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Deep learning in image-based breast and cervical cancer
detection: a systematic review and meta-analysis
Peng Xue 1,5, Jiaxu Wang 1,5, Dongxu Qin1, Huijiao Yan2, Yimin Qu1, Samuel Seery 3,4, Yu Jiang 1✉ and Youlin Qiao 1✉

Accurate early detection of breast and cervical cancer is vital for treatment success. Here, we conduct a meta-analysis to assess the
diagnostic performance of deep learning (DL) algorithms for early breast and cervical cancer identification. Four subgroups are also
investigated: cancer type (breast or cervical), validation type (internal or external), imaging modalities (mammography, ultrasound,
cytology, or colposcopy), and DL algorithms versus clinicians. Thirty-five studies are deemed eligible for systematic review, 20 of
which are meta-analyzed, with a pooled sensitivity of 88% (95% CI 85–90%), specificity of 84% (79–87%), and AUC of 0.92
(0.90–0.94). Acceptable diagnostic performance with analogous DL algorithms was highlighted across all subgroups. Therefore, DL
algorithms could be useful for detecting breast and cervical cancer using medical imaging, having equivalent performance to
human clinicians. However, this tentative assertion is based on studies with relatively poor designs and reporting, which likely
caused bias and overestimated algorithm performance. Evidence-based, standardized guidelines around study methods and
reporting are required to improve the quality of DL research.
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INTRODUCTION
Female breast and cervical cancer remain as major contributors to
the burden of cancer1,2. The World Health Organization (WHO)
reported that approximately 2.86 million new cases (14.8% of all
cancer cases) and 1.03 million deaths (10.3% of all cancer deaths)
were recorded worldwide in 20203. This disproportionately affects
women, especially in low- and middle-income countries (LMICs),
which can be largely attributed to more advanced stage
diagnoses, limited access to early diagnostics, and suboptimal
treatment4,5. Population-based cancer screening in high-income
countries might not be as effective in LMICs, due to limited
resources for treatment and palliative care6,7. Integrative screening
for cancer is a complex procedure that needs to take biological
and social determinants, as well as ethical constraints into
consideration, and as is already known, early detection of breast
and cervical cancers are associated with improved prognosis and
survival8,9. Therefore, it is vital to select the most accurate and
reliable technologies that are capable of identifying early
symptoms.
Medical imaging plays an essential role in tumor detection,

especially within progressively digitized cancer care services. For
example, mammography and ultrasound, as well as cytology and
colposcopy are commonly used in clinical practice10–14. However,
fragmented health systems in LMICs may lack infrastructure and
perhaps the manpower required to ensure high-quality screening,
diagnosis, and treatment. This hinders the universality of
traditional detection technologies mentioned above, which
require sophisticated training15. Furthermore, there may be
substantial inter- and intraoperator variability which affects both
machine and human performances. Therefore, the interpretation
of medical imaging is vulnerable to human error. Of course,
experienced doctors tend to be more accurate although their

expertise is not always readily available for marginalized popula-
tions, or for those living in remote areas. Resource-based testing
and deployment of effective interventions together could reduce
cancer morbidity and mortality in LMICs16. In line with this, an
ideal detection technology for LMICs should at least have low
training needs.
Deep learning (DL), as a subset of artificial intelligence (AI),

could be applied to medical imaging and has shown promise in
automatic detection17,18. While media headlines tend to over-
emphasize the polarization of DL model findings19, few have
demonstrated inferiority or superiority. However, the Food and
Drug Administration (FDA) has approved a select number of DL-
based diagnosis tools for clinical practice, even though further
critical appraisal and independent quality assessments are
pending20,21. To date, there are few medical imaging specialty-
specific systematic reviews such as this, which assess the
diagnostic performance of DL algorithms, particularly in breast
and cervical cancer.

