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Clinical knowledge extraction via sparse embedding regression
(KESER) with multi-center large scale electronic health record
data
Chuan Hong 1,2, Everett Rush 3, Molei Liu4, Doudou Zhou5, Jiehuan Sun6, Aaron Sonabend 4, Victor M. Castro 7,
Petra Schubert 2, Vidul A. Panickan1, Tianrun Cai2,7, Lauren Costa2, Zeling He7, Nicholas Link 2, Ronald Hauser8,
J. Michael Gaziano1,2,9, Shawn N. Murphy 7, George Ostrouchov 3, Yuk-Lam Ho 2, Edmon Begoli3, Junwei Lu2,4, Kelly Cho1,2,9,
Katherine P. Liao1,2,9,10, Tianxi Cai 1,2,4,10✉ and VA Million Veteran Program*

The increasing availability of electronic health record (EHR) systems has created enormous potential for translational research.
However, it is difficult to know all the relevant codes related to a phenotype due to the large number of codes available. Traditional
data mining approaches often require the use of patient-level data, which hinders the ability to share data across institutions. In this
project, we demonstrate that multi-center large-scale code embeddings can be used to efficiently identify relevant features related
to a disease of interest. We constructed large-scale code embeddings for a wide range of codified concepts from EHRs from two
large medical centers. We developed knowledge extraction via sparse embedding regression (KESER) for feature selection and
integrative network analysis. We evaluated the quality of the code embeddings and assessed the performance of KESER in feature
selection for eight diseases. Besides, we developed an integrated clinical knowledge map combining embedding data from both
institutions. The features selected by KESER were comprehensive compared to lists of codified data generated by domain experts.
Features identified via KESER resulted in comparable performance to those built upon features selected manually or with patient-
level data. The knowledge map created using an integrative analysis identified disease-disease and disease-drug pairs more
accurately compared to those identified using single institution data. Analysis of code embeddings via KESER can effectively reveal
clinical knowledge and infer relatedness among codified concepts. KESER bypasses the need for patient-level data in individual
analyses providing a significant advance in enabling multi-center studies using EHR data.
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INTRODUCTION
The adoption of electronic health record (EHR) systems has
simultaneously changed clinical practice and expanded the
breadth of biomedical research. For clinical research studies, EHR
data are used alone or integrated with other established data
sources such as registries, genomic data from biobanks, and
administrative databases1–7. EHR clinical data typically includes
diagnostic billing codes, laboratory orders and results, procedure
codes, and medication prescriptions. These comprehensive long-
itudinal data allow for studies to examine a broad range of
hypotheses. However, this wealth of data also raises challenges in
selecting and creating EHR features among thousands of options
relevant to the study or condition of interest. Most current studies
manually select individual EHR features and map specific EHR
codes to represent each feature, requiring input from clinical and
informatics experts. In addition to being susceptible to subjective
bias, this manual, time-consuming process cannot be scaled for
projects requiring multiple phenotypes.
Moreover, sharing algorithms across institutions often require

performing this manual process to identify institution-specific
codes and coding patterns in collaborative or replication studies.
One potential solution is to create large-scale clinical knowledge
networks, providing information about the dependency structure

across different EHR elements, thereby providing information about
the relationship of conditions and codes at a particular institution
as well as equivalent codes across institutions. These data would no
longer be associated with individual patient data and could be
readily shared, facilitating multi-center collaborations.
Creating a clinical knowledge network using EHR data requires

two major advancements. First, a general approach is needed to
integrate the different types of structured data efficiently, also
referred to as codified data, available in EHR. Codified EHR data
includes ICD (International Classification of Disease) codes8,9 for
disease conditions, LOINC (Logical Observation Identifiers Names
and Codes)10 for laboratory tests, CPT (Current Procedural
Terminology)11 and CCS (Clinical Classifications Software)12 for
procedures, as well as RxNorm13 and NDC (National Drug Code)
for medications. Approaches for extracting knowledge from
codified EHR data using machine learning algorithms have been
proposed in recent years14–16. However, these algorithms focused
on a specific task and required training with patient-level EHR
data. Second, establishing a highly cooperative and shareable
clinical knowledge network across institutions requires methods
that can ensure data privacy. Existing approaches for data mining
require patient-level EHR data, posing significant administrative
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challenges for data sharing across research groups and
institutions.
To overcome these challenges, we propose to transform EHR

data into embedding vectors17, thus uncoupling the data from the
individual patient. The downstream machine learning tasks would
use the embeddings vector as summary data rather than individual
patient data. Our use of embedding in this study refers to
projecting an EHR code into another representation space. In the
past decade, embedding vectors have been successfully derived
for clinical concepts with textual data and various sub-domains of
codified EHR data18–24. These embeddings were primarily derived
for specific applications and not for the creation of knowledge
networks. In addition, most existing word embedding algorithms
tuned the key hyper-parameters, e.g., the appropriate dimension of
the embedding vectors, to optimize a specific downstream task.
For example, the Code2Vec19 tuned the embedding dimension via
clustering task, and the Med2Vec21 chose the dimension via future
code prediction. However, this approach may limit the applicability
of the learned embedding vectors to other downstream tasks. This
study aims to develop a knowledge extraction pipeline via sparse
embedding regression (KESER) with EHR data from two large
healthcare systems. We present methods to derive embedding
vectors using multiple types of codified EHR data at scale. Here, we
choose the hyperparameters to ensure the general quality of the
embedding vectors and retain embedding vectors with higher
dimensions to further enable users to fine-tune optimal dimen-
sions for their specific tasks. We also investigate to what extent the
dimensions affect the performance of different tasks. With
embedding vectors from both institutions, we fit graphical models
via sparse regression to construct knowledge networks that
encode relatedness among features. We then demonstrate how
these knowledge networks can select potential features in the
development of an algorithm to identify patients with specific
phenotypes using EHR data. Furthermore, we demonstrate that the
knowledge network trained via integrative analysis of embedding
data from both institutions outperforms those trained with a single
institution’s data.

RESULTS
Overview
The KESER procedure includes four key steps outlined in Fig. 1: (i)
data pre-processing; (ii) creating embedding vectors via repre-
sentation learning using co-occurrence data and pointwise mutual

information; (iii) feature selection at a single site via sparse
regression; (iv) building a knowledge network across multiple sites
via an integrative sparse regression and node-wise graphical
model.

