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Temporal convolutional networks predict dynamic oxygen
uptake response from wearable sensors across exercise
intensities
Robert Amelard1,2,4✉, Eric T. Hedge 2,3,4 and Richard L. Hughson 2,3

Oxygen consumption ( _VO2) provides established clinical and physiological indicators of cardiorespiratory function and exercise
capacity. However, _VO2 monitoring is largely limited to specialized laboratory settings, making its widespread monitoring elusive.
Here we investigate temporal prediction of _VO2 from wearable sensors during cycle ergometer exercise using a temporal
convolutional network (TCN). Cardiorespiratory signals were acquired from a smart shirt with integrated textile sensors alongside
ground-truth _VO2 from a metabolic system on 22 young healthy adults. Participants performed one ramp-incremental and three
pseudorandom binary sequence exercise protocols to assess a range of _VO2 dynamics. A TCN model was developed using causal
convolutions across an effective history length to model the time-dependent nature of _VO2. Optimal history length was
determined through minimum validation loss across hyperparameter values. The best performing model encoded 218 s history
length (TCN-VO2 A), with 187, 97, and 76 s yielding <3% deviation from the optimal validation loss. TCN-VO2 A showed strong
prediction accuracy (mean, 95% CI) across all exercise intensities (−22 ml min−1, [−262, 218]), spanning transitions from
low–moderate (−23 ml min−1, [−250, 204]), low–high (14 ml min−1, [−252, 280]), ventilatory threshold–high (−49 ml min−1, [−274,
176]), and maximal (−32 ml min−1, [−261, 197]) exercise. Second-by-second classification of physical activity across 16,090 s of
predicted _VO2 was able to discern between vigorous, moderate, and light activity with high accuracy (94.1%). This system enables
quantitative aerobic activity monitoring in non-laboratory settings, when combined with tidal volume and heart rate reserve
calibration, across a range of exercise intensities using wearable sensors for monitoring exercise prescription adherence and
personal fitness.
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INTRODUCTION
Cardiorespiratory fitness is an established risk factor for
cardiovascular disease and all-cause mortality1 and is an
important determinant for endurance exercise performance2.
Cardiorespiratory fitness is conventionally assessed by measur-
ing the rate of oxygen consumption ( _VO2) and its dynamic
response to exercise. Biomarkers such as peak oxygen uptake (
_VO2peak) and the rate of adaptation to changes in exercise
intensity provide important information about the integrative
responses of the pulmonary, cardiovascular, and muscular
systems3, which can provide insights into different disease
states4. Accordingly, _VO2 monitoring has become a crucial
objective measure for advanced clinical therapies5.

_VO2peak is often considered the gold standard metric of
cardiorespiratory function. In heart failure, _VO2peak is a strong
predictor of 1-year mortality5 and is clinically used to select
patients for advanced therapies. In cases where maximal exercise
is infeasible, the dynamic response to sub-maximal exercise also
provides important indicators of health6–10 and fitness status11–14.
Despite its established importance, monitoring _VO2 in non-
laboratory settings remains challenging. Direct measurement of
_VO2 requires a metabolic cart and trained technician, which limits
its applicability to laboratory assessment. Heart rate (HR) has
traditionally been used as an inexpensive and non-intrusive proxy
to _VO2 response to activity and estimate energy expenditure
under the assumption that HR varies linearly with _VO2

15,16;

however, dynamic _VO2 and HR responses do not always have a
direct correspondence with each other, such as following prior
exercise17. Thus, ambulatory physiological monitoring using
wearable sensors may provide early detection of sub-clinical
biomarkers of disease and enable more widespread assessment of
cardiorespiratory function18.
Recent advances in wearable technologies and artificial

intelligence have led to new developments in non-intrusive
cardiorespiratory monitoring. These approaches are generally
modeled as regression problems, where a machine learning
model learns a transformation function between physiological
inputs from wearable sensors and _VO2 measured using a gas
analyzer system. Earlier work primarily used a combination of HR
and activity-related inputs to predict _VO2 during various forms of
exercise19,20. Sensors embedded in textile fabrics have enabled
_VO2 prediction in low-to-moderate-intensity exercise during
activities of daily living21,22. Recent studies have leveraged the
time-dependent nature of _VO2 by modeling the regression as a
time-series, or sequential, prediction, where previous physiological
states were used to predict _VO2