RESULTS
Study selection and characteristics
Our search initially identified 2252 records, of which 2028 were
screened after removing 224 duplicates. 1957 were also excluded
as they did not fulfil our predetermined inclusion criteria. We
assessed 71 full-text articles and a further 36 articles were
excluded. 25 of these articles focused on breast cancer, and 10
were on cervical cancer (see Fig. 1). Study characteristics are
summarized in Tables 1–3.
Thirty-three studies utilized retrospective data. Only two studies

used prospective data. Two studies also used data from open
access sources. No studies reported a prespecified sample size
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calculation. Eight studies excluded low quality images, while
27 studies did not report anything around image quality.
11 studies performed external validation using out-of-sample
dataset, while the others performed internal validation using in-
sample-dataset. 12 studies compared DL algorithms against
human clinicians using the same dataset. Additionally, medical
imaging modalities were categorized into cytology (n= 4),
colposcopy (n= 4), cervicography (n= 1), microendoscopy (n=
1), mammography (n= 12), ultrasound (n= 11), and MRI (n= 2).

Pooled performance of DL algorithms
Among the 35 studies in this sample, 20 provided sufficient data
to create contingency tables for calculating diagnostic perfor-
mance and were therefore included for synthesis at the meta-
analysis stage. Hierarchical SROC curves for these studies (i.e. 55
contingency tables) are provided in Fig. 2a. When averaging
across studies, the pooled sensitivity and specificity were 88%
(95% CI 85–90), and 84% (95% CI 79–87), respectively, with an AUC
of 0.92 (95% CI 0.90–0.94) for all DL algorithms.
Most studies used more than one DL algorithm to report

diagnostic performance, therefore we reported the highest
accuracy of different DL algorithms for included studies in 20
contingency tables. The pooled sensitivity and specificity were
89% (86–92%), and 85% (79–90%), respectively, with an AUC of
0.93 (0.91–0.95). Please see Fig. 2b for further details.

Subgroup meta-analyses
Four separate meta-analyses were conducted:

I. Validation types—15 studies with 40 contingency tables
included in the meta-analysis were validated with an in-

sample dataset and had a pooled sensitivity of 89%
(87–91%), and pooled specificity of 83% (78–86%), with an
AUC of 0.93 (0.91–0.95), see Fig. 3a for details. Only 8 studies
with 15 contingency tables performed an external valida-
tion, for which the pooled sensitivity and specificity were
83% (77–88%), and 85% (73–92%), respectively, with an AUC
of 0.90 (0.87–0.92), see Fig. 3b.

II. Cancer types—10 studies with 36 contingency tables
targeting breast cancer, had a pooled sensitivity of 90%
(87–92%) and specificity of 85% (80–89%), with an AUC of
0.94 (0.91–0.96), see Fig. 4a. 10 studies with 19 contingency
tables considered cervical cancer with a pooled sensitivity
and specificity of 83% (78–88%), and 80 (70–88%),
respectively, with an AUC of 0.89 (0.86–0.91), see Fig. 4b
for details.

III. Imaging modalities—4 mammography studies with 15
contingency tables had a pooled sensitivity of 87%
(82–91%), a pooled specificity of 88% (79–93%), and with
an AUC of 0.93 (0.91–0.95), see Fig. 5a. There were four
ultrasound studies with 17 contingency tables with a pooled
sensitivity of 91% (89–93%), pooled specificity of 85%
(80–89%), and an AUC of 0.95 (0.93–0.96), see Fig. 5b. There
were four cytology studies with six contingency tables
which had a pooled sensitivity of 87% (82–90%), pooled
specificity of 86% (68–95%), and an AUC of 0.91(0.88–0.93),
Fig. 5c. There were four colposcopy studies with 11
contingency tables which had a pooled sensitivity of 78%
(69–84%), pooled specificity of 78% (63–87%), and an AUC
of 0.84 (0.81–0.87), see Fig. 5d.

IV. DL algorithms versus human clinicians—of the 20 included
studies, 11 studies compared diagnostic performance
between DL algorithms and human clinicians using the
same dataset, with 29 contingency tables for DL algorithms,
and 18 contingency tables for human clinicians. The pooled
sensitivity was 87% (84–90%) for DL algorithms, which
human clinicians had 88% (81–93%). The pooled specificity
was 83% (76–88%) for DL algorithms, and 82% (72–88%) for
human clinicians. The AUC was 0.92 (0.89–0.94) for DL
algorithms, and 0.92 (0.89–0.94) for human clinicians
(Fig. 6a, b).