Data pre-processing
We used EHR data from two large hospital systems, the VA
Corporate Data Warehouse (CDW) and Mass General Brigham
(MGB). After aggregating four codified data domains (i.e.,
diagnosis, procedures, lab measurements, and medications) into
PheCode, CCS, RxNorm, LOINC codes, and manual lab concepts,
and applying frequency control, we finally obtained a total of 9211
codes at VA and 5507 at MGB.

Creating and validating embedding vectors
We obtained embeddings by performing singular value decom-
position (SVD) on the shifted positive pointwise mutual informa-
tion (SPPMI) matrix, known as the SVD-SPPMI algorithm.
To select optimal hyper-parameters and evaluate the perfor-

mance of the trained embeddings along with the proposed KESER
algorithms, we collected a set of known relationship pairs from
Wikipedia, PheCode hierarchy, https://www.drugs.com/, MEDRT,
SNOMED-CT, and manual annotations. The total numbers of
curated relation pairs across all available sources that can be
mapped to MGB and VA, as shown in Supplementary Table 1, are
15326 and 15224.
We obtained the initial embedding dimensions by retaining

95% of the variation in the SVD (d95%), resulting in 1800 for MGB
and 2900 for VA, as shown in Supplementary Fig. 1. We further
evaluate strategies for choosing optimal embedding dimensions
and the degree to which embedding dimensions may affect the
performance of detecting similar concepts and related concepts.
We chose the dimensions by maximizing either (a) the signal-to-
noise ratio (SNR); or (b) the area under the receiver operating
characteristic curve (AUC) associated with pairs with known
relations against random pairs, as detailed in Methods. The
dimensions selected to maximize AUC (dauc) tend to be lower than
to those selected to maximize SNR (dsnr) and selected dimensions
are generally lower for assessing similarity compared to those for
relatedness. For optimizing similarity assessment, (dauc, dsnr) were
chosen as (300, 1000) at MGB and (500, 1800) at VA. For detecting
relatedness, (dauc, dsnr) were chosen as (1800, 1800) at MGB and
(2300, 2800) at VA, close to their corresponding d95%.

Fig. 1 Overview of KESER procedure. The KESER procedure includes four steps: (i) data pre-processing; (ii) representation learning using co-
occurrence data and pointwise mutual information; (iii) feature selection at a single site; (iv) building a knowledge network across
multiple sites.
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We conducted additional sensitivity analyses using different
window sizes and k to construct the co-occurrence matrices based
on a total of about 70 K patients from MGB Biobank. When varying
window sizes from 7, 30 up to 60 days and k from 1, 5, up to 10,
we observed that the embedding quality is the best when k= 1
but is not sensitive to the choice of window size (Supplementary
Table 2).
Table 1 summarizes the overall accuracy of between-vector

cosine similarities in detecting known similarity and relatedness
relationships with embedding vectors derived from either SVD-
SPPMI or GloVe25. We used the GlobalVectors function from R
package text2vec to train GloVe. Although we trained GloVe with
dimensions 50, 100, 150, 500, and 1000, we focused primarily on
the results with dimensions 50, 100, and 150 since the GloVe
algorithm presents convergence issues from dimension 150 and
above, hampering its performance (see Supplementary Table 5).
For detecting similar pairs, the SVD-SPPMI based cosine
similarities attained an AUC of 0.839 at MGB and 0.888 at VA
with dimensions set at dauc. By thresholding cosine similarities to
classify pairs as similar with cut-off chosen to maintain false
positive rate (FPR) of 0.05 and 0.10, these classifications yielded
sensitivities of 0.593 and 0.669 at MGB and 0.679 and 0.772 at VA.
When setting dimension at 100, GloVe also performed well in
similarity detection, attaining slightly higher accuracy at MGB but
slightly lower at VA. For the relatedness, the cosine similarities
based on SVD-SPPMI embeddings at d95% achieved AUC of 0.868
at MGB and 0.862 at VA, sensitivities of 0.608 and 0.717 at MGB
and 0.582 and 0.688 at VA at FPR= 0.05 and 0.10. Compared to
GloVe trained with dimension 100, embeddings derived via SVD-
SPPMI achieved similar AUCs but higher sensitivities in related-
ness detection. As shown in Supplementary Table 2, the accuracy
is overall fairly high in assessing most types of relationships
including may cause, differential diagnosis, complications, and
symptoms with AUC close to 0.9. The accuracy is lower in
detecting risk factors and similar drugs with AUC close to 0.8.

Although assessed using different knowledge sources, these
observed levels of accuracy are similar to those previously
reported based on embedding vectors trained for natural
language processing (NLP) concepts20.
Similar to language translation, we learned orthogonal trans-

formation between embedding vectors across the two institutions
to enable the mapping of a given VA code to the corresponding
MGB code26. As summarized in Supplementary Table 3, the top-1
and top-5 accuracy of code mapping is around 38 and 67% for VA
medication codes → RXNORM and around 42 and 74% for
PheCode → PheCode using embeddings of dimension dauc. The
code mapping accuracy is fairly comparable when using a larger
dsnr. The observed code mapping accuracy is comparable to the
translation accuracy between different languages reported in the
literature26,27.

Knowledge extraction via KESER
The KESER approach was developed to select features by using
embeddings trained within a specific healthcare center, as well as
by leveraging embeddings from multiple healthcare centers while
incorporating between-site heterogeneity.
In Table 2, we summarize the average sensitivities and FPR of

KESER integrative knowledge extraction using embedding data
from both MGB and VA (KESERINT) in detecting known associa-
tions. For comparison, we also provide results based on KESER
performed using MGB data only (KESERMGB) and using VA data
only (KESERVA). The integrative analysis based on KESERINT
attained a sensitivity of 0.660 in detecting known related pairs,
while maintaining FPR below 5%. The KESERINT algorithm attained
accuracy substantially higher than those from KESER algorithms
trained with single-institution data, and the accuracy is generally
higher using embeddings with dimension set as d95% from
SVD-SPPMI. While GloVe attained slightly higher accuracy than
SVD-SPPMI when the dimension is set to 100 for both, the

Table 1. AUCs and sensitivity at FPR= 0.01, 0.05, and 0.10 of between-vector cosine similarity in detecting known similar pairs (RxNorm-RxNorm and
Lab-Lab) and related pairs (PheCode-PheCode; PheCode-RxNorm) with embeddings trained via SVD-SPPMI or GloVe at different choices of
dimensions d.

