion was similar between Mayo
Clinic and Yale for patients with a secondary diagnosis (90.7%, 331).
A manually abstracted sample of ten charts among individuals who
had a principal diagnosis of COVID-19 without a positive laboratory
test identified that nine of these patients had a positive SARS-CoV-2
test at another healthcare facility prior to presentation and one did
not have a documented SARS-CoV-2 test.

Relationship between COVID-19 hospitalization phenotype
definition and inhospital mortality rate
At Yale, the inhospital mortality rate for those hospitalized with a
principal diagnosis of COVID-19 was 13.2% (675 of 5109), which
was significantly lower than those with a secondary diagnosis of
COVID-19 and related primary diagnosis code for sepsis or
respiratory failure, who had an inhospital mortality that was
nearly double (28.0%, 125 of 446, P < 0.001) (Table 2). This pattern
was also observed at Mayo Clinic, with an 8.0% (237 of 2954)
inhospital mortality rate among patients with a principal diagnosis
of COVID-19, compared with 22.7% (83 of 365) among those with
a secondary diagnosis of COVID-19. This was observed across all
three Mayo Clinic sites (Fig. 5).

DISCUSSION
In two large, integrated health systems with multiple care delivery
networks and associated outpatient clinics, COVID-19 diagnosis

codes alone were frequently not consistent with case identifica-
tion and epidemiological surveillance of SARS-CoV-2 infection
based on antigen/PCR testing, with significant variation across two
major health systems. In contrast, nearly all patients with a
principal diagnosis of COVID-19 were admitted with a SARS-CoV2
infection, though a focus on principal diagnosis alone would miss
an additional 10% of patients with a clinical profile consistent with
severe COVID-19, which were recorded as a secondary diagnosis
of COVID-19. The latter group had an over twofold higher
mortality rate compared with patients with a principal diagnosis of
COVID-19.
This study extends the literature in several key ways. The study

leverages multiple EHRs as a source of RWD, rather than
administrative claims, and evaluates the accuracy of diagnostic
codes for SARS-CoV-2 case identification across outpatient and
inpatient healthcare settings. Moreover, in addition, we evaluated
the association of phenotype definitions on inferred short-term
outcomes. A previous study found that the COVID-19 diagnosis
code, U07.1 was rapidly incorporated into the workflow of US
hospitals in early 202020, and among hospitalized patients, had a
high sensitivity and specificity of the code for laboratory
confirmed disease. However, that study was limited in using data
only through May 2020, with only 4965 SARS-CoV-2 positive
laboratory tests. Moreover, the accuracy measures were driven by
the 89.6% of the cohort that did not have either a positive test or a
diagnosis code for COVID-1920. The evaluation of COVID-19
diagnosis codes also focused exclusively among hospitalized
patients and did not evaluate the role of diagnosis codes in case
surveillance.
We confirm that an inpatient diagnosis of COVID-19 has

retained a large positive predictive value for clinical COVID-19.
Yet, we found significant heterogeneity in outcomes based on
whether COVID-19 was included as a principal or a secondary
diagnosis. Finally, we evaluated the approach across two different
hospital systems spanning four distinct geographic regions over
an entire year. Through a limited exploratory expert chart review,
we obtained some additional insights about discordant diagnosis
codes and laboratory results. Specifically, we found that in the
reviewed cases of outpatient COVID-19 diagnosis codes, the codes
corresponded to diagnoses captured for subsequently negative
laboratory tests, rather than missed laboratory tests at external
sites. Moreover, in the inpatient setting, COVID-19 diagnosis codes
without a laboratory test were associated with either a positive
test at another institution or a high clinical suspicion for the
disease without a positive test.
There are many possible reasons for the incorrect classification