Heterogeneity analysis
All included studies found that DL algorithms are useful for the
detection of breast and cervical cancer using medical imaging
when compared with histopathological analysis, as the gold
standard; however, extreme heterogeneity was observed. Sensi-
tivity (SE) had an I2= 97.65%, while specificity (SP) had I2= 99.90
(p < 0.0001), see Fig. 7.
A funnel plot was produced to assess publication bias. The p

value of 0.41 suggests there is no publication bias although
studies were widely dispersed around the regression line. See
Supplementary Fig. 3 for further details. In order to identify the
source/sources of such extreme heterogeneity we conducted
subgroup analysis, and found:

I. Validation types—Internal validation (SE, I2= 97.60%, SP, I2

= 99.19, p < 0.0001), and external validation (SE, I2= 96.15%,
SP, I2= 99.96, p < 0.0001). See Supplementary Fig. 4.

II. Cancer types of DL algorithms included breast cancer (SE, I2

= 95.84%, SP, I2= 99.86 p < 0.0001) and cervical cancer (SE,
I2= 98.16%, SP, I2= 99.89, p < 0.0001). Please see Supple-
mentary Fig. 5 for further details.

III. Imaging modalities including mammography (SE, I2=
97.01%, SP, I2= 99.93, p < 0.0001), and ultrasound (SE, I2=
86.49%, SP, I2= 96.06, p < 0.0001), cytology (SE, I2= 89.97%,
SP, I2= 99.90, p < 0.0001), and colposcopy (SE, I2= 98.12%,
SP, I2= 99.59, p < 0.0001), see Supplementary Fig. 6.

Fig. 1 PRISMA flowchart of study selection. Displayed is the PRISMA
(preferred reporting items for systematic reviews and meta-analyses)
flow of search methodology and literature selection process.
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However, heterogeneity was not aligned to a specific subgroup,
nor was it reduced to an acceptable level, with all subgroup I2

values remained high. Therefore, we could infer whether different
validation types, cancer types, and imaging modalities were likely
to have influenced DL algorithm performances for detecting
breast and cervical cancer.
To further investigate this finding, we performed meta-

regression analysis with these covariates (see Supplementary
Table 1). The results highlighted a statistically significant
difference, which is line with sub-group and meta-analytical
sensitivity analyses.

Quality assessment
The quality of the included studies was assessed using QUADAS-2
and a summary of findings has been provided with an appropriate
diagram in the supplementary materials as Supplementary Fig. 1.
A detailed assessment for each item based on the domain of risk
of bias and concern of applicability has also been provided as
Supplementary Fig. 2. For the patient selection domain of risk of
bias, 13 studies were considered high or unclear risk of bias due to
unreported inclusion criteria or exclusion criteria, and improper
exclusion. For the index test domain, only one studies was
considered high or at unclear risk of bias due to having no
predefined threshold, whereas the others were considered at low
risk of bias.
For the reference standard domain, three studies were

considered at high or unclear risk of bias due to reference
standard inconsistencies. There was no mention of whether the
threshold was determined in advance and whether blinding was
implemented. For the flow and timing domain, five studies were
considered high or with an unclear risk of bias because the
authors had not mentioned whether there was an appropriate
time gap or whether it was based on the same gold standard.
In the applicability concern domain, 12 studies were considered

to have high or unclear applicability in patient selection. One
study also had unclear applicability in the reference standard
domain, with no applicability concern in the index test domain.