23 and ventilatory threshold (VT)24

during stationary cycling on a cycle ergometer. Although
sequential prediction has been shown to model the temporal
nature of oxygen uptake well, further investigations are needed to
assess model efficiency and performance across a range of
exercise intensities, different days, and demographics.
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In this paper, we propose and evaluate a sequential deep
learning model based on temporal convolutional networks
(TCNs)25 for predicting _VO2 from physiological inputs derived
from smart textiles and a cycle ergometer. The model used causal
convolutions to incorporate only past and present physiological
response, and the system architecture was designed to provide a
tunable effective history length or receptive fields. We assessed
the effect of receptive field and model complexity on prediction
accuracy to investigate the temporal relationship between
physiological inputs and _VO2 response to provide guidance on
optimal model design and assessment across a range of different
exercise intensities.

RESULTS
Experimental setup
Figure 1 shows the data flow through the TCN network
architecture. The four cardiorespiratory biosignals derived from
the smart shirt (HR, HR reserve, breathing frequency, and minute
ventilation ( _VE)) and the work rate (WR) profile were used as
inputs into a chain of residual blocks, followed by a dense layer
and linear activation to predict _VO2 at each time point. Results of
the TCN networks were compared against a stacked long short-
term memory (LSTM) network26 and random forest (RF)27

prediction models. The stacked LSTM model was trained using
the originally proposed features23, as well as adding HR reserve
and _VE to the feature set, with a sequence length of 140 s
approximating 70 breaths at low intensity exercise. The RF model
was built using the optimal number of trees according to the
validation loss (30 trees; see Supplementary Fig. 1). _VO2 data were
converted to ml min−1 kg−1 to compute metabolic equivalent of
task (METs) for quantifying physical activity levels (METs=
_VO2=3:528). METs were classified as light (<3.0 METs), moderate
(3.0–5.9 METs), or vigorous (≥6.0 METs) intensity exercise
according to established guidelines28.

Hyperparameters
Figure 2 shows the effect on validation loss of receptive field (by
modifying kernel size k and dilation depth d) and the number of
filters in the causal convolutional layers across a combination of
hyperparameter values (see Table 1). Trend lines were generated
using exponential weighting moving average (α= 0.5) for
visualization purposes. Validation loss decreased to convergence

with larger receptive fields, apart from the two-filter models that
were insufficient for learning the prediction function, as evidenced
by a flat and highly variable loss curve over all receptive fields.
Performance increase was marginal beyond eight filters. The
optimal hyperparameters that produced the smallest hold-out
validation loss were 24 filters and a receptive field of 218 s using a
kernel size of 8 s and 5 dilations (2 residual blocks). However, a
smaller receptive field and/or a smaller set of model parameters
may be preferable to a marginal loss increase. Smaller receptive
fields allow for reduced “cold start” time, and fewer parameters
result in decreased computational load. Thus, we assessed the
accuracy of models that were within 5% of the best (minimum)
validation loss below (see Supplementary Table 1 for full list of
models with validation losses).

Network performance
We assessed the performance of models exhibiting validation loss
within 5% of the minimum validation loss, as well as models with
no history (TCN-VO2 NH) and using only HR as input (TCN-VO2 A
(HR)), and compared the results to existing _VO2 prediction methods
(Table 2). There were eight models within the 5% performance
threshold, of which we reported four with varied receptive fields
and parameter sets. The best performing model according to hold-
out validation loss (TCN-VO2 A) had a 218 s receptive field and
19,921 parameters. TCN-VO2 B had marginally higher validation loss
with 187 s receptive field, indicating minimal performance gain for
additional history beyond 187 s. TCN-VO2 C and D had near
identical validation loss (3% increase over model A) but required a
receptive field of only 76 and 91 s, respectively, thus providing a
reduced cold start period for initial prediction.

Fig. 1 Convolutional neural network architecture for temporal
prediction of _VO2. Temporal features (heart rate, heart rate reserve,
breathing frequency, minute ventilation, and work rate) are
processed through a series of residual blocks with causal convolu-
tions and dilations for feature extraction, followed by a fully
connected layer and linear activation to predict _VO2 at time t.

Fig. 2 Model validation performance across different receptive
fields (determined by kernel size and dilation depth) grouped by
the number of filters in the convolutional layers (f#). Exponential
weighted moving average fits were plotted for visualization
purposes. The optimal model hyperparameters were 24 filters, 8
kernel sizes, and 5 dilations. Two filters per layer were insufficient for
learning the transformation function.