of SARS-CoV-2 infections by diagnosis code. Many studies have
shown the apparent inaccuracy of various EHR data elements,
such as the clinical history and problem list21,22. Clinical
uncertainty related to a diagnosis, potential stigma associated
with the addition of a diagnosis to the medical record, clinical
workflows that do not promote the capture of structured data
elements, and miscoded diagnoses can all impact the ability to
define a digital phenotype that accurately identifies
patients21,23,24. Moreover, diagnosis codes are often included
when evaluating a suspected condition and may be misconstrued
as proof of diagnosis, particularly in data captured in near real-
time.
Our study finds evidence of the changing sensitivity of the

codes over the study period, with fewer diagnoses associated with
clinical tests in the early phase of the pandemic. This is consistent
with the limited availability of diagnostic tests in that period.
Moreover, our racially and ethnically diverse study population
allowed our study to specifically evaluate differential performance
of diagnosis codes for case surveillance in racial/ethnic minority
groups and women, especially due to the disproportionately large
effect of the pandemic on racial/ethnic minorities25. We found
modest differences in performance of codes across these groups,
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Fig. 3 Demographic differences in SARS-CoV2 phenotyping
strategies. Computable phenotypes for SARS-CoV-2 infection by a
Race/Ethnicity and b Sex in the Yale-New Haven Health System.
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with a lower performance of diagnosis codes in non-Hispanic
White patients relative to Hispanic and non-Hispanic Black
individuals. While the mechanism for these differences is unclear,
it could represent a combination of the larger burden of SARS-
CoV2 infection and COVID-19 hospitalizations among Black and
Hispanic individuals, and the broader availability of testing
through community-based practices to individuals from the White
communities, with more visits for clinical suspicion for COVID-19.
Our study also highlights the value of health information

systems in disease monitoring through logical cohort definitions,
which can be explicitly confirmed across different data elements.
This was manifested in our ability to assess the reliability of
diagnosis codes through a large period in the pandemic when,
contrary to expectations, increased access to laboratory testing
during the later phase of the pandemic did not eliminate the
difference between the relative prevalence of diagnosis codes and
laboratory testing, suggesting the role of coding practices rather
than access to testing. Moreover, our work supports the need for
continuous monitoring and validation of computable phenotypes,
especially those that rely solely on diagnosis codes, such as those
used to analyze administrative data sets. The variation in the
reliability of diagnosis codes may represent a combination of
differences in care practices, including the clinical threshold for
testing for SARS-CoV-2 due to either accessibility of testing or
clinical protocols, and the threshold for using diagnosis codes for
documenting care for patients with a clinical suspicion.
Our study has several limitations. First, while our study evaluates

the accuracy of diagnosis codes in the study of the clinical
epidemiology of SARS-CoV-2 infection and COVID-19 hospitaliza-
tions based on a concomitant positive test, the true population of
interest is likely larger16,26, and could include with clinical
manifestation of disease without either a positive laboratory test

or a diagnosis code. While of interest, these populations are
challenging to define using existing computational phenotyping
strategies.
Second, while we focused on two broad interconnected health

systems and affiliated laboratories and receive testing information
from laboratories that exchange data via the Epic EHR, not all
external laboratory data were available from testing in the
outpatient setting. However, in manual chart review of a sample
of patients with an outpatient diagnosis of COVID-19 without a
reported positive PCR or antigen test, all such records were for
patients undergoing SARS-CoV-2 testing with the diagnosis
assigned for the clinical or laboratory encounter to obtain the
test. Third, while both study sites used data from the Epic EHR,
variation in care practices, coding conventions, and EHR engage-
ment strategies would likely introduce variation in how diagnosis
codes and laboratory testing are recorded, To ensure that the data
elements for current study corresponded to the same clinical
entities, the data extraction was harmonized through direction
from local expert clinicians and informaticians with experience
with working with their respective data sources.
Fourth, we cannot infer coding practices at other institutions

not included in the study. However, the two large integrated
multi-hospital health systems included in the study demonstrated
substantial inter-hospital heterogeneity in coding practices. Such a
site-to-site variation is likely prevalent across hospitals not
included in the study. This variation across sites also highlights
the challenge with working with RWD. For example, for the Mayo
Clinic sites where the diagnosis code had a high precision but low
recall, may be due to testing at standalone testing facilities.
Specifically, the Rochester, MN site served as high-volume drive-
thru testing site for the local community. These individuals were
less likely to have prior data in the Mayo EHR, and thus more likely