DISCUSSION
Artificial Intelligence in medical imaging is without question
improving however, we must subject emerging knowledge to the
same rigorous testing we would for any other diagnostic
procedure. Deep learning could reduce the over-reliance of
experienced clinicians and could, with relative ease, be extended
to rural communities and LMICs. While this relatively inexpensive
approach may help to bridge inequality gaps across healthcare
systems generally, evidence is increasingly highlighting the value
of deep learning in cancer diagnostics and care. Within the field of
female cancer diagnosis, one of the representative technologies is
computer-assisted cytology image diagnosis such as the FDA-
approved PAPNET and AutoPap systems, which dates back to at
least the 1970s22. While rapid progress in AI technology is made,
they are also becoming an increasingly important element
involved in automated image-based cytology analysis systems.
These technologies have the potential to reduce the amount of
time spent and improve cytologics during the reading process.
Here, we attempted to ascertain which is the most accurate and
reliable detection technology presently available in the field of
breast and cervical cancer diagnostics.
A systematic search for pertinent articles identified three

systematic reviews with meta-analyses which investigated DL
algorithms in medical imaging. However, these were in diverse
domains which make it difficult to compare directly with the
present review. For example, Liu et al. 23 found that DL algorithm
performance in medical imaging might be equivalent to
healthcare professors. However, only breast and dermatologicalTa
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cancers were analyzed with more than three studies, which not
only inhibits generalizability but highlights the need for further DL
algorithm performance research in the field of medical imaging. In
identifying pathologies, Aggarwal et al. 24 found that DL

algorithms have high diagnostic performance. However, the
authors also found high heterogeneity which was attributed to
combining distinct methods and perhaps through unspecified
terms. They concluded that we need to be cautious when

Fig. 3 Pooled performance of DL algorithms using different validation types. a Receiver operator characteristic (ROC) curves of studies with
internal validations (15 studies with 40 tables), b ROC curves of studies with external validations (8 studies with 15 tables).

Fig. 2 Pooled overall performance of DL algorithms. a Receiver operator characteristic (ROC) curves of all studies included in the meta-
analysis (20 studies with 55 tables), and b ROC curves of studies reporting the highest accuracy (20 studies with 20 tables).

Fig. 4 Pooled performance of DL algorithms using different cancer types. a Receiver operator characteristic (ROC) curves of studies in
detecting breast cancer (10 studies with 36 tables), and b ROC curves of studies in detecting cervical cancer (10 studies with 19 tables).
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considering the diagnostic accuracy of DL algorithms and that
there is a need to develop (and apply) AI guidelines. This was also
apparent in this study and therefore we would reiterate this
sentiment.
While the findings from the aforementioned studies are

incredibly valuable, at present there is a need to expand upon
the emerging knowledge-base for metastatic tumor diagnosis. The

only other review in this field was conducted by Zheng et al. 25

who found that DL algorithms are beneficial in radiological
imaging with equivalent, or in some instances better performance
than healthcare professionals. Although again, there were
methodological deficiencies which must be considered before
we adopt these technologies into clinical practice. Also, we must
strive to identify the best available DL algorithm and then develop

Fig. 5 Pooled performance of DL algorithms using different imaging modalities. a Receiver operator characteristic (ROC) curves of studies
using mammography (4 studies with 15 tables), b ROC curves of studies using ultrasound (4 studies with 17 tables), c ROC curves of studies
using cytology (4 studies with 6 tables), and d presented ROC curves of studies using colposcopy (4 studies with 11 tables).

Fig. 6 Pooled performance of DL algorithms versus human clinicians and human clinicians using the same sample. a Receiver operator
characteristic (ROC) curves of studies using DL algorithms (11 studies with 29 tables), and b ROC curves of studies using human clinicians
(11 studies with 18 tables).
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it to enhance identification and reduce the number of false
positives and false negatives beyond that which is humanly
possible. As such, we need to continue to use systematic reviews
to identify gaps in research and we should not only consider
technology-specific reviews, but also disease-specific systematic
reviews. Of course, DL algorithms are in an almost constant state
of development but the purpose of this study was to critically
appraise potential issues with study methods and reporting
standards. By doing so, we hoped to make recommendations and
to drive further research in this field so that the most effective
technology is adopted into clinical practice sooner rather
than later.
This systematic review with meta-analysis suggests that deep

