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Imputation of missing values for electronic health record
laboratory data
Jiang Li 1, Xiaowei S. Yan2, Durgesh Chaudhary1, Venkatesh Avula 1, Satish Mudiganti 2, Hannah Husby 2, Shima Shahjouei1,
Ardavan Afshar3,7, Walter F. Stewart4, Mohammed Yeasin5, Ramin Zand 1 and Vida Abedi 1,6✉

Laboratory data from Electronic Health Records (EHR) are often used in prediction models where estimation bias and model
performance from missingness can be mitigated using imputation methods. We demonstrate the utility of imputation in two real-
world EHR-derived cohorts of ischemic stroke from Geisinger and of heart failure from Sutter Health to: (1) characterize the patterns
of missingness in laboratory variables; (2) simulate two missing mechanisms, arbitrary and monotone; (3) compare cross-sectional
and multi-level multivariate missing imputation algorithms applied to laboratory data; (4) assess whether incorporation of latent
information, derived from comorbidity data, can improve the performance of the algorithms. The latter was based on a case study
of hemoglobin A1c under a univariate missing imputation framework. Overall, the pattern of missingness in EHR laboratory
variables was not at random and was highly associated with patients’ comorbidity data; and the multi-level imputation algorithm
showed smaller imputation error than the cross-sectional method.
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INTRODUCTION
Laboratory data are often used in machine-learning-enabled EHR-
based clinical decision support systems1–4 and significantly
improve disease modeling and outcome prediction3,5–8. However,
laboratory data are often missing for intentional (e.g., the patient
does not need certain laboratory tests) or unintentional (e.g., lack
of routine checkup or follow-up) reasons, and this missingness can
result in loss of power, biased estimates9,10, and models that
underperform. Notably, imputing missing values for EHR labora-
tory variables, which includes irregular time-series data, is a
persistent challenge. Missing patterns and missingness mechan-
isms for laboratory data have not been well characterized.
Moreover, the imputation strategy that is optimal given a defined
missingness pattern has not been studied.
Within clinical trial frameworks or observational studies, various

imputation models have been successfully applied and these
include mean substitution, regression, hot deck11, tree-based12,
as well as advanced statistical methods, such as expectation
maximization (EM)13, full information maximum likelihood
(FIML)14, and multiple imputations (MI)15,16. In general, imputation
algorithms that rely on inter-attribute correlations perform better.
The data correlation could exist within a time point across all
samples (cross-sectional) or between time points at an individual
level (longitudinal), within a single variable (univariate) or between
variables (multivariate), and missing in one variable correlated to
observation in other variables and vice versa. MI, the commonly
used imputation method, assumes that each missing value has a
distribution of plausible values, which reflect the uncertainty of
the missing value. MI is usually conducted using three procedures,
fully conditional specification (FCS)17–19, joint model (JM)20, and
monotone imputation21. Multivariate Imputation by Chained
Equations (MICE)22—a widely used open-source imputation soft-
ware with built-in cross-sectional and multi-level univariate or
multivariate algorithms ̶ is applied to laboratory variables from

EHR. Previous studies applying MICE or other methods to impute
one laboratory variable with common laboratory variables in
cross-sectional studies have achieved some promising results23–26.
The key questions when deciding on imputation techniques for

laboratory variables are the following. (1) What is the pattern or
mechanism of missingness in these variables; (2) How to choose
the algorithms and procedures for imputation of missingness; (3)
How well to impute laboratory data in a cross-sectional design
compared to a longitudinal design; (4) Can auxiliary variables,
based on comorbidity information, be useful in the imputation
model; and (5) How well the conclusion made from a single
dataset is applied to an independent dataset with different setup
or missingness pattern—namely generalizability. In this study, we
determine patterns and explore mechanisms of missingness in
laboratory variables in Geisinger Healthcare System in Pennsylva-
nia, and Sutter Health in California (Fig. 1) for two distinct cases.
We evaluate the performance of commonly used imputation
algorithms with a focus on model-based MI frameworks that could
accommodate high missingness rates (>50%). We simulate two
mechanisms of missingness, arbitrary and monotone, by randomly
holding-out laboratory values (HV) and complete patient records
(HC), to mimic different patterns of missingness observed in EHRs
(Fig. 2a–d), and evaluate the performance of the algorithms.
Finally, we use a case study to assess the value of applying latent
information derived from comorbidity as auxiliary variables to
predict hemoglobin A1c (HbA1c).

RESULT
Laboratory measures characteristics
Overall, 45 quantitative laboratory variables from GNSIS (n= 9037)
and 38 from HF (n= 5192) with <75% missingness were analyzed
in this study. Kernel density plot was used to illustrate the
data distribution for each variable before the index date
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(Supplementary Fig. 1). The laboratory variables from two EHR
datasets were summarized in Table 1 (See supplementary Table 1
for detailed information).
For variables collected as a panel (e.g., CBC, electrolyte, liver

function, kidney function, lipid panel, and metabolic panel), their
missingness usually occurred concurrently (Fig. 2e, f). The
selection of laboratory variables for imputation was determined
by the correlation matrix and the connection between missing-
ness and observation among the variables visualized by a fluxplot.
The pairwise correlation between two observations (before or
after the index date) was moderate (|R | ≈ 0.5) across all variables
(Supplementary Table 1). On the other hand, there were low
correlation coefficients (|R | < 0.2) between selected variables from
each test panel, however, this correlation was still statistically
significant (Supplementary Fig. 6). According to the fluxplot (Fig.
2e, f), electrolyte and glucose levels had the highest Ojk,
suggesting their observed data connected to the missing data
of other variables, whereas HbA1c and coagulation related
variables have a highest Ijk, suggesting their missingness was
connected to the observed data from other variables. All these
laboratory variables were included in the MI procedure.

