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Beyond performance metrics: modeling outcomes and cost for
clinical machine learning

Advances in medical machine learning are expected to help personalize care, improve outcomes, and reduce wasteful spending. In
quantifying potential benefits, it is important to account for constraints arising from clinical workflows. Practice variation is known
to influence the accuracy and generalizability of predictive models, but its effects on cost-effectiveness and utilization are less well-
described. A simulation-based approach by Mišić and colleagues goes beyond simple performance metrics to evaluate how process
variables may influence the impact and financial feasibility of clinical prediction algorithms.
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Advances in medical machine learning are expected to help
personalize care, improve outcomes, and reduce wasteful
spending. In quantifying potential benefits, it is important to
account for constraints arising from clinical workflows. Practice
variation is known to influence the accuracy and general-
izability of predictive models1,2, but its effects on cost-
effectiveness and utilization are less well-described. A
simulation-based approach by Mišić and colleagues3 goes
beyond simple performance metrics to evaluate how process
variables may influence the impact and financial feasibility of
clinical prediction algorithms.
Mišić et al.’s study builds on previous work that developed

equations for predicting unplanned readmissions4. Readmission
rate is a publicly reported metric that commands significant
attention in quality improvement and cost management initia-
tives. As part of these efforts, prediction equations are used to
stratify readmission risk and allocate limited interventions to the
patients who need it most. Still, many important questions—how
many interventions are applied, how many readmissions are
prevented, and how much spending is averted—are often
unclear.
Mišić and colleagues provide answers by simulating patient

flow for a hypothetical clinical workflow. Under their model, each
patient is assigned a risk score based on four separate algorithms
(LACE, HOSPITAL, and two locally-designed equations) for each
day a prediction is available. On each day that a provider is
available, the eight highest-risk patients are “treated” with a
hypothetical intervention that has a 10% chance of preventing
readmission. The authors applied this model to a dataset of
19,331 post-operative surgical patients from the UCLA Ronald
Reagan Medical Center, including 969 (5.0%) who were later
readmitted. Because the described workflow is speculative, it
cannot be validated with data. Instead, the design and
parameters were chosen to reflect typical staff and time
constraints.
Using these simulation conditions, Mišić and colleagues

compute utilization and volume metrics for the Ronald Reagan
Medical Center, including interventions conducted, readmissions
anticipated, and expected readmissions prevented. To compute
net savings, the authors added the highest-cost ICD-10 codes for
each “prevented” readmission and subtracted expected labor
costs. By toggling simulation parameters, the authors also show
how differences in accuracy, prediction timing, and provider

availability translate into differences in outcomes. For example,
algorithms that rely on length of stay are unable to assign risk
scores before the day of discharge, potentially constraining
opportunities to intervene. The authors also find several
parameter settings where costs outweigh savings, consistent
with earlier studies showing that interventions for preventing
readmission are not always cost-effective5.
The simulation approach relies on a broad set of simplifying

assumptions and therefore has several limitations. In particular,
the assumption of fixed, limited availability (e.g., one nurse
practitioner providing readmission interventions for a 520-bed
hospital) may be overly stringent, or may overlook the need for
additional funding to support effective programs. Assumptions
for intervention timing may also be inexact, as strategies for
preventing hospital readmission increasingly comprise multiple
components administered before, during, and after discharge6.
Last, the evaluated algorithms do not account for many important
drivers of readmissions, such as language and cultural barriers,
mental illness, and poverty. Allocating interventions based on
clinical risk alone may not represent the most common or
effective strategy for reducing rehospitalization. Together, these
considerations indicate the need to validate simulation results
against real-world data and recalibrate assumptions where
necessary. Beyond validation, future work should extend the
model to provide estimates of uncertainty and evaluate health
and equity-based outcomes.
Ultimately, the proposed simulation model provides estimates

for utilization and financial feasibility in the setting of a specific
clinical workflow. Preventing rehospitalization is only one
application; others include prevention of sepsis7 or acute kidney
injury8. While not a substitute for randomized trials9, simulation
modeling can provide initial answers and insights for all
stakeholders involved, including researchers developing predic-
tion algorithms, administrators optimizing clinical workflows,
executives evaluating business models, and regulators seeking
to understand performance in context.
For decades, medical practice has proved impervious to

algorithmic reinvention10. One contributor is imperfect commu-
nication of a clear value proposition centered on outcomes, costs,
and metrics that matter. Performance metrics like sensitivity and
specificity are only part of the puzzle. A simulated modeling
approach may help contextualize and complement traditional
accuracy metrics to strengthen the case for new prediction
models.
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