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Quantitative disease risk scores from EHR with applications
to clinical risk stratification and genetic studies
Danqing Xu1, Chen Wang 1,2,12, Atlas Khan 2,12, Ning Shang 2, Zihuai He3,4, Adam Gordon5, Iftikhar J. Kullo 6, Shawn Murphy 7,8,
Yizhao Ni9, Wei-Qi Wei10, Ali Gharavi 2, Krzysztof Kiryluk2, Chunhua Weng 11,13 and Iuliana Ionita-Laza 1,13✉

Labeling clinical data from electronic health records (EHR) in health systems requires extensive knowledge of human expert, and
painstaking review by clinicians. Furthermore, existing phenotyping algorithms are not uniformly applied across large datasets and
can suffer from inconsistencies in case definitions across different algorithms. We describe here quantitative disease risk scores
based on almost unsupervised methods that require minimal input from clinicians, can be applied to large datasets, and alleviate
some of the main weaknesses of existing phenotyping algorithms. We show applications to phenotypic data on approximately
100,000 individuals in eMERGE, and focus on several complex diseases, including Chronic Kidney Disease, Coronary Artery Disease,
Type 2 Diabetes, Heart Failure, and a few others. We demonstrate that relative to existing approaches, the proposed methods have
higher prediction accuracy, can better identify phenotypic features relevant to the disease under consideration, can perform better
at clinical risk stratification, and can identify undiagnosed cases based on phenotypic features available in the EHR. Using genetic
data from the eMERGE-seq panel that includes sequencing data for 109 genes on 21,363 individuals from multiple ethnicities, we
also show how the new quantitative disease risk scores help improve the power of genetic association studies relative to the
standard use of disease phenotypes. The results demonstrate the effectiveness of quantitative disease risk scores derived from rich
phenotypic EHR databases to provide a more meaningful characterization of clinical risk for diseases of interest beyond the
prevalent binary (case-control) classification.
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INTRODUCTION
The increasing availability of rich phenotype data from electronic
health records (EHR), such as the multicenter Electronic Medical
Records and Genomics (eMERGE) network1,2, BioVU3 from
Vanderbilt University, the Geisinger Health System’s DiscovEHR
in Pennsylvania4, the Harvard University/Partners Healthcare
system i2b2 effort5, the United Kingdom Biobank (UKBB)6, and
their linking to biobanks of human germline DNA samples
provides great opportunities for genomic-based research7–9.
However, inferring phenotypes from International Classification
of Diseases (ICD) codes is not trivial, and many algorithms have
already been proposed10. Although these algorithms can generate
high-quality case/control labels for specific diseases, a main
limitation is that they require extensive knowledge and involve-
ment of human experts, are time-consuming, are not system-
atically applied, and can lead to inconsistencies of case definition
for different algorithms11. Furthermore, they tend to perpetuate
the view of common diseases as discrete entities rather than
residing on a continuum. Indeed, there is a spectrum of any
specific complex disease and whether an individual is labeled as a
case can be arbitrary. We consider here an alternative view,
namely that common diseases are the extreme tails of quantita-
tive traits, and all of us are susceptible to specific diseases to a
greater or lesser extent. Thinking quantitatively about common

diseases could prove beneficial for genomic studies of phenotypes
derived from EHR12,13.
Therefore an alternative approach to expert derived phenotype

labels is to derive phenotypic risk scores that quantify the
propensity of an individual to develop a disease. Recently, a
method to compute phenotypic risk scores (PheRS) has been
proposed in the context of rare Mendelian phenotypes14. This
method is conceptually simple, and the authors have showed that
it can be effective in identifying individuals with undiagnosed
Mendelian phenotypes, and can pinpoint potentially relevant
pathogenic mutations. However, the main disadvantage is that it
requires a careful selection of phenotypic features for good
performance, which limits its scalability and appeal, especially in
applications to more complex diseases. Inspired by this approach,
we propose to investigate almost unsupervised methods for
phenotype risk prediction for more common diseases, that need
minimal input from clinicians and can incorporate not only binary
phenotypic features but also quantitative measurements such as
laboratory values. In this paper, we have two main objectives: (1)
derive quantitative disease risk scores for a given disease, and (2)
integrate these newly derived continuous phenotypes with
targeted sequencing data in eMERGE-seq to perform genetic
association tests. As with the PheRS for Mendelian phenotypes, we
demonstrate that the proposed quantitative disease risk scores are
effective in pinpointing undiagnosed cases based on the
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phenotypic features in the EHR, and more generally in clinical risk
stratification, and help improve the power of genetic association
studies. Although we focus our applications on six complex traits
in this paper, our methods are general and can be employed for
clinical risk stratification and genetic association studies for any
common disease of interest with minimal involvement of clinical
expertize.
The score we propose can be viewed as a generalization of the