Table 1. Hyperparameter values for investigating the optimal
temporal convolutional network configuration.

Hyperparameter Values

Filters 2, 4, 8, 16, 24

Kernel size 1, 2, 3, 4, 5, 6, 7, 8

Dilation depth 1, 2, 3, 4, 5
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Repeated-measures Bland–Altman analysis showed no systema-
tic error between predicted and true _VO2 across all TCN-VO2,
LSTM, and RF models and no proportional error (Fig. 3). The limits
of agreement (LoA) remained relatively constant across TCN-VO2
models during low-to-moderate (L-M), VT-to-high (VT-H), and MAX
data but increased with decreased model complexity in low-to-
high (L-H) and combined data. Model bias on all combined data
was <25ml min−1 in the best performing TCN-VO2 models and
72ml min−1 for 1 s receptive field (model NH), and the equality
line fell within the confidence interval of the mean difference.
TCN-VO2 models exhibited smaller LoA compared to LSTM in all
exercise protocols, indicating a stronger overall fit and smaller
error variance. Similarly, mean error of _VO2peak was smallest in
TCN-VO2 A (18 ml min−1), strongly outperforming models with no
history (RF: 134ml min−1, TCN-VO2 NH: 22ml min−1) and HR only
(−220ml min−1), as well as exhibiting smaller LoA than LSTM
models. Furthermore, TCN-VO2 models required substantially
fewer network parameters to achieve comparable bias and lower
LoA, requiring 1.1×, 4.1× and 60.5× fewer parameters in the TCN-
VO2 A, TCN-VO2 C, and TCN-VO2 NH respectfully, compared to the
stacked LSTM model. TCN-VO2 A(HR) exhibited high error bias and
variance across protocols, showing that HR is not a robust
estimator of _VO2.

TCN-VO2 with no history (NH), comprising 1 s receptive field,
was compared against RF, which performs point-wise predictions
without input from previous states. TCN-VO2 NH and RF
performed comparably, although the TCN-VO2 NH parameter set
contained 825.8× fewer parameters than RF (quantified as the
number of split nodes in the forest). Both TCN-VO2 NH and RF
exhibited larger bias in L-H data compared to the other protocols
due to overestimating _VO2 during low WR transients (see Fig. 4
inset). _VO2 prediction during exercise with relatively small WR
transitions was not as severely affected. Top performing TCN
models were the only models to correctly predict the lowest _VO2

values during the off-transients, making them good candidates for
assessing kinetics.

Quantifying physical activity levels
Predicted _VO2 were used in accordance with globally established
guidelines on exercise prescription for health28 to classify second-
by-second activity levels. These guidelines are often used in
practice, alongside other biomarkers, for optimizing cardiovascular
health during rehabilitation exercise prescription. Figure 5 shows
the MET data derived from the true (measured) and predicted _VO2

data, as well as the confusion matrix. All test data (4 protocols/
participant across the 5-participant test set) were classified on a
second-by-second basis and visually concatenated into a single
plot spanning a total of 16,090 s of predicted metabolic activity
across 20 individual exercise trials. Overall, 15,147 s (94.1%) of the
1 Hz data were correctly classified into appropriate physical
activity categories. The data spanned across light (2.7%), moderate
(33.8%), and vigorous (63.5%) intensity exercise. During moderate-
intensity exercise (5445 s), 4882 s (89.7%) were correctly classified,
while 153 s (2.8%) and 410 s (7.5%) were classified as light and
vigorous activity, respectively. During vigorous-intensity exercise
(10,216 s), 10,004 s (97.9%) were correctly classified, while 212 s
(2.1%) were classified as moderate activity. Less than 3% of the
data were in the “light” category (429 s), and of those data, 261 s
(60.8%) were correctly classified and 168 s (39.2%) were classified
as moderate activity. In all, 90% of these data were within 0.5 METs
of the threshold.

DISCUSSION
This work has shown that the complex dynamic _VO2 response to
changes in exercise intensity can be accurately predicted using
sequential deep learning models across a range of low-, moderate-,
and high-intensity exercise, as well as maximal aerobic exercise.

Table 2. Error rates and characteristics of TCN and comparison models.