Analyses of missingness patterns and mechanisms
Missingness before (Fig. 2a, c) or after (Fig. 2b, d) the index date, was
likely to be “monotone” with some degree of randomness. As
summarized in Fig. 2, we noticed that (1) the missingness was higher
before the index date than after in the GNSIS dataset, (2) the HF data
had a higher percent of missingness for both before and after the
index date compared to the GNSIS dataset, (3) only a small portion
of patients have repeated measurements (see Fig. 2g, h for the
percentage of subjects with greater than one measurement), and (4)
the missingness level was reduced by combining data from before
and after only in the GNSIS dataset (Fig. 2g, h).
Further analysis of the pattern of missingness was performed

using margin plots. We assessed the missingness pattern between
“before the index date” and “after the index date” or between two
different laboratory variables (Supplementary Fig. 2). We randomly

selected four laboratory variables, one from each panel with a
different level of missingness. The pattern of laboratory measures
did not violate MAR. Under the MAR assumption, the distributions
showed in the side boxplot of one laboratory variable, conditioned
on the status of observed (blue) or missing in the other laboratory
variable, could be different, both in location (median) and spread
(IQR). However, clusters were not formed in the scatterplots, and
no significant shift in the boxplot between missing (red) and
observed (blue) values were detected. (Supplementary Fig. 2).
The co-analysis of patient comorbidities and missingness of

laboratory measurements revealed that the missingness was related
to disease burden, and the patients with higher disease burden had
less missingness in both the GNSIS and HF datasets. For each
laboratory variable, the association between missingness and each
main PC (labeled as Dim) was extracted from the comorbidity matrix
(Fig. 3a, b). Patients with observed laboratory values had significantly
higher PC values (red dots) than patients with a missing value.
We studied two simulation policies, by holding-out 50 random

laboratory values (HV) and 50 complete patient records (HC), to
mimic different patterns of missingness. The GNSIS dataset
included 393 completed cases, while the HF included 777
complete cases from which 50 HC were randomly drawn for each
cohort. When analyzing the 50 HV per variable our results showed
no significant association with any of the PCs across all the
variables (blue dots), suggesting MAR pattern; however, analysis of
the 50 HC showed a significantly higher PC value (green dots) at
least for the first main PC (labeled as Dim.1) in the GNSIS (Fig. 3a
and Supplementary Fig. 7a) but not in the HF dataset (Fig. 3b and
Supplementary Fig. 7b). These observations highlight the fact that
patterns of missingness can have unique attributes based on the
originating centers and associated phenotypes.

Coverage rate comparison among different imputation
models
The variability (95%CI) of the mean coverage rate (CR) was generally
higher for PMM than 2l.pan algorithms. The mean CR for 50
holdouts representing the proportion of confidence intervals (CI)
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Fig. 1 Data extraction and analysis pipeline. 1a Inspired by a stepwise imputation by observation blocks in longitudinal data from EHR, we
extracted the last observation before an event (e.g., stroke or heart failure), and the first observation after the event. Two types of holdouts,
random holdout values (HV) and random holdout complete cases (HC), represent two missingness scenarios, MAR and monotone with NMAR,
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that contain the true value in the two simulation policies was
evaluated for both datasets and all the imputation algorithms
included in this study (Fig. 4). For both policies (HV and HC), the 2l.
pan-FCS and 2l.pan-monotone showed better CR than cross-
sectional PMM-FCS and PMM-monotone imputation (see Fig. 4a
for GNSIS and Fig. 4b for HF). Finally, the results obtained from the
average width were consistent with CR (Supplementary Fig. 8).

Uncertainty propagation
The nRMSE after repeated MI was dynamically assessed to
determine the level and speed of the uncertainty that was
propagated after 5, 10, 20, 30, 40, 50 repeated imputation. Our
results (Fig. 5) showed that (1) the mean and standard error of
nRMSE for HC were generally larger when compared to HV; (2) for
HV, mean nRMSE stabilized after 30 repeats for most of the
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variables, and the standard error of nRMSE stabilized after 20 or 30
repeats as well; (3) in general, FCS performed better than
monotone, and 2l.pan performed better than PMM for the
majority of variables in both datasets; and (4) for HC, mean
nRMSE did not converge for some of the variables even with 50
runs. This latter observation highlights that when missing follows
an MNAR pattern a higher number of runs are needed to ensure
that the nRMSE are stabilized.

Performance evaluation of model
We assessed the model performance for different algorithms and
simulation policies. Overall, for the HV simulation policy, FCS
performed better than monotone in both datasets (Supplemen-
tary Fig. 5a, b). However, the improved performance of FCS over
the monotone procedure was unclear for the HC simulation policy,
particularly in the HF dataset. The multi-level (2l.pan) imputation
outperformed the cross-sectional PMM, as indicated by a
significantly lower nRMSE (after correction for multiple testing)
in Fig. 6. Given 50 HVs in GNSIS, we observed that 21 out of the 45
(46.7%) variables showed a significantly lower nRMSE for 2l.pan-
FCS than that for 2l.pan-monotone. This number was 8 out of 45
(17.8%) for the 50 HCs. Similarly, we identified 10 out of 45 (22.2%)
variables having significantly lower nRMSE for 2l.pan-FCS than that
for PMM-FCS, while 15 out of 45 (33.3%) variables for 50 HCs
showed similar results. Analysis of the HF dataset corroborated
similar observations; in particular, 17 out of the 38 (44.7%)
variables showed a significantly lower nRMSE for 2l.pan-FCS than
that for 2l.pan-monotone. We also identified 8 out of the 38
variables having significantly lower nRMSE for 2l.pan-FCS than that
for PMM-FCS. The laboratory variables in the same panel (e.g.,
electrolyte, lipid panel, CBC) showed similar patterns (Fig. 6).
Finally, our comprehensive analysis, including uncertainty assess-

ment, showed that the standard error of imputed values and their
deviation from the regression line, estimated by the correlation
coefficient (R), was higher in HC simulation policy across all
laboratory variables for both datasets. The latter was shown by
the over-imputation plots (Supplementary Fig. 4). This observation
emphasizes the need for a more careful assessment of uncertainty
when analyzing laboratory variables with MNAR patterns.