learning algorithms can be used for the detection of breast and
cervical cancer using medical imaging. Evidence also suggests that
while the deep learning algorithms are not yet superior, nor are
they inferior in terms of performance when compared to
clinicians. Acceptable diagnostic performance with analogous
deep learning algorithms was observed in both breast and cervical
cancer despite having dissimilar workflows with different imaging
modalities. This finding also suggests that these algorithms could
be deployed across both breast or cervical imaging, and
potentially across all types of cancer which utilize imaging
technologies to identify cases early. However, we must also
critically consider some of the issues which emerged during our
systematic analysis of this evidence base.
Overall, there were very few prospective studies and few clinical

trials. In fact, most included studies were retrospective studies
which may be the case because of the relative newness of DL
algorithms in medical imaging. However, the data sources used

were from either pre-existing electronic medical records or online
open-access databases, which were not explicitly intended for
algorithmic analysis in real clinical settings. Of course, we must
first test these technologies using retrospective datasets to see
whether they are appropriate and with a view to modifying and
enhancing accuracy perhaps for specific populations or for specific
types of cancer. We also encourage more prospective DL studies
in the future. If possible, we should investigate the potential rules
of breast or cervical images through more prospective studies,
and identify possible image feature correlations and diagnostic
logic for risk predictions. Most studies constructed and trained
algorithms using small labeled breast or cervical images, with
labels which were rarely quality-checked by a clinical specialist.
This design fault is likely to have created ambiguous ground-truth
inputs which may have caused unintended adverse model effects.
Of course, the knock-on effect is that there is likely to be
diagnostic inaccuracies through unidentified biases. This is
certainly an issue which should be considered when designing
future deep learning-based studies.
It is important to note that no matter how well-constructed an

algorithm is, its diagnostic performance depends largely upon the
volume of raw data and quality26. Most studies included in this
systematic review mentioned a data augmentation method which
adopted some form of affine image transformations strategy e.g.
translational, rotation or flipping, in order to compensate for data
deficiencies. This, one could argue, is symptomatic of the paucity
of annotated datasets for model training, and prospective studies
for model validation. Though fortunately, there has been a
substantial increase in the number of openly available datasets
around cervical or breast cancer. However, given the necessity for

Fig. 7 Summary estimate of pooled performance using forest plot. Data presented forest plot of studies included in the meta-analysis
(20 studies).
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this research, one would like to see institutions collaborating more
frequently to establish cloud sharing platforms which would
increase the availability (and breadth) of annotated datasets.
Moreover, training DL algorithms requires reliable, high-quality
image inputs, which may not be readily available, as some pre-
analytical factors such as incorrect specimen preparation and
processing, unstandardized image digitalization acquisition,
improper device calibration and maintenance could lower image
quality. Complete standardization of all procedures and reagents
in clinical practice is required to optimally prepare pre-analytical
image inputs in order to develop more robust and accurate DL
algorithms. Having these would drive developments in this field
and would benefit clinical practice, perhaps serving as a cost-
effective replacement diagnostic tool or an initial method of risk
categorization. Although, this is beyond the scope of this study
and would require further research to consider this in detail.
Of the 35 included studies, only 11 studies performed external

validation, which means that an assessment of DL model
performance was conducted with either an out-of-sample dataset
or with an open-access dataset. Indeed, most of the studies
included here split a single sample by either randomly and non-
randomly assigning individuals’ data from one center into one
development dataset or the other internal validations dataset. We
found that studies with internal validation were higher than
externally validated studies for early detection of cervical and
breast cancer. However, this was to be expected because using an
internal dataset to validate models is more likely homogenous and
may lead to an overestimated diagnostic performance. This
finding highlights the need for out-of-sample external validation
in all predictive models. A possible method for improving external
validation would be to establish an alliance of institutions wherein
trained deep learning algorithms are shared and performances
tested, externally. This might provide insight into subgroups and
variations between various ethnic groups although we would also
need to maintain patient anonymity and security, as several
researchers have previously noted27,28.
Most of the studies that were retrospective using narrowly