Relation Type Embedding AUC Sensitivity

FPR= 0.01 FPR= 0.05 FPR= 0.1

d Method MGB VA MGB VA MGB VA MGB VA

Similar 50 GloVe 0.869 0.86 0.425 0.386 0.603 0.62 0.686 0.704

SVD-SPPMI 0.825 0.831 0.372 0.21 0.515 0.405 0.601 0.533

100 GloVe 0.876 0.855 0.433 0.391 0.614 0.588 0.681 0.68

SVD-SPPMI 0.831 0.857 0.39 0.268 0.559 0.499 0.626 0.646

150 GloVe 0.767 0.515 0.336 0.011 0.455 0.064 0.536 0.114

SVD-SPPMI 0.835 0.862 0.406 0.368 0.573 0.57 0.64 0.686

dsnr
(1000,1800) SVD-SPPMI 0.837 0.870 0.473 0.408 0.602 0.631 0.670 0.738

dauc(300,500) SVD-SPPMI 0.839 0.888 0.455 0.403 0.593 0.679 0.669 0.772

d95%(1800,2900) SVD-SPPMI 0.836 0.868 0.465 0.386 0.601 0.638 0.677 0.734

Related 50 GloVe 0.873 0.805 0.275 0.198 0.538 0.384 0.659 0.505

SVD-SPPMI 0.844 0.789 0.189 0.164 0.456 0.351 0.604 0.463

100 GloVe 0.876 0.828 0.286 0.247 0.542 0.435 0.672 0.558

SVD-SPPMI 0.854 0.817 0.205 0.197 0.498 0.41 0.647 0.538

150 GloVe 0.758 0.623 0.126 0.053 0.302 0.128 0.438 0.217

SVD-SPPMI 0.862 0.833 0.236 0.202 0.54 0.442 0.671 0.57

dsnr(1800,2800) SVD-SPPMI 0.868 0.861 0.357 0.325 0.620 0.584 0.716 0.686

dauc(1800,2300) SVD-SPPMI 0.868 0.862 0.352 0.333 0.608 0.582 0.717 0.687

d95%(1800,2900) SVD-SPPMI 0.868 0.862 0.352 0.333 0.608 0.582 0.717 0.688
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performance of KESER regression is the highest when using d95%
dimensional embeddings from SVD-SPPMI. This is in part due to
the need for higher dimensional embeddings for the KESER
regression algorithm, while GloVe embeddings training failed to
converge at higher dimensions.
The performance of KESERINT, KESERMGB, and KESERVA using

embeddings obtained by GloVe or SVD-SPPMI in detecting 16
medications commonly used to treat RA is summarized in Table 3.
Out of the 16 medications, using embedding from SVD-SPPMI at
d95%, the numbers of drugs selected by KESERMGB, KESERVA, and
KESERINT were 16, 14, and 16, respectively, yielding a sensitivity of
1.00, 0.88, and 1.00. Sensitivity in detecting these medications
based on lower dimensional embeddings from SVD-SPPMI or
GloVe are generally lower. For example, the sensitivity ranged
from 0.41 to 0.53 based on GloVe at d= 100 and from 0.82 to 0.94
based on SVD-SPPMI at d= 500.
We conducted KESER feature selection for eight diseases:

coronary artery disease (CAD), type I diabetes mellitus (T1DM),
type II diabetes mellitus (T2DM), depression, rheumatoid arthritis
(RA), multiple sclerosis (MS), Crohn’s disease (CD) and ulcerative
colitis (UC). Figure 2 shows KESER-selected features for RA and UC.
Results for the remaining six diseases are summarized in
Supplementary Figs. 2–9. Since the goal of the feature selection
is to achieve high sensitivity, i.e., to identify many of the
potentially important features, less emphasis should be placed
on the magnitude of the sparse regression coefficients. The results
were largely consistent with clinical knowledge. For RA, the five
most important codes were tofacitinib, tocilizumab, golimumab,
abatacept, and methotrexate, all current therapies for RA. Other
selected features include differential diagnoses for RA (e.g.,
juvenile rheumatoid arthritis, osteoporosis, psoriasis) and lab tests
for diagnosing or monitoring RA (e.g., cyclic citrullinated peptide,
c-reactive protein, and erythrocyte sedimentation rate). Inflamma-
tory bowel disease (IBD) comprises two subtypes, CD and UC. For
UC, top features selected by KESER consisted of treatments
currently used to treat the condition. While vedolizumab is used in
both UC and CD, golimumab is indicated for UC and not CD
(Supplementary Fig. 9). UC features also include CD and
noninfectious gastroenteritis as differential diagnoses as well as
important procedures such as colonoscopy, proctoscopy and
colorectal resection.
Using codified EHR data from 68,213 MGB Biobank participants,

we compared the performance of two supervised phenotype
algorithms, the adaptive LASSO (aLASSO) and random forest (RF),
trained with existing feature selection strategies to those trained
with KESER-selected features. Those existing feature selection
strategies included the main PheCode of the disease only
(PheCode), all features (FULL), or informative features selected
manually or extracted using unsupervised algorithms such as
SAFE15. The accuracies of the aLASSO phenotyping algorithms
trained with different feature sets are summarized in Fig. 3 and
more detailed comparisons including the RF results are given in
Supplementary Fig. 10. Given the same feature set, the RF

algorithms generally performed slightly worse than the aLASSO
algorithms in part due to overfitting. The relative performance of
the RF algorithms trained with different feature sets is similar to
those from aLASSO. The algorithms generally attained higher
performance using embeddings from SVD-SPPMI than those from
GloVe. The results are quite similar when using KESERINT versus
KESERMGB and hence using MGB embedding information may be
sufficient for phenotyping at MGB. Hence we focus our discussions
below on the aLASSO algorithms and for KESER, we focus on
KESERMGB with SVD-SPPMI embeddings for brevity. Across the 8
phenotypes, phenotyping algorithms trained via aLASSO with
KESERMGB-selected features attained higher AUCs and F-scores
than those based on PheCode alone or using FULL features, and
similar AUCs as those trained with SAFE features. On average, the
AUC of KESERMGB with SVD-SPPMI based algorithms was 0.052,
0.144, and 0.007 higher than those based on PheCode, FULL, and
SAFE features. The average F-score of KESERMGB based algorithms
was 0.173, 0.157, and 0.013 higher than those based on PheCode,
FULL, and SAFE features. The 95% confidence intervals of the
accuracies associated with algorithms trained with KESER-selected
features are similar to the SAFE features, while those of the FULL
features and main PheCode alone are substantially wider.