A case study for hemoglobin A1c
We designed a case study to assess the practical value of
improvement in imputation for the laboratory measurement of
Hemoglobin A1c (HbA1c, LOINC ID: 17856-6), which had the
highest missingness level. HbA1c has also the highest Ijk,
suggesting its missing data connects to the observed data from
other variables in a multivariate MI model.
The over-imputation plot (Fig. 7 for FCS and Supplementary Fig. 9

for Monotone) demonstrated the correlation between 50 holdouts
and imputed mean values after 50 repeated MI. The R-value labeled
in each panel represented the optimal correlation coefficient that
could be reached by different imputation algorithms under different
settings (multivariate or univariate missing).
Within the multivariate missing framework, our results showed

that the 2l.pan outperformed PMM for this variable with a larger

average Correlation Coefficient between imputed and holdout
values under two simulated missingness patterns as shown in
Table 2. The average correlation coefficient (R) was higher when
using multivariate 2l.pan (e.g., R= 0.536 for 50 HVs using FCS)
than multivariate PMM (e.g., R= 0.401 for 50 HVs using FCS),
regardless of the imputation procedure (FCS or monotone) or
simulation policy (HV or HC). Imputation performance slightly
improved with increased average R, decreased variance (Standard
Error) and coefficient of variance (CV) when using univariate 2l.pan
including PCs that were derived from comorbidity information as
latent variables (e.g., R= 0.473, SE= 0.012, CV= 0.179, compared
to R= 0.462, SE= 0.014, CV= 0.214 for 50 HVs; R= 0.3, SE= 0.016,
CV= 0.377, compared to R= 0.271, SE= 0.019, CV= 0.496, for 50
HCs). In all of our simulation experiments, HC consistently showed
lower correlation (average R) and larger SE than HV, suggesting
increased variance of imputation.

DISCUSSION
The laboratory values in this study were collected from two
different diseases cohorts, ischemic stroke, and heart failure,
respectively, and data were acquired from the EHR from two large
health care systems from different geographical areas with a
distinct ethnic distribution. Using these datasets, our study (1)
improved the understanding of missingness patterns in real-world
EHRs, (2) assessed and compared the performance of commonly
used imputation algorithms when applied to a broad range of
laboratory variables, and (3) identified strategies for enhancing
imputation performance by leveraging auxiliary information from
patient’s comorbidity data.
Our analysis of quantitative laboratory variables from two

datasets indicates an MNAR, which the margin plots were not
able to show unless an in-depth knowledge of the cohort such as
comorbidities was provided10. MNAR is a type of missing when
the value of the variable that is missing is related to the reason it
is missing, alternatively, the missingness is dependent on the
missing values themselves given the observed data. MNAR was
recognized in clinical trial data16,27 as well as EHR data from this
study. Missingness in the repeated measurement in the clinical
trial data is related to the patients’ responsiveness to the
treatment, resulting in compliance and dropout issues. Similarly,
the missingness in all common laboratory variables was related
to individual disease burden in this study. This nonintentional
missing was disguisable and other known (insurance, social-
economic status, educational background) or unknown factors
might also contribute to MNAR. Our analysis showed that the
probabilities of missingness for all laboratory variables were
related to disease burden. Patients with missing values are more
likely to have a laboratory value within a normal range rather
than within a range of observed data.
Our data also showed that when one test result was missing for a

patient, other tests with a higher missingness rate for that patient
were also likely to be missing, suggesting a “monotone” pattern of
missingness. A “monotone” pattern may imply that missingness
likely happens to a group of patients who do not seek health
care regularly. Both datasets had a combination of monotone

Fig. 2 Exploring missingness pattern and mechanism: level of missingness in GNSIS (n=9037) and HF (=5192). a, b/c, d Missingness
pattern, monotone with some degree of randomness, before or after the event was created by R “naniar” package (black represents missing
and light gray represents observed). The x-axis is the description of the laboratory variables, which are sorted based on the percentage of
missingness. The corresponding laboratory component ID and % missing was labeled on the top row. Some patients were marked as both
monotone and arbitrary missing because some providers ordered a specific laboratory test (or a specific panel of tests) for some patients for a
variety of reasons under certain circumstances. This would violate the sequentially ordering of laboratory tests and lead to some random
missing (arbitrary) for other patients. e, f A fluxplot showing the distribution of laboratory variables before the event is determined by the
corresponding influx and outflux values. The laboratory variables in a panel test generally were clustered together. g, h Area plot (identity but
not stacking) to show the percent of subjects with repeated (up to three) measures. The x-axis was laboratory variables sorted by percent of
missingness (%) before the event.
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missingness and varying degrees of random missingness. The
missing rates before and after the index date were similar in the
case of HF; however, less missing after the index date compared to
before the index date was observed in the GNSIS dataset (Fig. 2g,
h). The difference between GNSIS and HF could be due, in part, to
the higher mortality in HF, differences in social-economic status
(e.g., insurance). Nonetheless, one should not assume that the rate
of missingness will be always lower after a patient has an
acute event.
Our simulation policy experiments (HC and HV) were designed to