defined binary or multi-class tests focusing on the diagnostic
performance in the field of DL algorithms rather than clinical
practice. This is a direct consequence of poor reporting, and the
lack of real-world prospective clinical practice, which has resulted
in inadequate data availability and therefore may limit our ability
to gauge the applicability of these DL algorithms to clinical
settings. Accordingly, there is uncertainty around the estimates of
diagnostic performance provided in our meta-analysis and
adherence levels should be interpreted with caution.
Recently, several AI-related method guides have been pub-

lished, with many still under development29,30. We found most of
the included studies we analyzed were probably conceived or
performed before these guidelines were available. Therefore, it is
reasonable to assume that design features, reporting adequacy
and transparency of studies used to evaluate the diagnostic
performance of DL algorithms will be improved in the future. Even
though, our findings suggest that DL is not inferior in terms of
performance compared to clinicians for the early detection of
breast or cervical cancer, this is based on relatively few studies.
Therefore, the uncertainty which exists is, at least in part, due to
the in silico context in which clinicians are being evaluated.
We should also acknowledge that most of the current DL

studies are publications of positive results. We must be aware that
this may be a form of researcher-based reporting bias (rather than
publication-based bias), which is likely to skew the dataset and
adds complexity to comparison between DL algorithms and
clinicians31,32. Differences in reference standard definitions, grader
capabilities (i.e. the degrees of expertise), imaging modalities and
detection thresholds for classification of early breast or cervical
cancer also make direct comparisons between studies and
algorithms very difficult. Furthermore, non-trivial applications of

DL models in the healthcare setting will need clinicians to
optimize clinical workflow integration. However, we found only
two of studies which mentioned DL versus clinicians and versus
DL combined with clinicians. This hindered our meta-analysis of
DL algorithms but highlighted the need for strict and reliable
assessment of DL performance in real clinical settings. Indeed, the
scientific discourse should change from DL versus clinicians
dichotomy to a more realistic DL-clinician combination, which
would improve workflows.
35 studies met the eligibility criteria for the systematic review,

yet only 20 studies could be used to develop contingency tables.
Some DL algorithm studies from computer science journals only
reported precision, dice coefficient, F1 score, recall, and competi-
tion performance metric. Whereas indicators such as AUC,
accuracy, sensitivity, and specificity are more familiar to healthcare
professionals25. Bridging the gap between computer sciences
research would seem prudent if we are to manage interdepart-
mental research and the transition to a more digitized healthcare
system. Moreover, we found the term “validation” is used causally
in DL model studies. Some authors used it for assessing the
diagnostic performance of the final algorithm, others defined it as
a dataset for model tuning during the development process. This
confuses readers and makes it difficult to judge the function of
datasets. We combined experts’ opinions33, and proposed to
distinguish datasets used in the development and validation of DL
algorithms. In keeping with the language used for nomogram
development, a dataset for training the model should be named
‘training set’, while datasets used for tuning should be referred to
as the ‘tuning set’. Likewise, during the validation phase, the hold-
back subset split from the entire dataset should be referred to a
‘internal’ validation, which is the same condition/image types as
the training set. While a completely independent dataset for our-
of-sample validation should be referred to as ‘external’
validation34.
Most of the issues discussed here could be avoided through

more robust designs and high-quality reporting, although several
hurdles must be overcome before DL algorithms are used in
practice for breast and cervical cancer identification. The black box
nature of DL models without clear interpretability of the basis for
the clinical situations is a well-recognized challenge. For example,
a clinician considering whether breast nodules represent breast
cancer based on mammographic images for a series of judgement
criteria. Therefore, a clinician developing a clear rationale for a
proposed diagnosis maybe the desired state. Whereas, having a
DL model which merely states the diagnosis may be viewed with
more skepticism. Scientists have actively investigated possible
methods for inspecting and explaining algorithmic decisions. An
important example is the use of salience or heat maps to provide
the location of salient lesion features within the image rather than
defining the lesion characteristics themselves35,36. This raises
questions around human-technology interactions, and particularly
around transparency and patient-practitioner communications
which ought to be studied in conjunction with DL modeling in
medical imaging.
Another common problem limiting DL algorithms is model