Knowledge mapping by performing node-wise KESER
We summarized the clinical knowledge network, namely a
knowledge mapping, by performing node-wise KESER across all
PheCode and RxNorm (https://github.com/celehs/KESER). Figure 4
is a screenshot of the webAPI, given a specific target drug,
RxNorm 214555 for etanercept. The node-wise knowledge extrac-
tion aims to find the neighborhood codes related to the target
code etanercept. Figure 4A displays codes connected to etanercept
from KESERINT, which consists of 36 PheCodes, 49 RxNorm codes, 3
CCS codes, and 15 lab codes. Confirmed by domain experts, the
results were largely consistent with clinical knowledge. For
example, diseases commonly treated by etanercept, such as
sacroiliitis, juvenile rheumatoid arthritis, RA, ankylosing spondylitis,
were selected by the knowledge network. Drugs, procedures and
lab tests usually used together with etanercept, such as
methotrexate, arthrocentesis, HLAB27, and CRP, were also selected.
Figure 4B, C displays the local network based on KESERVA and
KESERMGB. We observed four lab codes uniquely identified by VA
and nine lab codes uniquely identified by MGB. The discrepancy of
the local networks at VA and RPDR lies only in lab codes. This is
expected because the majority of the lab codes are unique to the
site, resulting in high cross-site heterogeneity in lab coding. By
integrating data from both sites, KESERINT is able to achieve higher
accuracy in reflecting clinical knowledge.
These results demonstrate that KESER can successfully select

informative and clinically meaningful features that can be used
effectively for phenotyping and other downstream analyses.

Table 2. Sensitivity and FPR of KESERMGB (MGB), KESERVA (VA), and KESERINT (INT) in detecting known related pairs using embedding vectors trained
via SVD-SPPMI or GloVe at different dimensions d.

Dimension d Embedding method Sensitivity FPR

MGB VA INT MGB VA INT

100 GloVe 0.399 0.356 0.438 0.021 0.030 0.038

SVD-SPPMI 0.345 0.240 0.352 0.017 0.019 0.026

500 GloVe 0.045 0.032 0.107 0.012 0.019 0.040

SVD-SPPMI 0.453 0.368 0.526 0.021 0.022 0.035

d95% (1800,2900) SVD-SPPMI 0.531 0.489 0.628 0.027 0.027 0.042
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DISCUSSION
The KESER approach efficiently summarizes patient-level long-
itudinal EHR data into hospital-specific embedding data and
enables the extraction of clinical knowledge based only on
summary-level data. This summary data generated based solely on
relationships between codes, and clusters related codes together,
which provides ready information on features that may be
important for identifying or studying different phenotypes. The
KESER approach enables the assessment of conditional depen-
dency between EHR features by performing sparse regression of
embedding vectors without requiring additional patient-level

data. In this paper, we demonstrate the advantage of integrative
analyses across sites in detecting known associations. Ultimately,
we believe this innovation provides a potential solution for
barriers facing the much-needed multi-center collaborative
studies using EHR data.
The majority of EHR-based clinical studies are performed

entirely behind the firewalls of individual institutions. Collabora-
tions across centers typically require that each institution perform
analyses individually with results compared across institutions.
However, coding behaviors, disease management and strategies,
and healthcare delivery patterns28 can vary across different

Table 3. Sensitivities of KESERMGB (MGB), KESERVA (VA), and KESERINT (INT) in detecting two categories (CAT) of RA-related medications. CAT= 1 for
DMARDs in use and CAT= 2 for other drugs often used to manage RA patients.

GloVe SVD

d= 100 d= 100 d= 500 d= d95%

med CAT MGB VA INT MGB VA INT MGB VA INT MGB VA INT

abatacept 1 0 0 0 1 0 1 1 1 1 1 1 1

anakinra 1 0 0 0 0 0 1 1 1 1 1 1 1

rituximab 1 0 0 0 0 0 0 0 1 1 1 1 1

tocilizumab 1 1 0 1 0 1 1 1 1 1 1 1 1

tofacitinib 1 0 0 0 1 0 1 1 1 1 1 1 1

adalimumab 1 0 1 0 1 0 0 1 0 1 1 1 1

certolizumab 1 0 0 0 0 0 0 1 0 1 1 1 1

etanercept 1 1 1 1 0 0 1 1 1 1 1 1 1

golimumab 1 0 0 0 1 0 0 1 1 1 1 1 1

infliximab 1 0 0 0 0 1 1 1 1 1 1 1 1

leflunomide 1 1 1 1 1 1 1 1 1 1 1 1 1

hydroxychloroquine 1 1 1 1 1 0 1 1 1 1 1 1 1

sulfasalazine 1 1 1 1 0 0 0 0 1 1 1 1 1

methotrexate 1 1 1 1 0 1 1 1 1 1 1 1 1

methylprednisolone 2 1 1 1 0 0 1 0 0 0 1 0 1

prednisone 2 0 1 0 0 0 0 1 1 1 1 1 1

folic acid 2 1 1 0 1 0 1 1 1 1 1 0 1

Sensitivity 0.471 0.529 0.412 0.412 0.235 0.647 0.824 0.824 0.941 1 0.882 1

Fig. 2 Word cloud for KESERMGB selected features. (a) Selected features for Rheumatoid Arthritis (RA); (b) selected features for Ulcerative
Colitis (UC). The size of the words is proportional to the absolute coefficients from the embedding regression.
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healthcare systems. For example, at VA, medication procedures
(such as infliximab-injection) are coded as HCPCS procedure
codes, while at MGB, they are coded as local medication codes
that directly map to RxNorm. At VA, the majority of patients are
male, and thus the pattern of diseases or treatments may differ
from MGB where females are the majority. Variations between the
two institutions were observed when validating the embedding
vectors compared against known PheCode-RxNorm pairs (Table
1). While the knowledge derived from the embedding vectors
captures all the relevant RA treatments at both VA and MGB, the
weights of the individual treatments differed slightly between the
two healthcare systems (Fig. 2). Among the top-50 weighted
treatments, there are 36 same concepts obtained from both
healthcare systems. At VA methotrexate had the largest coefficient
compared to tofacinitib at MGB. Integrating the data from both
systems improves the robustness of the identified relationships
and accounts for the heterogeneity of data in each system.
Notably, since the embedding vectors contain no patient data, the
integration of these data can be performed outside of each
system.
Embedding vectors also provide information on highly related