mimic different patterns of missingness in EHR. Using these
simulations, we were able to identify experimental design strategies
to improve the model performance and the stability of the nRMSE.
To determine how many repeated imputations are necessary to
reach an unbiased conclusion on the performance of commonly

used MI algorithms, we evaluated nRMSE and compared the level
and speed of the uncertainty propagated after 5, 10, 20, 30, 40, 50
repeated imputations. At the first 5 to 10 complete imputed sets,
mean nRMSE from 2l.pan-FCS may not show a statistically
significant difference from the mean from 2l.pan_MONOTONE;
however, after 50 repeated imputations, the mean nRMSE reached
a plateau for most of the laboratory variables in the HV design.
However, in the HC design, the nRMSE error metric did not reach a
plateau for some variables even after 50 repeats, irrespective of the
imputation algorithms. The latter suggests that the uncertainty
brought by MI was larger but propagated slower on the most
informative cases when missingness was monotone. This observa-
tion corroborates that the monotone missingness in informative
cases is the worst type of missingness, which translates to a lack of
routine checkups or follow-up in at-risk patients.
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Fig. 3 This missingness (dummy variables) was highly associated with comorbidity. HbA1C (a) in GNSIS dataset and LDL cholesterol (b) in
HF dataset was one of the most valuable laboratory variables used in the prediction model for the outcome of interest in ischemic stroke and/
or heart failure. PCA was conducted by R “factoextra“ package. Dim represented the dimensions extracted from the comorbidity matrix using
prcomp function; The y-axis represented log-transformed p-value of the significance of the difference (absolute value) in principal component
values between observed and missing groups after Welch unpaired t-test.
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Fig. 4 Mean coverage rate (CR) across all imputation algorithms evaluated for GNSIS and HF datasets. The vertical bar represents 95%CI of
the corresponding mean imputed value for 50 holdouts. The horizontal line represents the mean coverage rate of 0.90. a/b represents CR for
50 holdout values (HV) or complete cases (HC), respectively, in GNSIS; c/d represents CR for 50 HV or HC, respectively, in HF.
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Our simulation results indicate that the cross-sectional PMM may
not be an optimal algorithm for a small dataset with a high
proportion of missing values when compared to multi-level
imputation (e.g., 2l.pan). The 2l.pan leverages both level 1 and 2
variables and allows switching regression imputation between level 1
and level 2 data28. In fact, in the HV simulation experiments, we
observed that the 2l.pan showed better CR than PMM. The PMM
algorithm was developed to provide a semi-parametric approach to
imputation for settings where the normal distribution is not an
appropriate assumption. Thus, PMM—as a mosaic form of donor-
based and regression-based algorithms—was compared with the
multi-level imputation. The uncertainty for missing values could be
underestimated by PMM, resulting in poor coverage with increased
variability of CR. This is because only a few similar observed cases
were available for some variables with a high-level of missingness.
However, the advantage of multi-level over cross-sectional

imputation was observed primarily in the GNSIS cohort. The lack
of improvement in the HF cohort was likely because no substantial
improvement in the percentage of subjects with at least one
measure after the event was observed (see Fig. 2h). The multi-level
imputation has limited ability to leverage post-event information
to make a better prediction of pre-event missing values.
When comparing monotone to FCS imputation with the Monte

Carlo iterative procedure, we always observed better performance
with FCS. We also compared the cross-sectional imputation (PMM) to
multi-level multivariate imputation such as 2l.pan (FCS-LMM) or 2 l.
norm (FCS-LMM-het), which was based on an assumption of
homogenous or heterogeneous within-group variances respec-
tively18,29. Our analysis showed that when the imputed data was
out of the normal range, higher variation may have increased the
within- and between -imputation variance but did not improve the

prediction accuracy. This leads to an important aspect in the utility of
laboratory measurements; in most realistic clinical settings, a
diagnosis is based on values that are outside of the normal range23.
Evaluating the performance gain when incorporating auxiliary

information from patient’s comorbidity data was done by co-
analyzing patient diagnosis patterns in conjunction with their
laboratory measurements. We introduced PCs derived from PCA of
comorbidity matrix to the multi-level univariate imputation
algorithms such as 2l.pan. Using this design strategy we were
able to add latent variables to the final prediction model30.
Including proper auxiliary variables mitigates the bias in

maximum likelihood estimates caused by MAR or MNAR mechan-
ism, particularly when an imputed variable and auxiliary variables
are nonlinearly related31. Our result from univariate imputation by
including PCs, as auxiliary (latent) variables, also reduced bias in
the estimates. However, including auxiliary variables in the
imputation may also increase the standard errors of the estimates
substantially when the sample size is small, and the proportion of
missing data is not trivial. Such an adverse effect may also occur
when including some auxiliary variables to make the MAR
assumption more plausible, especially when the auxiliary variables
are not normally distributed31. Finally, when the outcome variable
is the outcome of interest in the analytic model, this variable is
highly recommended to be included in the imputation model to
improve the performance in the analytic model32.
The strengths of this study lie in the followings: (1) Description

of the missing pattern and exploration of the mechanism of
missing in the laboratory variables of EHR database; (2) Simulation
of two missingness patterns recognized in this study—monotone
and arbitrary missingness; (3) Comparative assessment of well-
established commonly used cross-sectional and multi-level
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Fig. 5 Laboratory test, missingness pattern, and imputation algorithm dependent uncertainty propagation during 50 repeated multiple
imputation (MI) for holdouts using RMSE. The y-axis was labeled with mean(nRMSE) after the number of MI. This mean of normalized RMSE
in y-axis represents the error over the number of runs. The size of the triangle or round dot represents the standard error of RMSE over the
number of runs. “L” shaped or inverse “L” shaped distribution of the mean(nRMSE) after 50 runs of MI suggested this uncertainty reached a
plateau. However, for some variables (e.g., 13457-7 of LDL or 17856-6 of HgA1C) in HC, the uncertainty went upward but not reached a
statistical convergence.
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Increasing Missing Levela.