simple PheRS score. Specifically, we develop a quantitative disease
risk score as a weighted linear combination of multiple phenotypic
features, these include phecodes, but can also include laboratory
values, other clinical covariates, as well as natural language
processing (NLP) features extracted from clinical notes when
available. Our proposed approach is based on a linear combina-
tion of multiple principal components (LPC) of the phenotypic
feature matrix. More details are given in the “Methods” section.
We compare its performance with that of the previously proposed
Phenotype Risk Score (PheRS), which combines binary phecodes
in an individual14, with phecodes’ weights based on the inverse
prevalence of the phecode in a given population. We also include
comparisons with PheNorm, a recent phenotyping algorithm that
does not require expert-labeled individuals for training15.

RESULTS
Description of datasets and phenotypes
We focus here on the data from the eMERGE Network, containing
102,597 subjects, each with records in terms of ICD-9/ICD-10
codes, which the World Health Organization established to map
health conditions to designated codes. In this paper we make use
of phecodes, hierarchical groupings of ICD-9/ICD-10 codes,
originally developed for phenome-wide association studies
(PheWAS)16. The current version of phecodes (Version 1.2) has
1,866 phecodes, and 102,597 subjects in the eMERGE network
have phecodes available. In addition to rich phenotypic data,
21,363 individuals have sequencing data in 109 genes chosen as
part of the eMERGE specific sequencing platform17.
We describe here the datasets we used for training and testing

purposes. Although we do not use a case-control label in the
training, our approaches need to be trained on datasets enriched
in cases for the disease under consideration, although as we
explain later, only an approximate definition of case is required.
That is why we refer to the proposed methods as almost
unsupervised.

The Chronic Kidney Disease (CKD) case-control cohort was
constructed from 98,486 subjects with available kidney function
data excluding 4,111 patients with end-stage renal disease (ESRD).
We considered 1,817 non-zero prevalence phecodes, which are
divided into 18 categories (Supplementary Table 1). We took
advantage of a CKD phenotyping algorithm recently developed
within eMERGE to diagnose and place individuals on a CKD
staging grid of albuminuria by estimated glomerular filtration rate
(eGFR)18. Using this algorithm, the individuals were classified as
having no CKD (controls) or having CKD of various severity,
classified as G1, G2, G3a, G3b, and G4 stage. We divided the case-
control dataset in Table 1 into two parts, and used 50% of the
cases and 50% of controls for training purposes. We first use the
entire set of phecodes to build the quantitative disease risk scores,
without any pre-selection based on the disease under considera-
tion. We compare performance with the scenario when phecodes
are pre-selected based on their potential relevance to the disease
of interest. Note that the selection of phecodes does not require
expert knowledge, and highly automated approaches can be used
for this purpose. We discuss the pre-selection of phecodes in more
detail in the next section.
For consistency, we focused on the same set of 98,486 subjects

as above in the analyses of additional phenotypes, including
Coronary Artery Disease (CAD), Type 2 Diabetes (T2D), Heart
Failure (HF), Dementia, and Gastroesophageal Reflux Disease
(GERD). CAD case definition was based on a composite of
myocardial infarction19. Myocardial infarction was based on self-
report or hospital admission diagnosis. This included individuals
with ICD-9 codes of 410.X, 411.0, 412.X, or 429.79, or ICD-10 codes
of I21.X, I22.X, I23.X, I24.1, or I25.2 in hospitalization records. The
case/control definitions of T2D, HF, Dementia, and GERD are based
on the validated algorithms available at the Phenotype Knowl-
edgeBase (PheKB)20–23. We used 50% of the cases and an equal
number of controls for training, and the rest of the cases and
controls as test set for performance evaluation. The number of
cases and controls for each phenotype are listed in Table 1. Those
individuals who are neither case nor control for a given phenotype
are treated as having unknown status.