groups of codes. Unlike ICD codes which have established
groupings and hierarchies, lab codes are much less standardized,
and no established grouping structure can be used at scale for
research studies. As an example, for the inflammatory marker

C-reactive protein (CRP), potential lab codes include, LOINC:11039-
5 (crp), LOINC:30522-7 (crp, high sens, cardio), and LOINC:X1166-8
(crp (mg/L)). In addition, at both VA and MGB, individual labs
within each institution also had unique lab codes that do not map
to the LOINC codes. The embedding vectors derived from the co-
occurrence matrices enable the grouping of codes based on the
similarity between the vectors, thus allowing the use of grouped
lab codes in research studies.
We also addressed the need to tailor the dimension of

embedding vectors to the goals of a particular study. Currently,
there is no clear evidence regarding how to select the optimal
dimension for analyses using embeddings. Existing embedding-
based approaches usually use a 300-dimension word embedding
GloVe25 or a 500-dimension CUI embedding for cui2vec20. We
demonstrate that different dimensions may be preferred for
different tasks. Lower dimensions appear to be better suited for
the task of identifying near synonymous concepts or translations
while higher dimensions are needed for assessing relatedness and
embedding regression aiming to optimize feature selection and
building knowledge networks. However, in general, our particular
approach of KESER regression performs better with higher
dimensional embedding vectors. Hence, when releasing embed-
ding vectors for other research groups, it may be helpful to release
multiple versions with different dimensions for more flexibility in
performing different downstream tasks. For the case with SVD-

Fig. 3 Comparison of AUCROCs, AUCPRCs, and F-scores with gold standard labels for adaptive lasso phenotyping algorithms for eight
diseases using the main PheCode only (PheCode), all features (FULL), SAFE selected features (SAFE), KESERMGB and KESERINT selected
features based on SVD-SPPMI embeddings as well as KESERMGB and KESERINT selected features based on GloVe embeddings. F-scores are
calculated at the cutoff points with the estimated prevalence equal to the population prevalence. The bootstrap based 95% confidence
intervals (bars) are shown.
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SPPMI derived embeddings, one may only release higher
dimensional vectors since the lower dimensional embeddings
can be recovered via simple truncation. However, we do not
recommend using higher dimensions for all tasks.
In this paper, we derived embeddings via SVD-SPPMI,

considered in the literature as equivalent to the skip-gram
algorithm with negative sampling (SGNS)17. Computationally, the
SVD-SPPMI approach is substantially more efficient than SGNS as it
does not need to conduct the negative sampling which is
computationally intensive especially when the number of codes is
massive. Due to both IRB and computational constraints, we are
only able to derive embeddings from SVD-SPPMI and GloVe which
only require summary data and but not SGNS. We find that SVD-
SPPMI derived embeddings generally have more robust perfor-
mance compared to those from GloVe which also appears to
suffer from convergence issues when fitting for higher dimen-
sions, possibly due to the sparsity of the SPPMI matrices.
The embedding vectors provide not only a method to share and

analyze data, but also an opportunity to develop an integrated
clinical knowledge network with input from many institutions. This
network allows us to visualize the node-wise relationships
between a target code (e.g., a PheCode or a RxNorm) and its
neighborhood codes: PheCode, RxNorm, CCS, and Labs (Fig. 4). By
leveraging information from both sites, the integrative network
covers all available knowledge and consists of a more compre-
hensive pool of neighborhood codes compared with local
networks.
Finally, using KESER, this knowledge network can be updated

over time to study relationships between emerging conditions
and their relationships with existing conditions, across multiple
healthcare systems. This is particularly relevant for future studies
on the impact of the COVID-19 pandemic. There is still a lack of
knowledge in fundamental aspects of COVID-19, such as the
development, management and treatment of the disease, and
how those aspects differ across different sites and countries.
Therefore, creating an integrated clinical knowledge map of
codified data for COVID-19 will be of great interest. This
knowledge map can be then used to facilitate the classification
of COVID-19 patients with selected features. As an exploratory

analysis, we constructed two separate co-occurrence matrices and
derived embeddings via the SVD-SPPMI using all EHR data up to
Nov 2020 from 30 K COVID+ patients at MGB and 100 K COVID+
patients at VA. As a proof of concept, we identified clinical
concepts most related to the COVID code. As shown in
Supplementary Fig. 11, the results are encouraging in that the
top selected codes include the highly important laboratory tests
for monitoring COVID progression (e.g., D-dimer, CRP, Ferritin) and
medications for managing COVID patients (e.g., norepinephrine
often used as first-line vasoactive, cefepime for managing bacteria
pneumonia complications, tocilizumab, dexamethasone, and
remdesivir) as well as related diagnoses and complications (e.g.,
viral pneumonia, respiratory insufficiency, shock, and kawasaki
disease).
In conclusion, KESER provides an approach allowing investiga-

tors to integrate patient-level data as embedding vectors from
multiple EHR systems for downstream analyses. We provide an
example of using the knowledge network to automatically provide
features that may be important for phenotyping, without
requiring additional patient-level data. This innovation will
facilitate multi-center collaborations and bring the field closer to
the promise of creating distributed networks for learning across
institutions while maintaining patient privacy.