Laboratory Variables

GNSIS

Increasing Missing Levelb.

Laboratory Variables

HF

Fig. 6 Comparing the performance of selected imputation algorithms after 50 repeated multiple imputation for random holdout cases
(HC) or values (HV) using nRMSE in GNSIS and HF datasets. Levene’s test showed an equal variance of the nRMSE from two compared
imputation algorithms, e.g. 2LPAN-FCS and PMM-FCS. Shapiro-Wilk test showed the normality of the difference for each comparison. An
unpaired t-test was conducted to determine the mean difference of nRMSE between two compared imputation algorithms. Only the raw
p-value < 0.05/45 (~0.0011) for GNSIS (a) or < 0.05/38 (~0.0013) for HF (b) was considered as statistical significance, which survived the
Bonferroni correction for multiple testing. The curve for Pearson’s correlation coefficient of observed values between before and after index
date per variable was overlaid to the corresponding dot plot for normalized RMSE.
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imputation methods, integrated with two imputation procedures
(monotone or FCS); (4) Use of latent information extracted from
comorbidity matrix as auxiliary variables in the imputation model;
and (5) Evaluation of the generalizability of the findings by
analyzing two datasets with distinct disease cohorts from two
different healthcare systems. Furthermore, the phenotype defini-
tion for each of the conditions was carefully assessed and
validated in the previous publications33–36.
Since simulating the missingness pattern of laboratory variables in

EHR is challenging, the pattern of missingness and imputation
strategy used in this study may not apply directly to other diseases or
datasets. Furthermore, imputation of missingness was based on
using quantitative variables and may not translate to categorical
variables or derived/modified variables (ratio, converted values).
Given that our understanding of realistic missing patterns is still
limited, in this study only two simulated missingness scenarios were
evaluated and these patterns may not occur or fully represent the
pattern of missingness in realistic settings. Finally, multiple MI
methods including FCS, joint model (JM), EM-based algorithms, and
their extended forms, were also applied to longitudinal and clustered
data29,32. As our goal was to align ourselves with current standard
practices in EHR-mining, our study did not include all regression-
based algorithms, JM, or EM-based algorithms.
As future directions, we are exploring how the inclusion of the

auxiliary variables affects the bias and precision of the imputation
models. In this analysis, we are assessing the various parameters
such as the cohort sample size, number of imputations, missing
rate, number of iterations, as well as the correlation between
variables. The EHR dataset could also be nested hierarchically by
the healthcare center. Having a healthcare center as an additional
level of data clustering will be considered in the multi-level
imputation model, especially when data from different centers are
pooled together for analysis. Finally, our study is part of a larger
effort to improve risk stratification for heart failure and ischemic
stroke, using machine-learning applied to data from EHRs.

In conclusion, the pattern of missingness in EHR laboratory
variables was not random and was highly associated with patients’
comorbidity data. Multi-level imputation (2l.pan) showed smaller
nRMSE for most variables compared to cross-sectional methods.
MI with Markov Chain iterations such as FCS performed better
than the monotone procedure. In the case study of HbA1c,
univariate imputation using a multi-level model with FCS, which
leveraged comorbidity as latent variables in the imputation, had
superior performance compared to the same method without
these auxiliary variables.
Finally, the missing pattern and mechanism for a given dataset

should first be recognized. Whether the competition is favoring a
certain method or procedure has to be determined in the “real-
world” data with “real-world” missingness by considering recog-
nized and unrecognized missing pattern/mechanism, as well as
the plausible distribution of missing data. Our study provides
benchmarking and practice recommendations based on common
algorithms for imputing laboratory variables if these variables
follow similar missingness patterns.

METHODS
This study was approved by both Geisinger and Sutter Health Institutional
Review Board and a waiver of consent was granted because of using de-
identified EHR data. Ordered and resulted laboratory tests completed
within the index date ± 2 years for Sutter Health Heart Failure (HF) or index
date ± 3 years for “Geisinger NeuroScience Ischemic Stroke (GNSIS)” were
used for imputation, where the index date was defined as the first time the
disease of interest (i.e., ischemic stroke or heart failure) meet the diagnosis
criteria33–36. Only quantitative laboratory values were considered for
imputation. Similar to a moving time window and stepwise regression
procedure37,38, the last valid observation before and the first observation
after the index date were extracted from the corresponding time blocks.
Imputation of missing values in each laboratory variable was based on the
information of observed values from this and other laboratory variables.
We first assessed the missing pattern between variables, time blocks, or
cohorts. We studied two missing patterns by randomly holding-out 50
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Fig. 7 Over-imputation plot demonstrated the mean and standard error of imputed values for the observed 50 holdouts where imputed
values would lie if they were missing in the GNSIS dataset using HbA1c as an example. The lm fit line with 95% CI was superimposed on
the scatter plot. The Pearson’s correlation coefficient (R), as well as the significance of this correlation between 50 holdouts and imputed mean
values were also present. This R-value represented the optimal correlation coefficient, which could be reached by each MI algorithm under
multivariate or univariate setting. The kernel density plots at the margin of the scatter plot represented the corresponding distribution of
observed and imputed 50 holdouts. Upper panels represent multivariate missing imputation using PMM or 2LPAN for HV or HC; Lower panels
represent univariate missing imputation using 2LPAN with or without PCs derived from a comorbidity matrix as auxiliary variables.
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laboratory values (HV) and 50 complete patient records (HC). To mimic
Missing-completely-at-random (MCAR) or Missing-at-random (MAR) we
used the HV and to mimic monotone missing we used the HC simulation.
We selected commonly used error metrics, to assess the performance of
the algorithms. In a case study, we imputed hemoglobin A1c with and
without comorbidity-derived latent information to evaluate the utility of
auxiliary variables in a univariate imputation framework.