Method # params L-M L-H VT-H MAX Combined _VO2peak

Random forest21 298,106 20 ± 134 144 ± 187 54 ± 169 15 ± 111 62 ± 164 134 ± 151

SLSTM23 21,589 93 ± 133 52 ± 145 −58 ± 148 −16 ± 178 21 ± 160 −48 ± 243

SLSTM+ {HRR, _VE} 21,845 52 ± 132 7 ± 163 −72 ± 152 −37 ± 163 −10 ± 159 −17 ± 205

Filters Receptive field (s) Validation loss

TCN-VO2 A 24 218 0.02506 19,921 −23 ± 116 14 ± 136 −49 ± 115 −32 ± 117 −22 ± 122 18 ± 182

TCN-VO2 B 16 187 0.02525 8081 −7 ± 109 30 ± 138 −25 ± 115 −2 ± 113 −1 ± 120 62 ± 162

TCN-VO2 C 16 76 0.02585 5393 −21 ± 113 16 ± 159 −57 ± 136 3 ± 123 −17 ± 137 93 ± 214

TCN-VO2 D 16 91 0.02586 6241 −24 ± 115 31 ± 142 −54 ± 123 9 ± 117 −11 ± 128 80 ± 165

TCN-VO2 NH 24 1 0.04895 361 10 ± 127 133 ± 179 69 ± 129 75 ± 123 72 ± 149 223 ± 196

TCN-VO2 A(HR) 24 218 0.10733 19,057 197 ± 286 133 ± 373 40 ± 412 145 ± 445 127 ± 379 −220 ± 445

Errors are reported as mean ± SD [ml min−1].
SLSTM stacked long short-term memory.

Fig. 3 Repeated-measures Bland–Altman analysis of the pre-
dicted oxygen uptake ( _VO2) using TCN-VO2 A and directly
measured _VO2 with all exercise conditions combined. Dotted
horizontal lines represent the 95% limits of agreement and the solid
line represents the prediction bias. Each color represents data from a
unique participant in the test set.
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The baseline model TCN-VO2 NH (with 1 s receptive field) and
point-wise RF regression21 were both blind to previous states,
using only the current time point for prediction. In both cases, we
observed a large and similar bias in the L-H data, albeit being two
fundamentally different model types. The source of error was
largely due to overestimation during recovery in the off-transients.
The overestimation is likely a result of the point-wise predictor’s
blindness to the previous state, as the models were unable to
adequately learn the relationships between model inputs and
outputs during on- and off-transients. This is an important
consideration, as differences in HR dynamics have been observed
between on- and off-transients, with the slower off-transients
being amplified following high-intensity exercise17,29. HR kinetics
are also reported to be slower than _VO2 kinetics during
recovery17. Similarly, the ventilation response has been observed
to be slower during recovery compared to exercise onset30, with
the rate of change in ventilation being markedly slowed when
recovering from higher intensity exercise29. Furthermore, the
ventilatory response is slower than the _VO2 response31,32.
Accordingly, without knowing the previous history of the system,
these point-wise models are naive to status of the system leading
to erroneous _VO2 predictions. Thus, it appears that the temporal
models were able to more accurately learn the relationships
between HR and ventilation and _VO2 during exercise onset as well
as recovery.
The best performing models, when ranked by validation loss,

were consistently those with receptive fields of 218, 187, 76, and
91 s. We observed marginal difference between the test errors of
these models, although there were some differences in predicting
_VO2 minima at the end of off-transients, which did not significantly
affect the global loss function. Considering that the standard _VO2
time constant is typically 20–30 s in healthy populations33, these
receptive fields range from approximately 3 to 11 time constants,
which suggests that the best models tend to use a receptive field
that includes most, if not all, of the transient phase for a sustained
step change in WR to achieve a new constant _VO2. Receptive fields
of 76 and 91 s appear consistent with the protocol’s longest off-
transient (90 s). The longest on-transient is 120 s. Thus, further
investigations are needed to determine the effects of receptive
field during different exercise protocols.
Both classes of sequential deep learning models (TCN and