METHODS
Overview
We highlight three key innovations detailed below in the methods. First,
we provided an approach to integrate four domains of codified data, ICD,
CPT, laboratory codes, and medications, from two large hospital systems.
Second, we applied a data-driven approach to specify the dimension of
embedding vectors. Third, we developed a method to use embedding
vectors rather than patient-level data as the input into a sparse
graphical model.

Data pre-processing
The VA Corporate Data Warehouse (CDW) aggregates EHR data from over
150 VA facilities into a single data warehouse. It contains clinical, financial,
and administrative records for over 23 million unique individuals
(1999–2019). The CDW supports both business operations and research.

Fig. 4 Clinical knowledge network for Etanercept. (a) Knowlege network learned based on KESERINT; (b) knowlege network learned based
on KESERVA; (c) knowledge network learned based on KESERMGB.
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A total of 12.6 million patients with inpatient and outpatient codified data
from at least one visit were included for this analysis. We defined
outpatient visits to include services from all VA outpatient stop codes.
There are over 500 outpatient stop codes that cover a wide range of
services such as emergency department visits, therapy, and primary care.
We first extracted records from the CDW. We then grouped each patient’s
records together in ascending chronological order. Codes occurring
multiple times for the same patient within the same day are counted
once per day. The resulting files were stored using parquet, a columnar
storage format. The parquet file format was well suited to storing this data
compactly while also allowing parallel processing.
Mass General Brigham (MGB), formerly Partners Healthcare, is a Boston-

based non-profit healthcare system anchored by two tertiary care centers,
Brigham and Women’s Hospital (BWH) and Massachusetts General Hospital
(MGH). The Research Patient Data Registry (RPDR) of MGB is a research
copy of the EHRs of BWH and MGH with over 1 billion visits containing
diagnoses, medications, procedures, and laboratories information. The
patient population included 2.5 million patients with at least 3 visits
spanning more than 30 days. The analysis included coded data from all
inpatient, outpatient, and emergency department visits between 1998 and
2018. We used the same format as VA described above to store patient
visit level data for processing.
We gathered four domains of codified data including diagnosis,

procedures, lab measurements, and medications from VA and MGB EHRs.
Since multiple EHR codes can represent the same broad concept, (e.g.,
acute myocardial infarction (MI) of anterolateral wall and acute MI of the
inferolateral wall are separate codes that describe the same concept of MI),
we rolled individual codes to a code representing a general concept. ICD
codes were aggregated into PheCodes to represent more general
diagnoses, e.g., MI rather than acute MI of inferolateral wall, using the
ICD-to-PheCode mapping from PheWAS catalog (https://phewascatalog.
org/phecodes). We utilized multiple levels of granularity of PheCode,
including integer level, one-digit level and two-digit level. To reduce the
effect of collinearity, when conducting KESER regression, for phenotypes
with multiple levels of PheCode, we only included one-digit level
PheCodes.
For procedure codes, including CPT-4, HCPCS, ICD-9-PCS, ICD-10-PCS

(except for medication procedures), we assigned CCS categories based on
the clinical classification software (CCS) mapping (https://www.hcup-us.ahrq.
gov/toolssoftware/ccs_svcsproc/ccssvcproc.jsp). For medication codes, we
aggregated the local medication codes at VA and MGB to the ingredient
level RxNorm codes29.
For laboratory measurements, due to the difference in coding systems

between VA and MGB, we created a code dictionary for each site. At VA
this was done by grouping local lab codes to manually annotated lab
concepts or LOINC codes, as well as individual lab codes that have not
been annotated but occurred in at least 1000 patients. At MGB, all local lab
codes were aggregated into group and a LOINC code was assigned to
each. Since embeddings cannot be trained well for very low-frequency
codes, we only included codes occurring >1000 times at MGB and > 5000
times at VA. The different thresholds were used because VA has a larger
population and larger number of codes than MGB. A total of 9535 codes
(1776 PheCodes, 1561 RxNorms, 5974 Labs and 224 CCS groups) at VA and
5245 codes (1772 PheCodes, 1238 RxNorms, 1992 Labs, and 243 CCS
groups) at MGB passed the frequency control.

Creating embedding vectors
We obtained embeddings by performing SVD on the SPPMI matrix, known
as the SVD-SPPMI algorithm. This approach provided embeddings
considered as efficient and equivalent to those derived from the skip-
gram algorithm with negative sampling17,20,30,31.
We first constructed code co-occurrence matrices as described in Beam

et al.14. For any given patient, we scanned through each of their codes as a
target code. For any given target code occurring at time t, denoted by wt,
we counted all codes occurring within 30 days of t as co-occurrences with
wt. The total numbers of co-occurrences for all possible pairs of codes are
aggregated over all target codes within each patient and then across all
patients, yielding the co-occurrence matrix, denoted by C ¼ C w; cð Þ½ �.
Although only codes that occur after the target code are considered, this is
the same as finding co-occurring codes within 30 days of the target code
(i.e., between −30 and 30 days), owing to the symmetry of the data. Thus,
given a target phenotype w (e.g., PheCode 714.1 for RA), we assume the
context codes vocabulary VCðwÞ are the codes co-occurred with the target
word within a 30-day window. This step requires considerable

computational resources and a detailed algorithm for efficiently comput-
ing the co-occurrence matrix was created for this study (https://github.
com/rusheniii/LargeScaleClinicalEmbedding).
Since our sparse regression procedures (described in later sections)

require selection of tuning parameters, we constructed two separate co-
occurrence matrices at each site. At VA, from the 12.6 million patients, we
used data from 11.6 million patients to create a training matrix CVA

t and
data from the remaining 1 million patients to create a validation matrix
CVA

v . At MGB, we used half of the patients to create training and the other
half to create validation matrices, respectively denoted byCMGB

t andCMGB
v .