Data sources
Two distinct datasets were used: the GNSIS cohort33–35 and the Sutter
Health heart failure cohort (HF)36. All investigators in this study had no
control of missingness in EHR data collection.
The GNSIS database is composed of EHR data for patients with well-

defined ischemic stroke from September 2003 to May 201933,34, The ICD-9-
CM/ICD-10-CM diagnostic criteria for phenotypes were previously pub-
lished34,35. The comorbidity information based on ICD-9-CM or ICD-10-CM
diagnosis was extracted within index data ±3 years. Comorbidity was
defined as a qualified diagnosis associated with either two outpatient visits
or one inpatient visit. The entire laboratory data, based on Logical
Observation Identifiers Names and Codes (LOINC), for the cohort, were
extracted and included in this study.
The Sutter Health HF database includes incidence heart failure cases

identified from Sutter Health primary care population36. Longitudinal EHR
data were extracted on incidence cases diagnosed between January 1, 2010,
to December 31, 2017. Encounter-based laboratory results with the
corresponding LOINC identifiers within a 2-year window before or after the
index date were extracted. For the diagnosis domain, all ICD10 codes had
been converted to ICD9 codes first. ICD-9 codes from outpatient office visits or
phone visits were grouped using Clinical Classifications Software (CCS)
[https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp]. The CCS level 3 was
adopted to group 5379 ICD-9 codes into 363 unique CCS groups.
To minimize data sparsity, ICD and CCS codes were only used if they

were observed in at least 20% of the patients.

Recognition of missing pattern and mechanism
Missing values were defined as either not tested or tested but with values
outside of the three interquartile range (IQR). Analysis of missingness was
limited to laboratory variables (see Supplementary Table 1) where the
proportion of missingness was <75%39.
We created a fluxplot30 to capture the relationship between variables. In

particular, the fluxplot can facilitate the identification of the relationship of
missing and observed data between variables using influx and outflux
coefficients and the tradeoff between them. The influx coefficient (Ij) of a
variable quantifies how well the missing data is connected to the observed
data on other variables (see Eq. (1)); the outflux coefficient (Oj) of a variable
quantifies how well the observed data is connected to the missing data on
other variables17 (see Eq. (2)). In general, variables that are located closer to
the sub-diagonal tend to be better connected than those farther away.
The influx coefficient Ij is defined as30

Ij ¼
Pp

j

Pp
k

Pn
i rij 1� rij

� �
rikPp

k

Pn
i rik

(1)

The coefficient is equal to the number of variable pairs (Yj,Yk) with Yj
missing and Yk observed, divided by the total number of observed data
cells. R is an n by p matrix filled with 0 or 1 as a response indicator. Y and R
are denoted by yij and rij, respectively, where subject index i= 1, 2, …, n
and variable index j= 1, 2, …, p. If yij is observed, then ri j= 1, and if yij is
missing, then rij= 0. So did rik.
The outflux coefficient Oj is defined in an analogous way as30

Oj ¼
Pp

j

Pp
k

Pn
i rijð1� rikÞPp

k

Pn
i 1� rij

(2)

The quantity Oj is the number of variable pairs with Yj observed and Yk
missing, divided by the total number of incomplete data cells.
We explored the pattern of missingness by the Rubin40 classification—

Missing-completely-at-random(MCAR), Missing-at-random(MAR), and Missing-
not-at-random (MNAR). We used the margin plot (Supplementary Fig. 2) to
capture the missingness pattern between “before the index date” and “after
the index date” or between two laboratory variables.Ta
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Simulation of missingness
For holdout values (HV), the randomly selected 50 holdout values per
variable came solely from observed data, thus the data were MAR. The
probability of being missing was the same for all cases when the selection
of 50 holdouts was made by a random pick from a variable without
missing value. This variable was said to be MCAR. Thus, HV represented
MAR or MCAR, defined by Rubin40 and others30.
For holdout cases (HC), we held out entire laboratory values for 50 cases,

which were randomly selected from all complete cases. Under HC, we
maintained the sequence of the missing level across all variables and kept
the original connection between missingness in one variable and
observation in the other variable throughout the dataset except for
holdout cases. The simulation of missingness created using this procedure
reflected the theory of monotone missingness41, namely ordering one
laboratory test was dependent upon other tests, or missing in other
variables resulted in missing in one variable.

Imputation strategy
Monotone Multiple Imputation: Multiple imputation (MI) is featured by a
missing measure to be imputed multiple times. We utilized the latest
implementation of the monotone MI algorithm in MICE30,41 to impute each
missing value, where a missing pattern is said to be “monotone” if the
variables Yj (j= 1, 2, …, k) can be ordered such that if Yj is missing then all
variables Y−j with k > j are also missing.
The procedure for multivariate monotone imputation30

1. Create a short format of GNSIS or HF dataset and choose a single
level (PMM) or multilevel (2L.PAN) imputation models;

2. Sort from low to high for p incomplete variables (j= 1, 2, …, p)
according to the frequency of missingness, Y denotes the n by p
matrix containing the data values on p variables for all n units in the
sample; Yobs

j represents a vector of observed value for the j variable;
3. Draw temporary parameter ϕ1 ( _ϕ1) from a univariate conditional

density function, P(Yobs
1 | X), where X represents the completely

observed covariates such as TIME, SEX;
4. Impute temporary Y1 ( _Y1) based on P(Ymis