Fig. 4 SARS-CoV2 case counts by computational phenotyping strategies in the Mayo Clinic System. Computable phenotypes for SARS-
CoV-2 infection across the study period at the Mayo Clinic System, a across all Mayo Clinic sites, b Rochester, c Arizona, and d Florida.
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to not have a positive test result lead to a diagnosis code in
the EHR.
Fifth, important measures such as those assessing interrater

reliability27,28, or discrimination (c-statistic) were limited by the
undefined size of the true negatives, i.e., individuals without a
diagnosis code who also did not have a laboratory diagnosis is
challenging to define, particularly given the variation in testing
thresholds and the lack of information on the universe of patients
who neither underwent testing or had a diagnosis code. The
precision and recall are relevant in assessing model performance,
and do not depend on this information. Finally, while we pursued
a limited chart review to assess the clinical presentations that
underlie patterns in coding for a small number of randomly drawn

cases, these may not represent all the possible reasons for the
observed variation in coding. The time-intensive and subjective
nature of the review by clinical experts precluded a broad
validation against manual assessment.
In conclusion, the use of COVID-19 diagnosis codes misclassified

SARS-CoV-2 infection status for many people, with implications for
clinical research and epidemiological surveillance. Moreover, the
codes had different performance across two academic health
systems and identified groups with different risks of mortality.
Standardization of coding practices and their validation against
other data streams in the EHR is needed to allow for the use of
diagnosis codes for clinical research and epidemiological surveil-
lance of COVID-19.

METHODS
Data sources
We used EHR-derived data from Yale New Haven Health System (Yale), a
large academic health system consisting of five distinct hospital delivery
networks and associated outpatient clinics located in Connecticut and
Rhode Island. To evaluate the generalizability of our observations, a similar
cohort was constructed in the three hospital delivery networks of the Mayo
Clinic. Mayo Clinic is an academic health system headquartered in
Rochester MN, with two additional destination medical centers in Phoenix,
AZ, Jacksonville, FL, and several regional and critical access hospitals in
Minnesota and Wisconsin.
All included study sites use an Epic EHR system. At Yale, the data from

Epic were transformed into the Observational Medical Outcomes Partner-
ship (OMOP) common data model (CDM)13,29. At the Mayo Clinic sites, the
corresponding data fields were captured from the Epic EHR extract directly.
We used a versioned extract from March 3, 2021 and analyzed testing

and discharge information from April 1, 2020, when the COVID-19 specific
International Classification of Diseases-10th Edition-Clinical Modification (ICD-
10-CM) diagnosis was introduced, through March 1, 2021. Admissions were
limited to those with a visit start date before January 31, 2021 to allow for a
majority of those admitted to have been discharged3.
The study was approved by the Institutional Review Boards of Yale

University and Mayo Clinic. Data were independently analyzed at each site.

Cohort definitions
SARS-CoV-2 infection. We defined two strategies to identify SARS-CoV-2
infection from the EHR spanning all healthcare settings, the first based on
diagnostic codes and the second based on laboratory testing. Our first
approach relied on the identification of the specific COVID-19 ICD-10-CM
diagnosis code U07.1 within the clinical record, defined based on
encounter-associated diagnoses. The U07.1 code, which was introduced
on April 1, 2020, was used to define SARS-CoV-2 when used either as a
principal or a secondary diagnosis of COVID-19 during any healthcare
encounter.
The two diagnosis-based phenotyping strategies were compared to the

second approach, which was based on the presence of a positive SARS-CoV-2

Table 2. Characteristics of hospitalized COVID-19 patients with a
principal or secondary diagnosis of COVID-19 (U07.1).