We calculate the SPPMI matrix as:

SPPMI w; cð Þ ¼ max log
C w; cð ÞjDj

C w; �ð ÞC c; �ð Þ � log kð Þ; 0
� �

(1)

with the negative sample k set as 1 (i.e., no shifting), where C w; �ð Þ is the
row sum of C w; cð Þ, and jDj is the total sum of the cooccurrence. For
each given SPPMI, we obtain its first d-dimensional SVD as
Uddiag λ1; ¼ ; λdð ÞUT

d and then construct the d-dimensional embedding
vectors as Vd , where Vd ¼ Uddiag

ffiffiffiffiffi
λ1

p
; ¼ ;

ffiffiffiffiffi
λd

p� �
:

Knowledge extraction via sparse embedding regression
(KESER)
We propose to infer conditional dependency among the clinical codes
based on the conditional dependency among their corresponding
embedding vectors. To provide a rationale for this framework, we note
that the skip-gram model with negative sampling16 directly encodes the
marginal dependency between the target code w and its context code c
via the covariance between their respective embedding vectors Vw and Vc

with

logit P Target code w and context code c co� occurs w; cjð Þ ¼ VT
wVc:

(2)

This motivates us to model the conditional distribution of the target
code w and other codes by imposing a Gaussian distribution on the
embedding vectors and inferring the dependency via a Gaussian graphical
model on top of the skip-gram model. Specifically, in the mth healthcare
center, we assume that the embedding vector of code w, VðmÞ

w , follows a
conditional vector-valued Gaussian distribution centered at the linear
combination of its context word vectors, i.e.,

VðmÞ
w jV mð Þ

c for c ≠w � N
X

c≠w
B mð Þ
wc V

mð Þ
c ; σ2mId

� �
(3)

form ¼ 1; ¼M, where BðmÞ
wc encodes the conditional dependency between

codes w and c, with BðmÞ
wc ¼ 0 if V ðmÞ

w is independent of VðmÞ
c given all other

code vectors. For symmetry, we assume I BðmÞ
wc ¼ 0

� �
=IðB mð Þ

cw ¼ 0Þ for all

target words w and the context c. Figure 5 visualizes the two-layer

hierarchical structure of our model. The sparsity structure of BðmÞ ¼ ½B mð Þ
wc �

enables us to infer about the relatedness among different features for the
mth healthcare center, which can be used for both feature selection and
learning a knowledge graph.
Due to the heterogeneity of the coding patterns across healthcare

centers, feature selection can be done using embeddings trained within a
specific healthcare center. For the mth center, we select features important
for a specific target phenotype w (e.g., PheCode 714.1 for RA) by performing

an elastic net penalized regression32 of V ðmÞ
w against V ðmÞ

c ; c≠w
n o

. We first

perform an initial screening based on marginal cosine similarity and

consider codes in Ω
mð Þ
0:05 ¼ c : cos V mð Þ

w ;V mð Þ
c

� �
� ρ0:05; c≠w

n o
for further

selection, where ρ0:05 is the upper fifth percentile of the cosine similarity
among randomly selected pairs. Since the cosine similarity distribution
varies across different relationship types (e.g., PheCode-PheCode versus
PheCode-RXNORM), we recommend choosing ρ0:05 within each relationship

type. Then we estimate B mð Þ
w ¼ B mð Þ

wc ; c ≠w
n o

as

argmin
B mð Þ
w

V mð Þ
w

kV mð Þ
w k2

�P
c2Ω mð Þ

0:05
B mð Þ
wc

V mð Þ
c

kV mð Þ
c k2

				
				
2

2

(

þλm1
P
c≠w

jB mð Þ
wc j

cos V mð Þ
w ;V mð Þ

cð Þj j þ λm2
P

c≠w ðB mð Þ
wc Þ2

� (4)

for some tuning parameters λm1; λm2>0 to be selected. Features with
B mð Þ
wc estimated as non-zero are deemed as important for the phenotype w
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in the mth healthcare center. These selected features can be used for
downstream analysis such as developing phenotyping algorithms for a
target phenotype. See Supplementary Note 1 for details on the tuning of
λm1 and λm2.
To learn a knowledge network that encodes relatedness among

diseases, procedures, medications, and laboratory tests, we propose to
leverage embedding data from multiple healthcare centers while
incorporating between-site heterogeneity. Specifically, the conditional

dependency structure, as measured by the support of BðmÞ ¼ B mð Þ
wc

h i
in

model (4), are similar across healthcare centers, although the magnitude

may differ. Since not all codes are present in all centers, we set B mð Þ
wc ¼ 0 for

all c∉Ω mð Þ
0:05. Our goal is to identify the support S ¼ P

m
B mð Þ
wc




 


≠0� �
via an

integrative analysis of the M sets of embedding data

Vð�Þ ¼ V mð Þ;m ¼ 1; ¼ ;M
n o

. Specifically, for each w, we estimate Bð�Þ
w ¼

B mð Þ
w ¼ B mð Þ

wc ; c 2 Ω
mð Þ
0:05

� �
;m ¼ 1; ¼ ;m

n o
via an integrative least squared

regression with a mixture of ridge and group sparse penalty as

argmin
Bð�Þw

PM
m¼1

V mð Þ
w

V mð Þ
wk k2

� P
c2Ω mð Þ

0:05

B mð Þ
wc

V mð Þ
c

V mð Þ
ck k2

						
						
2

2

8<
:
þP

c2∪M
m¼1Ω

ðmÞ
0:05

λ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼1
B mð Þ
wcð Þ2 I c2Ω mð Þ

0:05ð Þ
max2 I c2Ω mð Þ

0:05ð Þ cos V mð Þ
w ;V mð Þ

cð Þj j:m¼1;2;¼ ;Mf gPM

m¼1
I c2Ω mð Þ

0:05ð Þ

s(

þ λ2
PM

m¼1 B mð Þ
wc

� �2
I c 2 Ω

mð Þ
0:05

� ��)
(5)

where λ1 and λ2 are two tuning parameters. Through the group lasso
penalty, we are able to borrow signals from all M systems and select the
important features that appear in multiple sites more efficiently compared
with site-specific sparse regression. A complete knowledge network can be
established by performing node-wise integrative analysis for each code.
See Section A of the Supplementary Information for details on the tuning
of λ1 and λ2.
Tuning parameter selection in this setting differs from standard

regression in that the d-dimensional embedding vectors are not d
independent realizations of random variables and hence it is not
appropriate to perform cross-validation directly over the embedding
vectors. We instead constructed embedding vectors using a training SPPMI
matrix and a validation SPPMI matrix, trained with non-overlapping
patients, within each healthcare system as described above. See Section A
of the Supplementary Information for a detailed description of the
implementation of both KESER feature selection and construction of the
knowledge network. Source code for implementation can be found at
https://github.com/celehs/KESER.