LSTM) exhibited strong predictive power. TCN architectures have
become popular alternatives to recurrent neural network
instances largely due to their data parallelism, flexible receptive
field size, and stable gradients25. In this work, top performing TCN
models were much smaller than the stacked LSTM models,
yielding more computationally efficient prediction networks.
The _VO2 predictions were converted to METs, which is an

established metric for quantifying physical activity levels28.
Quantifying activity levels is helpful for exercise prescription in
cardiovascular disease management34. However, traditional
patient recall may be affected by recall and/or social desirability
bias35, providing uncertainty in an important biomarker for
cardiovascular health. This work showed strong accuracy across
a range of MET categories, which provides supporting evidence
for quantitative and objective at-home activity monitoring
using wearable sensors. The errors in the light activity category
were mainly during category transition, not during sustained
activity. In these data, the majority of light data was close to
threshold. It would be expected that incorporating data from
resting of very low-intensity exercise would lead to a more
representative error profile.
The primary limitations impacting the widespread general-

izability of these results stem from the dataset’s constrained
demographic (young healthy adults) and structured exercise
protocol. We selected the three-stage pseudorandom binary

Fig. 4 Results for a representative participant across the four
exercise protocols. Prediction curves are shown for VO2-TCN
(proposed) with the lowest validation loss (VO2-TCN A) and 1 s
receptive field (VO2-TCN NH), random forest (RF)21, and stacked long
short-term memory network (LSTM)23. Dashed gray line represents
the participant’s ventilatory threshold.
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sequence (PRBS) protocol because it challenged the dynamic
response of aerobic metabolism across a wide range of
intensities that could occur in real-life situations. PRBS exercise
provides an opportunity to directly quantify an index of physical
fitness36; however, PRBS cycling exercise is a controlled
laboratory protocol. Accordingly, our optimization results may
not be directly applicable to unstructured exercise or different
exercise protocols (i.e., constant load exercise). Further investi-
gations in different exercise situations with a more diverse
participant sample, including cardiovascular-related diseases,
are needed to assess its generalizability to different kinds of
physical activity and out-of-sample populations. Additionally,
the exercise in this study was performed in a temperature-
controlled environment. Further investigations are needed to
evaluate model performance in specialized environments that
may alter cardiovascular response to exercise (e.g., hypoxia, heat
stress, etc.).
To conclude, using causal convolutions in a temporal deep

learning model, the effect of receptive field (i.e., effective history)
on _VO2 prediction was assessed by performing a grid search
across hyperparameter values. The best performing models,
according to validation loss, comprised receptive fields of 218,
187, 97, and 76 s. Results showed low prediction error across a
wide range of exercise intensities with drastically reduced
parameter sets compared to existing methods. Using HR as the
only input feature into the same model architecture yielded
substantially larger errors, reinforcing that HR alone is insufficient
for predicting _VO2, thus necessitating more complex approaches.
Using the temporal prediction outputs, physical activity levels
were quantified to provide a breakdown of time spent in light,
moderate, and vigorous activity according to global health
guidelines. These results suggest that cardiorespiratory function

may be assessed in non-laboratory settings, when combined with
tidal volume calibration and exact determination of HR reserve,
across a wide range of activity levels using wearable sensors and
smart textiles.

METHODS
Data collection and preprocessing
Twenty-two young healthy adults (13 males, 9 females; age: 26 ± 5 years;
height: 1.71 ± 0.08 m; mass: 70 ± 11 kg; _VO2peak: 42 ± 6ml min−1 kg−1)
with no known musculoskeletal, respiratory, cardiovascular, or metabolic
conditions volunteered to participate in the study. The study was approved
by a University of Waterloo Research Ethics committee (ORE #32164) and
conducted in accordance with the Declaration of Helsinki. All participants
signed an informed consent before participating.
Participants visited the laboratory on four separate occasions to perform

a ramp-incremental exercise test and three different PRBS exercise tests37.
Each exercise session was separated by at least 48 h, and participants were
instructed to arrive for testing at least 2 h postprandial and abstain from
alcohol, caffeine and vigorous exercise in the 24 h preceding each test. All
exercise tests were performed in an environmentally controlled laboratory
on an electronically braked cycle ergometer (Lode Excalibur Sport, Lode B.
V., Groningen, Netherlands). Participants were instructed to maintain
cadence at 60 revolutions per minute for all exercise tests.
On the first visit, 5 min of seated resting data were collected to

determine each participant’s resting HR. After the resting period,
participants performed a ramp-incremental exercise test to exhaustion
(25 W baseline for 4 min followed by a 25 Wmin−1 ramp) to determine
each participant’s VT38, _VO2peak, and the WRs for the PRBS exercise
tests (Fig. 6). The test was terminated when the cadence dropped below
55 revolutions per minute despite strong verbal encouragement.
_VO2peak was defined as the highest _VO2 computed from a 20 s moving
average during the exercise test. _VO2 at VT was estimated by visual
inspection using standard ventilatory and gas exchange indices, and
their ratios, as previously described38. WRs at 90% VT, VT, and the

Fig. 5 Temporal prediction of physical activity in the test set. a Prediction of metabolic equivalent of task (METs) over all test data (four
protocols per participant across the five-participant test set) concatenated into one plot and visually grouped by protocol for quantifying
physical activity levels according to global guidelines. b Confusion matrix of physical activity classification (light: <3.0; moderate: 3.0–5.9;
vigorous: ≥6.0).