Characteristics Overall Principal
diagnosis of
COVID-19

Secondary
diagnosis of
COVID-19a

Yale New Haven Health System

Number of patients 5555 5109 446

Age (mean (SD)) 66.37 (17.59) 66.17 (17.68) 68.63 (16.44)

Men, n (%) 2867 (51.6) 2601 (50.9) 266 (59.6)

Race, n (%)

Black 1145 (20.6) 1068 (20.9) 77 (17.3)

White 3156 (56.8) 2880 (56.4) 276 (61.9)

Asian 103 (1.9) 96 (1.9) <10 (1.6)

Native Hawaiian/other

Pacific Islander 19 (0.3) 19 (0.4) 0 (0.0)

American Indian
or Alaska

Native 12 (0.2) 11 (0.2) <10 (0.2)

Other race 1043 (18.8) 960 (18.8) 83 (18.6)

Unknown 77 (1.4) 75 (1.5) <10 (0.4)

Hispanic
ethnicity (%)

1243 (22.4) 1152 (22.5) 91 (20.4)

Inhospital mortality/
discharge to
Hospice, n (%)

800 (14.4) 675 (13.2) 125 (28.0)

Mayo Clinic

Number of patients 3319 2954 365

Age (mean (SD)) 65.47 (17.84) 65.41 (17.98) 65.92 (16.64)

Men, n (%) 1893 (57.0) 1659 (56.6) 234 (64.1)

Race, n (%)

Black 173 (5.2) 149 (5.0) 24 (6.6)

White 2714 (81.8) 2427 (82.2) 287 (76.6)

Asian 110 (3.3) 93 (3.2) 17 (4.7)

Native Hawaiian/other

Pacific Islander <10 (0.2) <10 (0.2) 0 (0.0)

American Indian or Alaska

Native 116 (3.5) 100 (3.4) 16 (4.4)

Other race 126 (3.8) 109 (3.7) ‘17 (4.7)

Unknown 74 (2.2) 70 (2.4) 4 (1.1)

Hispanic ethnicity,
n (%)

326 (9.8) 277 (9.4) 49 (13.4)

Inhospital mortality/
discharge to
Hospice, n (%)

320 (9.6) 237 (8.0) 83 (22.7)

aWith a principal diagnosis for respiratory failure, sepsis, or pneumonia.
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Fig. 5 Mortality for COVID-19 hospitalizations defined by
principal and secondary diagnosis by study site. Mortality
represents inhospital death and discharge to hospice from index
admission.
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PCR or antigen test within 2 weeks before or after the diagnosis encounter, to
identify individuals who had documented infection. The laboratory testing
did not focus on antibody testing given the testing’s limited role in the
assessment of active disease.
We supplemented this assessment to include potentially related but non-

specific diagnoses for severe acute respiratory syndrome (SARS) or
coronavirus disease (COVID-19-related diagnoses) based on a subset of
codes identified within the National COVID Cohort Collaborative (N3C)
phenotype (see Supplementary Table 2)30.

COVID-19 hospitalization. We defined COVID-19 hospitalizations using
two strategies. The first identified all hospitalizations with a principal
diagnosis of COVID-19 (U07.1). In addition, we defined a second strategy
that included individuals with a secondary diagnosis of COVID-19, but with
a clinical presentation that was consistent with severe manifestations of
COVID-19 defined by a principal diagnosis for acute respiratory failure,
pneumonia or sepsis. This approach focused on hospitalizations that were
due to COVID-19 rather than incidentally associated with a positive test for
the disease during admission for an unrelated diagnosis. The principal
diagnoses used in this approach are included in Supplementary Table 3.
There was only a single hospitalization with a diagnosis code J12.82 that
has been suggested to identify COVID-19 pneumonia30, and was not
included in the analysis. Further, to assess validity of diagnosis codes to
identify COVID-19 hospitalizations, we compared hospitalizations with
COVID-19 diagnosis codes against positive SARS-CoV-2 testing 2 weeks
before hospitalization through any time before hospital discharge.