Evaluation and validation
To tune hyperparameters and evaluate the performance of the trained
embeddings as well as KESER algorithms, we collected a set of known
disease-disease (PheCode-PheCode) pairs from Wikipedia and PheCode

hierarchy, disease-drug (PheCode-RxNorm) pairs from https://www.drugs.
com/ and MEDRT, drug-drug (RxNorm-RxNorm) pairs from SNOMED-CT,
and lab-lab pairs from manual annotation. We performed named entity
recognition33 on the entity pairs extracted from the knowledge sources
and mapped these pairs to the text strings of the codified concepts from
MGB and VA. Only a small fraction of the extracted known relationship
pairs can be mapped directly to the EHR codified concepts due to their
difference in encoding and representation.
There are several hyper-parameters that may impact the quality of the

embeddings including embedding dimension d, window size, and shifting
parameter k. Due to computational constraints, we performed sensitivity
analyses to evaluate how window size and k impact the embedding quality
using the MGB Biobank consisting of EHR data from about 70 K patients.
We derived embeddings with co-occurrence matrices constructed with
window sizes ranging from 7, 30 up to 60-days, and k ranging from 1, 5, to
10. To select dimension d, we first initialized the dimensions by retaining
95% of the variation in the SVD, denoted by d95%. Subsequently, we
considered two data-driven strategies for optimizing the dimension up to
d95% by maximizing (i) the signal to nose ratio (SNR); and (ii) the AUC,
where SNR dð Þ ¼ Wd=Sd , Wd and Sd are the average cosine similarity
among all pairs with known relationships and among all random pairs. For
similarity, we used the PheCode hierarchy for tuning optimal dimensions
and defined pairs as similar if they shared the same integer to calculate the
SNR and AUC. For relatedness, we used 10% of the known related
PheCode-PheCode pairs from Wikipedia and PheCode-RxNorm pairs from
https://www.drugs.com/ and MEDRT to tune the dimension and used the
remaining known related pairs for validation.
We evaluated the quality of the derived embedding vectors by

quantifying their accuracy in detecting known similar pairs (RxNorm-
RxNorm and Lab-Lab) and related pairs (PheCode-PheCode, PheCode-
RxNorm), and evaluated the KESER algorithm by quantifying its power in
detecting known related pairs as described above. For each type of
relation, since a vast majority of pairs are unrelated, we randomly sampled
a large number of pairs within each type of relationship to obtain the
reference distribution for unrelated pairs. For each type of relationship, we
obtained the cosine similarity of the embedding vectors between known
pairs and between random pairs. We first calculated the area under the
AUC as an overall accuracy summary. We then reported the sensitivity of
detecting related pairs by thresholding cosine similarities to achieve a FPR
of 0.01, 0.05 or 0.10. We also evaluated the performance of the KESER for
feature selection at each site and integrative feature selection at both sites.
We report the sensitivities in detecting known related PheCode-PheCode
and PheCode-RxNorm pairs, that is the proportion of pairs detected by
KESER among all known pairs.
The trained embeddings at MGB and VA can be used to map codes

across the two institutions via orthogonal transformation similar to
language translation26. Specifically, let VðVAÞ and VðMGBÞ denote embed-
ding vectors for codes that are common to both institutions. We may find
an orthogonal matrix Q to minimize the distance between VðMGBÞ and
VðVAÞQ as in Smith et al.26. We used 1823 codes (223 CCS, 178 LOINC, 698
PheCode, and 724 RXNORM) that are common to MGB and VA to train Q.
The test set consists of 1000 PheCodes that are common to both

Fig. 5 The left panel describes the key steps for learning the embedding vectors: we conduct singular vector decomposition (SVD) on the
SPPMI. The right panel describes the statistical model: the embedding vectors follow a Gaussian graphical model where each node of the
graph is represented by the vectors.
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institutions but not included in the training set as well as a set of manually
curated 251 VA local medication code → RXNORM mappings. We evaluate
the quality of the cross-institution mapping based on the top-1, top-5, and
top-10 accuracy calculated based on the test set. We performed the code-
mapping with embeddings of dimensions chosen both via AUC and SNR.
Patients with RA are treated with disease-modifying anti-rheumatic

drugs (DMARDs), treatments that can prevent the progression of RA. A list
of 16 RA treatments approved prior to 2017 were manually curated by
domain experts and grouped into two categories: (1) DMARDs currently in
use, (2) RA-related drugs used in conjunction with DMARDs. We reported
sensitivities in detecting the RA-related drugs using KESER against this
manually curated list.
One downstream application of feature selection is to develop supervised

phenotyping algorithms for classifying disease status with these selected
features. Supervised algorithms are typically developed using a training
dataset consisting of gold standard labels and observations on a given set of
candidate features34. Existing phenotyping algorithms have considered
various approaches to selecting candidate features including the main
PheCode of the disease only (PheCode), all features (FULL), or informative
features selected manually or extracted using unsupervised algorithms such
as SAFE15. Using codified EHR data from 68,213 MGB Biobank participants, we
compared the performance of supervised phenotype algorithms trained with
these existing feature selection strategies to those trained with KESER-selected
features. We trained and validated phenotyping algorithms for eight
phenotypes: CAD, T1DM, T2DM, depression, RA, MS, CD and UC, based on
gold standard labels manually curated on an average of 545 patients for each
disease. For each phenotype, the labeled set was randomly sampled from a
filter positive set consisting of patients with at least one relevant PheCode. We
corrected for overfitting via.632 bootstrap, a smoothed version of cross
validation35.
All phenotyping algorithms were trained by fitting adaptive LASSO

penalized logistic regression models and random forest models and
validated on the subset of labeled patients with at least one PheCode for
each disease. We evaluated the accuracy of the phenotyping algorithms
based on their area under the receiver operating characteristic curve
(AUCROC), the area under the precision-recall curve (AUCPRC) as well as
the F-score of the corresponding binary classifiers with threshold values set
such that the percentage of patients classified as positive matches the
disease prevalence. In addition, we obtained the confidence interval by
bootstrap resampling. The phenotyping algorithms were only trained and
validated in the filter positive set, since the negative predictive values of
the filters are nearly 100%36.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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