Fig. 6 Schematic showing the incremental ramp and three pseudorandom binary sequence (PRBS) cycling tests. PRBS protocols were
designed using work rates at 90% ventilatory threshold (VT), VT, and the midpoint between VT and _VO2peak (Δ50%) using participant-specific

VT and _VO2peak determined from the ramp test.
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midpoint between VT and _VO2peak (referred to as Δ50%) were
estimated by left-shifting the _VO2 response by each individual’s mean
response time to align the _VO2 and WR profiles. Mean response time was
determined by fitting a double-linear model to the ramp-incremental
data and finding the point of intersection between the forward
extrapolation of the average _VO2 during the 25 W baseline cycling in
the 2 min prior to ramp onset and the backward extrapolation of the
linear portion of the ramp _VO2 response below VT39.
In visits 2–4, participants performed one of the three different PRBS

exercise tests in a randomized order. WRs systematically alternated in the
three PRBS exercise test between 25W and 90% of the VT (L-M), 25 W and
Δ50% (L-H), or VT and Δ50% (VT-H). The time series for the changes in WR
for PRBS protocols were generated by a digital shift register with an adder
module feedback37,40–42. This process pseudo-randomized the changes in
WR and ensured that there would be sufficient _VO2 signal amplitude while
performing non-constant load exercise. A single PRBS was composed of 15
units, each of 30 s in duration, totaling 7.5 min. Each complete PRBS testing
session consisted of a 3.5 min warm-up (the last 3.5 min of the 7.5 min
PRBS) and then two full repetitions of the PRBS for a total of 18.5 min of
continuous cycling per session.
A portable metabolic system (MetaMax 3B-R2, CORTEX Biophysik,

Leipzig, Germany) was used to measure gas exchange during all exercise
tests. Participants breathed through a mask (7450 SeriesV2 Mask, Hans
Rudolph Inc., Shawnee, KS, USA), and inspired and expired flow were
measured using a bi-directional turbine. The turbine was calibrated before
each testing session using a 3 L syringe. Oxygen and carbon dioxide gas
concentrations were continuously sampled at the mouth and were
analyzed using a chemical fuel cell and nondispersive infrared sensor,
respectively. Precision-analyzed gas mixtures were used to calibrate the
oxygen and carbon dioxide gas concentrations. _VO2 and carbon dioxide
output were calculated using the standard breath-by-breath algorithms3.
_VO2 data were filtered using a sliding 5-breath median filter to correct
spurious outlier breaths.
Participants wore a HR monitor (Polar H7, Polar Electro Oy, Kempele,

Finland) that wirelessly communicated with the portable metabolic system,
such that HR data were logged synchronously with the gas exchange data.
Participants were also fitted with a wearable integrated sensors shirt that
was sized to each participant based on the manufacturer’s guidelines
(Hexoskin, Carre Technologies, Montreal, Canada). The shirt contained a
textile electrocardiogram to measure HR and thoracic and abdominal
respiration bands to obtain estimates of breathing frequency and minute
ventilation ( _VE) via respiratory inductance plethysmography. Estimates of
_VE provided by the smart shirt were calibrated by linear regression to the
known _VE measured throughout each protocol with the bi-directional
turbine. The estimates of HR, _VE, and breathing frequency from the smart
shirt have been previously validated43. Data recorded by the metabolic
system and smart shirt were time-aligned by cross-correlating the two
different HR signals. After processing, all data were interpolated to 1 Hz to
ensure signal synchronization and a constant sampling rate. The final set of
physiological features were: WR (W), _VE (L min−1), breathing frequency
(breathmin−1), HR (bpm), and HR reserve (%). HR reserve at time t was
calculated as (HRt− HRrest)/(HRmax− HRrest), where HRrest and HRmax were
determined during 5min rested seated baseline and the peak HR during
ramp-incremental test, respectively.