Study covariates
We defined key demographic characteristics for individuals, including age,
sex, race and ethnicity. Age was defined as completed years on the day of
admission, computed from their date of birth. Sex, race, and ethnicity were
based on what was documented in the medical record. To evaluate the
effect of coding strategies on case identification among racial and ethnic
minorities, we combined racial/ethnic groups into mutually exclusive
groups of Hispanic, non-Hispanic White, non-Hispanic Black, and other
race/ethnicity groups31,32. The authors explicitly confirmed that the study
fields were defined based on the same EHR data fields.
Among patients hospitalized with COVID-19, the representativeness of

cohort definitions was assessed based on inhospital mortality rates across
case identification strategies. Inhospital mortality was defined based on
the discharge disposition of the index (first) COVID-19 hospitalization.
Consistent with other studies33–35, we used a composite endpoint of
inhospital mortality, transfer to inpatient hospice, or discharge to facility or
home-based hospice to define our composite outcome.

Statistical analyses
We compared differences in demographic characteristics using the chi-square
test for categorical variables and t-test for continuous variables. We evaluated
the performance of computable phenotyping of SARS-CoV-2 infection and
hospitalization based on the COVID-19 diagnosis code. This was evaluated
against a confirmed diagnosis of SARS-CoV-2 infection based on PCR or
antigen testing. The performance of COVID-19 diagnoses to accurately identify
cases of SARS-CoV-2 infection was assessed on 2 key performance measures:
precision (positive predictive value) and recall (or sensitivity). Precision was
defined as the proportion of patients with a COVID-19 diagnosis that had a
positive PCR/antigen test for COVID-19. Recall was defined as the proportion of
patients with a positive PCR/antigen test for COVID-19 who also had a
diagnosis of COVID-19 among all patients who tested positive with or without
a diagnosis of COVID-19. The laboratory diagnosis was chosen a surrogate of a
confirmed SARS-CoV2 infection, and a confirmed COVID-19 hospitalization
given the wide phenotypic variability of clinical disease and a lack of an
alternative algorithmic strategy for defining clinical disease in the absence of
laboratory results.
Analyses were conducted using Spark 2.3.2, Python 3.6.9, and R 3.8

(packages listed in Supplementary Table 4). All statistical tests were 2-tailed
with a level of significance set at 0.05.

Manual chart abstraction and validation
Manual chart abstraction was conducted by two clinicians independently
(R.K. and W.L.S.) and focused on a sample of randomly selected charts
where the diagnosis codes were discordant from laboratory results. For
SARS-CoV-2 infections, ten patient charts were randomly selected from
each of the following categories (total 30): (1) principal or secondary

diagnosis of COVID-19, but negative laboratory diagnosis (n= 20), and (2) a
positive laboratory diagnosis of SARS-CoV-2 without a corresponding
diagnosis code (n= 10). Furthermore, ten additional charts were selected
for patients who were hospitalized with a principal diagnosis COVID-19
and negative laboratory results, and the clinical documentation was
qualitatively reviewed to evaluate the reason for the discrepancy (see
Supplementary Note for details).

Generalizability of phenotypes at Mayo Clinic
We constructed equivalent patient cohorts across the three Mayo Clinic
sites in Minnesota, Arizona, and Florida using the same cohort
definitions as outlined in the primary analyses. In these cohorts, we
evaluated both the accuracy of the coding strategies in identifying
infections with SARS-CoV-2 across care settings, and COVID-19
hospitalizations.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The patient-level information is not available for public release due to restrictions in
the IRB approval at each site. However, summary data required to replicate figures
will be provided upon request.

CODE AVAILABILITY
The statistical code is available on a public repository (https://github.com/
rohankhera/covid-phenotyping-share)36. Analyses were conducted using Spark
2.3.2, Python 3.6.9, and R 3.8 and a complete list of analytic packages listed in
Supplementary Table 4.
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