Pre-selection of phecodes. Although our quantitative disease risk
scores can be based on all available phecodes, it is of interest to
compare their performance to the situation when only a pre-
selected set of phecodes that we deem possibly relevant to the
disease under consideration are included in the computation of
the scores. The relevance of a phecode can be determined based
on clinical expert knowledge, but this is not necessary and highly
automated approaches such as associations between phecodes
and polygenic risk scores (PRS) for diseases of interest can be
employed. Only for the purposes of validation and assessing
predictive performance, we have excluded the case defining
phecodes in Supplementary Table 2 from the computations (this is
valid also for the scenario when all phecodes are being used as
above), except for PheNorm which uses the case defining
phecodes in the training (see “Methods” section for details). For
CKD, we included 104 CKD phecodes (manually selected by
experts), 93 CAD phecodes (among the ‘circulatory system’
category, those with p-values < 10−5 in logistic regression of each
phecode against CAD PRS), 132 T2D phecodes (manually selected
by experts among the significant phecodes with p-values < 10−5

in logistic regression of each phecode against T2D PRS), 90 HF
phecodes (CAD feature phecodes with HF case defining phecodes
removed), 143 Dementia phecodes (from the ‘mental disorder’
and ‘neurological’ categories) and 162 GERD phecodes (from the
‘digestive’ category). More details on the PRS calculation for the
individuals in eMERGE are in the “Methods” section.
The selection of ‘relevant’ phecodes as described above is

scalable to many common diseases given the general availability
of genetic (e.g., GWAS) data for many such phenotypes.

Table 1. Number of individuals (cases vs. controls) in training and test
datasets.

Disease #phecodes Training Testing

Control Case Control Case

CKD 104 7,334 17,897 7,334 17,898

CAD 93 5,479 5,479 21,916 5,479

T2D 132 3,767 3,767 9,960 3,768

HF 90 1,724 1,724 10,806 1,724

Dementia 143 879 879 7,570 879

GERD 162 3,233 3,233 5,918 3,233

CKD cases G1 G2 G3a G3b G4

2,370 22,204 6,612 3,332 1,277

The number of cases at different CKD stages are also reported. The
#phecodes is the number of pre-selected phecodes used for deriving the
quantitative disease risk scores for validation purposes (excludes the case
defining phecodes).
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These existing GWAS datasets can serve as the discovery datasets
for building the PRS. Then, PRS can be computed for individuals in
large biobanks such as the UK biobank24, and the ‘relevant’
phecodes for a disease of interest can be determined based on
the association between such PRS and individual phecodes.
Therefore, pre-selection of phecodes using associations with PRS
is possible without the need to have GWAS data for the individuals
in the EHR under consideration. Nonetheless, we also provide the
option to compute the quantitative disease risk scores based on
all phecodes.

LPC has improved prediction accuracy and robustness relative
to PheRS and PheNorm
We trained the different approaches, including PheRS, PheNorm,
and LPC, on the training datasets as explained before using the
same phenotypic features for the three methods (with the

difference that PheNorm uses the case defining phecodes in the
training, whereas LPC and PheRS do not), and then computed the
quantitative disease risk scores for the individuals in the test
datasets. The weights (prevalences) for the PheRS for each
phenotype were estimated based on the controls in the training
datasets. For the proposed LPC approach with all phecodes, the
Tracy-Widom test suggested 169, 148, 131, 112, 99, and 145 sig-
nificant eigenvalues (PCs) of the covariance matrix of feature
phecodes for CKD, CAD, T2D, HF, Dementia, and GERD, respec-
tively. The number of PCs reduces to 9, 12, 14, 11, 8, and 17, with
respective pre-selected phecodes for each studied phenotype.
Note that the case-control labels for the individuals in the training
datasets were only used in order to select the signs for the PCs in
the linear combination approach, LPC (since the signs of the PCs
are arbitrary). As we explain later, the choice of training set based
on the gold/silver standard labels is not necessary, and weakly

Fig. 1 ROC curves cases vs. controls for six phenotypes. ROC curves of six quantitative disease risk scores along with their AUROCs for a CKD
(cases including G1, G2, G3a/b, and G4 stages), b CAD, c T2D, d HF, e Dementia, and f GERD. Quantitative disease risk scores are derived based
on all phecodes (PheRS, LPC, and PheNorm), or pre-selected feature phecodes (PheRS.SEL, LPC.SEL, and PheNorm.SEL).
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defined (soft) labels (e.g., based on presence of eGFR slope
measurement for CKD, or a phecode of the target phenotype) are
sufficient for training.
We compared PheRS, PheNorm, and LPC scores using either all

phecodes or the pre-selected phecodes in terms of area under the
receiver operating characteristic curve (AUROC) and the area under
the precision-recall curve (AUPRC) in the test datasets. Note that the
labels used in the performance evaluation are derived using
algorithms available in PheKB rather than gold-standard labels from
chart review. We acknowledge this limitation to the results we
present due to the current limited availability of such gold-standard
labels for the diseases we considered. We observed that LPC with all
phecodes has the largest AUROC for CKD, CAD, Dementia and GERD,
and the second largest for T2D and HF compared with PheRS and