Network architecture
_VO2 kinetics have a systematic, albeit complex, temporal response to
exercise44. Exponential models for quantifying _VO2 kinetics during
controlled exercise protocols have demonstrated that the intensity of
the exercise being performed strongly influences the dynamic _VO2
response36,45,46. Thus, as an alternative to conventional convolutional
neural networks that use a symmetric kernel about the current time (or
space) location, we developed a sequential convolutional model using
causal convolutions25. Specifically, given a sequence of time-series inputs
x1; x2; ¼ ; xT 2 Rn extracted from wearable sensors and a cycle erg-
ometer, the goal was to predict the _VO2 at time t, denoted _VO2;t .
Specifically, given a prediction modelM : X T ! Y, _VO2;t is predicted using
historical temporal features xi 2 Rn only up to the current time point:

c_VO2;t ¼ Mðxt; xt�1; ¼ ; xt�wÞ (1)

where w is the effective history.
Our model incorporated a temporal feature extraction network and a

regression network. The feature extraction network was implemented as a
TCN with a tunable receptive field through multiple sequential layers with

kernel dilation for multi-scale aggregation of the input data25,47,48. The TCN
was implemented as a sequence of stacked residual blocks comprised of
repetitions of dilated causal one-dimensional convolution, layer normal-
ization, rectified linear activation, and dropout (see Fig. 1). The input into
the residual block x was added to the residual function F(x) through
identity mapping (or 1 × 1 convolution in the first residual block when the
number of channels did not match the residual function shape) to
encourage learning of the residual modifications of the input data, which
has been shown to improve the performance of deep networks49. Each
residual block is composed of successive pairs of dilations, rather than
applying the same dilation twice as in the original TCN description25, for
better control of the receptive field. In models with an odd number of
dilations, the first three were grouped into a single residual block, inspired
by ResNet, which learns a function over two or three layers49. Thus, the
(causal) receptive field was determined by the kernel size k and the
number of exponential dilations N:

RF ¼ 1þ ðk � 1Þð2N � 1Þ (2)

A splice function was used to extract the features at the last known time
point t for input into the regression network. This network was defined
simply as a fully connected dense layer and linear activation to predict
_VO2;t .

Training and hyperparameter optimization
The data across all 22 participants were split into train (40 protocols), test
(20 protocols), and validation (19 protocols) datasets. Each participant’s
whole data were only comprised within one of train, test, or validation,
with no participant data spread to encourage generalizability. Data of
specific sequence lengths (according to the receptive field) were extracted
from whole exercise protocols through a sliding window method, where
the first sequence of sequence length T was extracted from the onset of
exercise to time T, and subsequent sequences were extracted until the end
of the exercise was reached. This yielded a dataset of size RN ´ T ´ F , where
N is the number of sequences, T is the sequence length, and F is the
number of feature signals. The sequence length was determined by the
network’s receptive field. Each feature, except WR, was standardized to
zero mean and unit variance according to the training data statistics. WR
was normalized to [0, 1] due to its non-normal distribution.
The hyperparameters of importance are the number of convolutional

filters and the receptive field, which is defined by kernel size, dilation rate,
and network depth (Eq. (2)). This has practical implication in that having a
very long receptive field results in a delayed initial prediction (or “cold
start”) of that length of time. Hyperparameter search (number of filters,
kernel size, dilation depth) was performed on the hold-out validation set.
Table 1 lists the hyperparameter values that were searched. A grid search
was performed on a distributed computing cluster using 108 cores and 36
NVIDIA T4 Turing GPUs across 9 compute nodes.
The network was trained using the Adam optimizer, 0.2 dropout rate,

32 minibatch size, and a learning rate of 0.0005 over 100 epochs. For each
hyperparameter combination, the epoch with the lowest validation loss
was saved. The network hyperparameters producing the lowest mean
squared error in the validation set was chosen as the final network
architecture.

Data analysis
Signals were analyzed in MATLAB (2020b, MathWorks, Portola Valley, CA,
USA). Statistical analyses were conducted in R (version 3.5.1). The
agreement between the predicted and directly measured _VO2 were
assessed using repeated-measures Bland–Altman analysis, which accounts
for the within-participant variance of the repeated-measures data50.
_VO2peak agreement was assessed using the standard Bland–Altman.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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