1 |X, _ϕ1);
5. Draw _ϕ2∼P(Yobs

2 | X, _Y1);
6. Impute _Y2 � P(Ymis

1 |X, _Y1, _ϕ2);
7. ⋮⋮;
8. Draw _ϕp∼P(Yobs

p |X, _Y1 , …, _Yp�1);
9. Impute _Yp � P(Ymis

p |X, _Y1 , …, _Yp�1, _ϕp);
10. Repeat steps 3–9 for m – 1 times to obtain m complete sets.
11. (optional) apply to the analysis model (LMM) and calculate estimates

(exponentiate) and variance.
12. (optional) Combine the results by Rubin’s rule to obtain mean

estimates (exponentiate), variance (including within-imputation
variance and between-imputation variance)

Note: this algorithm not only incorporates the uncertainty due to
deviations around the regression line (step 3) but also reflects the variation
of the regression line itself due to finite sampling (step 8).

Fully conditional specification. Fully conditional specification (FCS), also
known as chained equations and sequential regressions, is an iterative
Markov Chain method that can be used when the pattern of missing data
is arbitrary or a mixture of monotone and arbitrary. FCS draws missing
values iteratively from a specified set of conditional probabilistic
distributions, PðYj jX; Y�j ; R;ϕjÞ30, compared to monotone imputation with
a fixed sequence of MI. When applying this iterative procedure to update
the parameters (intercept, slope, and error) for a given number of iterations
(for instance, n= 500), one imputed complete set is generated. When the
entire process of imputation has been repeated m – 1 times, m imputed
complete sets are reached. Therefore, MI can help “fill in” the missing data
with plausible values by adding variability to the analyses— facilitating
parameter estimation for each incomplete variable.
The procedure for multivariate FCS imputation30

1. Create a short format of GNSIS or HF dataset and choose a single
level (PMM) or multilevel (2L.PAN) imputation model;

2. Specify an imputation model P(Ymis
j | Yobs

j ; Y�j , R, ϕj) for Yj with
variable index j= 1, 2, …, p without sorting the sequence of
variables by frequency of missingness, Y−j represents other variables
but not j variable; R is a n by p matrix filled with 0 or 1 as response
indicator. The elements of Y and R are denoted by yij and rij,
respectively, where subject index i= 1, 2, …, n and variable index

j= 1, 2, …, p. If yij is observed, then rij= 1, and if yij is missing, then
rij= 0. ϕj is unknown regression model parameters for j variable (see
Schafer et al. for PAN model parameter)42; t represents t number of
MCMC iterations.

3. For each j, fill in starting imputations Y �0
j by random draws from Yobs

j
and fill in starting value for ϕ0 by Gibbs sampler in MCMC
procedure.

4. For t← 1 to N. N is 500 burn-in iterations
5. Repeat
6. For j← 1 to p. p is 45 or 38 for GNSIS or HF respectively.
7. Define _Yt

�j = ( _Yt
1, …, _Yt

j�1, _Y
t�1
jþ1 , …, _Yt�1

p ) as the currently complete
data expect Yj;

8. Draw _ϕt
j ~ P(ϕt

j |Y
obs
j , _Yt

�j , R); This is a step to get a new regression
model parameter.

9. Draw imputations _Yt
j ~ P(Ymiss

j |Yobs
j , _Yt

�j , R, _ϕ
t
j ). This is imputation step

10. End repeat j
11. End repeat t
12. Repeat steps 3–9 for m – 1 times to obtain m complete sets.
13. (optional) apply to analysis model (linear mixed-effects regression

model) and calculate estimates (exponentiate) and variance.
14. (optional) Combine the results by Rubin’s rule to obtain mean

estimates (exponentiate), variance (including within-imputation
variance and between-imputation variance)

We chose predictive mean matching (PMM) as the benchmark method
for the cross-sectional imputation of continuous variables because it is a
hot-deck method, where values are imputed using existing values from the
complete cases matched with respect to some metric15. In this study, we
used Type 1 matching with a Bayesian β and a stochastic matching
distance30. For each missing value, PMM finds a set of observed values
(e.g., five donors) from all complete cases that have predicted values
closest to the predicted value for the missing entry and considers the
donor with the closest predicted mean as the imputed value for that
missing entry. Therefore, imputed values from PMM are restricted to the
observed values. For this PMM-FCS approach, we also evaluated the mean
and standard deviation for each laboratory value after each round of
iteration (n= 10 for GNSIS; n= 15 for HF due to a higher level of
missingness) to ensure statistical convergence. However, the Monte Carlo
iterative procedure does not apply to monotone imputation. For FCS, the
default iteration of 500 was selected. We utilized the latest implementation
of the PMM-FCS and PMM-MONOTONE algorithms in MICE30,41.

Multi-level multivariate missing imputation. EHR data can be regarded as
multi-level time-series data. We considered the repeated measure at the
individual level as level one data (see below “Level one model” in Eq. (3)).
The covariates such as TIME (i.e., before or after the index date, which was
dummy coded) can be treated either as level one (Level one model) or
both level one and level two (i.e., a random intercept in Eq. (4) and a
random slope in Eq. (5)).
We used the MICE 2l.pan42 or 2l.norm43 for the imputation based on an

assumption of homogenous or heterogeneous within-group (i.e., patient
ID) variances in level one data, respectively43. We defined the cluster
variable (C) as “ID”. We compared the two-level model to the cross-
sectional PMM model to determine if there is any significant improvement
in the prediction of missingness with this mixed model.
Level one model:

LABmiss
jc ¼ β0c þ β1cTIME þ βjcLAB

obs
jc þ β�jcLAB�jc ¼ þ εic;

εic � N 0; δ2ε
� �

; LAB 2 LABj ; j ¼ 1; 2; ¼ ; p
� � (3)