generalizability. There may be potential factors in the training data
that would affect the performance of DL models in different data
distribution settings28. For example, a model only trained in US
may not perform well in Asia because a model trained using data
from predominantly caucasian patients may not perform well
across other ethnicities. One solution to improve generalizability
and reduce bias is to conduct large, multicenter studies which can
enable the analysis of nationalities, ethnicities, hospital specifics,
and population distribution characteristics37. Societal biases can
also affect the performance of DL models and of course, bias exists
in DL algorithms because a training dataset may not include
appropriate proportions of minority groups. For example, a DL
algorithm for melanoma diagnosis in dermatological study may
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lack diversity in terms of skin color and genomic data, but this may
also cause an under-representation of minority groups38. To
eliminate embedded prejudice, efforts should be made to carry
out DL algorithm research which provides a more realistic
representation of global populations.
As we have seen, the included studies were mostly retro-

spective with extensive variation in methods and reporting. More
high-quality studies such as prospective studies and clinical trials
are needed to enhance the current evidence base. We also
focused on DL algorithms for breast and cervical cancer detection
using medical imaging. Therefore, we made no attempt to
generalize our findings to other types of AI, such as conventional
machine learning models. While there were a reasonable number
of studies for this meta-analysis, the number of studies of each
imaging modality was limited like cytology or colposcopy,
Therefore, the results of the subgroup analyses around imaging
modality needs to be interpreted with caution. We also selected
only studies in which histopathology was used as the reference
standard. Consequently, some DL studies that may have shown
promise but did not have confirmatory histopathologic results,
were excluded. Even though the publication bias was not
identified through funnel plot analysis in Supplementary Fig. 3
based on data extracted from 20 studies, the lack of prospective
studies and the potential absence of studies with negative results
can cause bias. As such, we would encourage deep learning
researchers in medical imaging to report studies which do not
reject the null hypothesis because this will ensure evidence
clusters around true effect estimates.
It remains necessary to promote deep learning in medical

imaging studies for breast or cervical cancer detection. However,
we suggest improving breast and cervical data quality and
establishing unified standards. Developing DL algorithms needs to
feed on reliable and high-quality images tagged with appropriate
histopathological labels. Likewise, it is important to establish
unified standards to improve the quality of the digital image-
production, the collection process, imaging reports, and final
histopathological diagnosis. Combining DL algorithm results with
other biomarkers may prove useful to improve risk discrimination
for breast or cervical cancer detection. An example would be a DL
model for cervical imaging that combines with additional clinical
information i.e. cytology and HPV typing, which could improve
overall diagnostic performance39,40. Secondly, we need to improve
the error correction ability and DL algorithm compatibility.
Prophase developing DL algorithms are more generalizable and
less susceptible to bias but may require larger and multicenter
datasets which incorporate diverse nationalities and ethnicities, as
well as those with different socioeconomic status etc., if we are to
implement algorithms into real-world settings.
This also highlights the need for international reporting

guidelines for DL algorithms in medical imaging. Existing
reporting guidelines such as STARD41 for diagnostic accuracy
studies, and TRIPOD42 for conventional prediction models are not
available to DL model study. The recent publication of CONSORT-
AI43 and SPIRIT-AI44 guidelines are welcomed but we await
disease-specific DL guidelines. Furthermore, we would encourage
organizations to develop diverse teams, combining computer
scientists and clinicians to solve clinical problems using DL
algorithms. Even though DL algorithms appear like black boxes
with unexplainable decision-making outputs, these technologies
need to be discussed for development and require additional
clinical information45,46. Finally, medical computer vision algo-
rithms do not exist in a vacuum, we must integrate DL algorithms
into routine clinical workflows and across entire healthcare
systems to assist doctors and augment decision-making. There-
fore, it is crucial that clinicians understand the information each
algorithm provides and how this can be integrated into clinical
decisions which enhance efficiency without absorbing resources.
For any algorithm to be incorporated into existing workflows it has

to be robust, and scientifically validated for clinical and personal
utility.
We tentatively suggest that DL algorithms could be useful for

detecting breast and cervical cancer using medical imaging, with
equivalent performance to human clinicians, in terms of sensitivity
and specificity. However, this finding is based on poor study
designs and reporting which could lead to bias and over-
estimating algorithmic performances. Standardized guidelines
around study methods and reporting are needed to improve
the quality of DL model research. This may help to facilitate the
transition into clinical practice although further research is
required.

METHODS
Protocol registration and study design
The study protocol was registered with the PROSPERO International
register of systematic reviews, number CRD42021252379. The study was
conducted according to the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) guidelines47. No ethical approval or
informed consent was required for the current systematic review and
meta-analysis.

Search strategy and eligibility criteria
In this study, we searched Medline, Embase, IEEE and the Cochrane library
until April 2021. No restrictions were applied around regions, languages, or
publication types; however, letters, scientific reports, conference abstracts,
and narrative reviews were excluded. The full search strategy for each
database was developed in collaboration with a group of experienced
clinicians and medical researchers. Please see Supplementary Note 1 for
further details.
Eligibility assessment was conducted by two independent investigators,

who screened titles and abstracts, and selected all relevant citations for
full-text review. Disagreements were resolved through discussion with
another collaborator. We included studies that reported the diagnostic
performance of a DL model/s for the early detection of breast or cervical
cancer using medical imaging. Studies reporting any diagnostic outcome,
such as accuracy, sensitivity, and specificity etc., could be included. There
was no restriction on participant characteristics, type of imaging modality
or the intended context for using DL models.
Only histopathology was accepted as the study reference standard. As

such, imperfect ground truths, such as expert opinion or consensus, and
other clinical testing were rejected. Likewise, medical waveform data or
investigations into the performance of image segmentation were excluded
because these could not be synthesized with histopathological data.
Animals’ studies or non-human samples were also excluded and duplicates
were removed. The primary outcomes were various diagnostic perfor-
mance metrics. Secondary analysis included and assessment of study
methodologies and reporting standards.

Data extraction
Two investigators independently extracted study characteristics and
diagnostic performance data using predetermined data extraction sheet.
Again, uncertainties were resolved by a third investigator. Binary
diagnostic accuracy data were extracted directly into contingency tables
which included true-positives, false-positives, true-negatives, and false-
negatives. These were then used to calculate pooled sensitivity, pooled
specificity, and other metrics. If a study provided multiple contingency
tables for the same or for different DL algorithms, we assumed that they
were independent of each other.

Quality assessment
The risk of bias and applicability concerns of the included studies were
assessed by the three investigators using the quality assessment of
diagnostic accuracy studies 2 (QUADAS-2) tool48.

Statistical analysis
Hierarchical summary receiver operating characteristic (SROC) curves were
used to assess the diagnostic performance of DL algorithms. 95%
confidence intervals (CI) and prediction regions were generated around
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averaged sensitivity, specificity, and AUCs estimates in SROC figures.
Further meta-analysis was performed to report the best accuracy in studies
with multiple DL algorithms from contingency tables. Heterogeneity was
assessed using the I2 statistic. We also conducted the subgroup meta-
analyses and regression analyses to explore potential sources of
heterogeneity. The random effects model was implemented because of
the assumed differences between studies. Publication bias was assessed
visually using funnel plots.
Four separate meta-analyses were conducted: (1) according to validation

type, DL algorithms were categorized as either internal or external. Internal
validation meant that studies were validated using an in-sample-dataset,
while external validation studies were validated using an out-of-sample
dataset; (2) according to cancer type i.e., breast or cervical cancer; (3)
according to imaging modalities, such as mammography, ultrasound,
cytology, and colposcopy, etc; (4) according to the pooled performance for
DL algorithms versus human clinicians using the same dataset.
Meta-analysis was only performed where there were more than or equal

to three original studies. STATA (version 15.1), and SAS (version 9.4) were
for data analyses. The threshold for statistical significance was set at p <
0.05, and all tests were two-sides.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The search strategy and aggregated data contributing to the meta-analysis is
available in the appendix.
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