Level two model with a random intercept:

β0c ¼ α00 þ u0c;

u0c � N 0; δ2u0

� � (4)

Level two model with a random intercept and a random slope for TIME
(optional):

β0c ¼ α00 þ α01TIME þ u0c;

u0c � N 0; δ2u0

� � (5)

where, εic is a value drawn from a Normal random vector with mean= 0,
variance= δ2ε for the imputed variable j in each cluster (C); β0c represents
the constant value of intercept with additional random error for a random
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intercept model. β0c= α00+ u0c represents a constant intercept modified
by a random error, u0c, which is a value drawn from a Normal random
vector with mean= 0, variance= δ2u0 for a random intercept in each cluster
(C); and β-jcLAB-jc represents a group of additive terms derived from
variables but not the j variable in each cluster (C) in a stochastic linear
regression model. Some variables, e.g., TIME, can have both fixed (β1c) as
well as a random effect (α01) in the multi-level imputation model.
Thus, β0c represents a fixed intercept with random error plus a random
slope for TIME.

Multi-level univariate missing imputation. The multi-level univariate
imputation was considered as an alternative approach only when one
continuous variable was assumed to have missing values (univariate
missing data). The comorbidity information (in the form of CCS for HF
cohort or ICD for the GNSIS cohort) was used in the principal component
analysis (PCA). Based on the scree plot, the major five PCs, which explained
more than 60% of the variance, were selected as auxiliary variables for the
univariate imputation.
We applied multi-level univariate imputation to each missing lab value

at a time, along with the PCs extracted from the comorbidity matrix.
Similar to the above multivariate imputation, this method can have a level
one model (Eq. (6)) and level two model (a random intercept in Eq. (7) and
a random slope in Eq. (8)).
Level one model for incomplete quantitative variables:

LABmiss
jc ¼ β0c þ βjcLAB

obs
jc þ β1cTIME þ β2cPC1

þβ3cPC2þ β4cPC3þ β5cPC4þ β6cPC5þ εic;

εic � N 0; δ2ε
� �

; LAB 2 LABj ; j ¼ 1; 2; ¼ ; p
� � (6)

Level two model with a random intercept:

β0c ¼ α00 þ u0c;

u0c � N 0; δ2u0

� � (7)

Level two model with a random intercept and a random slope for TIME
(optional):

B0c ¼ α00 þ α01TIME þ u0c;

u0c � N 0; δ2u0

� � (8)

Where, all βs are estimates based on complete cases; εjc is determined by
the variance of the residual ε, which can be a random draw from the set of
sample residuals for the complete cases with mean= 0, variance= δ2ε for
the imputed variable j in each cluster (C); β0c represents the constant value
of intercept with additional random error for a random intercept model.
α00+ u0c represents a constant intercept modified by a random error, u0c,
which is a value drawn from a Normal random vector with mean= 0,
variance= δ2u0 for a random intercept in each cluster (C); Some variables,
e.g., TIME can have both fixed (β1c) as well as random effect (α01) in the
multi-level imputation model. Thus, β0c represents fixed intercept with
random error plus TIME with a random slope.

A case of hemoglobin A1c
HbA1C has been included as one of the major predictive variables in many
diagnostic and prognostic models for cardiometabolic diseases and related
complications. High-level of missingness in HbA1C in EHR limits its
application in the prediction model due to the sample size. The inclusion
of imputed HbA1C in the prediction model for the post-ischemic stroke
mortality has shown to be important in our previous study using the GNSIS
dataset44. Missing hemoglobin A1c (HbA1c) was imputed by the Multi-level
multivariate imputation approach as well as the multi-level univariate
imputation approach where the comorbidities were taken as latent
variables. HbA1c has been connected to other metabolic diseases
(comorbidities)45 and could be an ideal laboratory variable for univariate
imputation using PCs from the comorbidity matrix as latent variables.

Model evaluation
In both HV and HC experiments, we heldout 50 observed values for each
laboratory variable before the index date and calculate the errors between
observed and predicted values. We repeated each process up to 50 times and
calculated the mean, standard error (SE), and 95% confidence interval of
predicted values for each holdout and calculated the coverage rate (CR) and

average width (AW). We used normalized RMSE (nRMSE) to ensure this error
metric was on the same scale across different laboratory variables. The
stability of the mean and SE of nRMSE, which reflected the propagation of
uncertainty in those imputed holdouts after a sequential number of MI, were
also assessed. Levene’s test was utilized to determine an equal variance of the
nRMSE from two compared imputation algorithms, e.g., 2l.pan-FCS and PMM-
FCS. Shapiro–Wilk test was applied for the normality test of the difference of
nRMSE for each comparison. The nRMSEs derived from the different
algorithms were compared using an unpaired t-test with Bonferroni correction
for multiple tests. The algorithm that resulted in the smallest RMSE was the
optimal approach for that laboratory variable.
The evaluation metrics include the following measures:

1. Root mean square error (RMSE)—RMSE penalizes the larger errors
and is sensitive to extreme values. We normalized RMSE by standard
deviation, δ (See Eq. (9)).

nRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Ŷi � Yi
� �2
n

s
δ�1 (9)

Note: Yi represents holdout values and Ŷi is the corresponding
imputed value

2. Coverage rate (CR)—CR represents the proportion of confidence
intervals that contain the imputed value. We calculated the mean of
CR for each subject after 50 repeated imputations.

3. Average width (AW)—AW represents the average width of the
confidence intervals and is an indicator of statistical efficiency.
We calculated the mean AW for each subject after 50 repeated
imputations.

Over-imputation scatter plots for each laboratory variable are generated
as graphical diagnostic tools46 to assess the suitability of different
imputation algorithms.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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