PheNorm: 0.813 vs. 0.718 vs. 0.523 for CKD, 0.876 vs. 0.784 vs. 0.817
for CAD, 0.688 vs. 0.634 vs. 0.776 for T2D, 0.872 vs. 0.745 vs. 0.937 for
HF, 0.765 vs. 0.659 vs. 0.762 for Dementia, and 0.844 vs. 0.813 vs.
0.805 for GERD (Fig. 1). Although PheNorm seems to perform better
for T2D and HF, it is important to note that PheNorm uses the case
defining phecodes in the training stage whereas they are not
included in the LPC and PheRS calculations for these prediction
accuracy assessments. LPC also has the largest AUPRC for CKD, CAD,
and GERD (Supplementary Fig. 1). LPC with pre-selected phecodes
exhibits the largest AUROC for all phenotypes except for HF when
compared with PheRS and PheNorm: 0.779 vs. 0.772 vs. 0.522 for
CKD, 0.927 vs. 0.917 vs. 0.702 for CAD, 0.764 vs. 0.749 vs. 0.760 for
T2D, 0.922 vs. 0.904 vs. 0.930 for HF, 0.779 vs. 0.688 vs. 0.715 for
Dementia, and 0.809 vs. 0.815 vs. 0.801 for GERD (Fig. 1). Similar

Fig. 2 Quantitative disease risk scores vs. CKD G-staging. Boxplots of quantitative disease risk scores a PheRS, b PheRS.SEL, c LPC, d LPC.SEL,
e PheNorm, and f PheNorm.SEL. Quantitative disease risk scores are derived based on all phecodes (PheRS, LPC, PheNorm), or 110 pre-
selected CKD feature phecodes (PheRS.SEL, LPC.SEL, and PheNorm.SEL). The center line, lower and upper bounds of the box represent the
median, first quartile (Q1, or 25th percentile), and third quartile (Q3, or 75th percentile) of the data, respectively. The whisker is drawn up
(down) to the largest (smallest) observed point from the data that falls within 1.5 times the interquartile range (= Q3− Q1) above (below) the
Q3 (Q1).
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results were obtained when comparing controls with cases at
different CKD G stages (Supplementary Figs. 2 and 3). Note that the
AUROC values are much higher when contrasting controls with
more advanced stages of CKD (G3b: 0.903 and G4: 0.908 for LPC
with all other phecodes). Overall, the proposed LPC score is fairly
robust to the inclusion of noisy phecodes, while PheRS can have a
substantial loss in accuracy when including all phecodes. For
PheNorm, pre-selecting phecodes does not in general result in
performance improvement.
We observe that PheNorm has poor performance for CKD

relative to other phenotypes. PheNorm score derivation relies on
the count of case defining phecodes (see details in “Methods”
section), so its performance depends on the correlation between
the counts of case defining phecodes and PheKB derived labels.
We notice high correlations between the count of case defining
phecodes and case/control labels for CAD, T2D, HF, Dementia, and
GERD (Spearman ρ= 0.823, 0.826, 0.873, 0.545, and 0.899,
respectively), while the correlation for CKD is only 0.272. This is
probably due to the CKD algorithm being primarily based on lab
test results. The denoising step of PheNorm regresses the
normalized count of case defining phecodes on a randomly
corrupted version of the features including the response variable
itself and all other predictive features, with the intention to utilize
the underlying association among all the features to recover the
lost information of the response variable due to the random
corruption. The pre-selected or all other phecodes that are
included as additional features might only provide limited
additional information of the presence of CKD in this denoising
step, hence PheNorm may need to leverage information from
features other than phecodes to better predict the CKD case/
control status.

LPC improves clinical risk stratification relative to PheRS and
PheNorm
The LPC risk score correlates very well with the CKD staging (Fig. 2),
providing support to the use of LPC as a measure of disease
severity (note that the distributions of risk scores for CKD Control
and G1 stages are similar since G1 is defined as individuals who
have normal renal function but have other abnormality that makes
them classified as CKD). LPC shows the strongest correlation with
the CKD staging compared with PheRS and PheNorm; specifically,
LPC with all phecodes has the largest Spearman’s correlation
coefficient ρ compared with PheRS and PheNorm, ρ= 0.52 (p ~ 0)
vs. ρ= 0.35 (p ~ 0) vs. 0.11(p= 1.92E−66), respectively. When
restricting to pre-selected phecodes, the correlation for PheRS
becomes comparable to that for LPC (PheRS ρ= 0.5 (p ~ 0) vs. LPC
ρ= 0.53 (p ~ 0)).
Furthermore, we investigated the prevalence of cases in the test

set among individuals at different percentiles of LPC risk score.
The proportion of cases increases among the individuals with
higher LPC scores, as expected (Fig. 3 and Supplementary Fig. 4).
We note that the prevalence of Dementia cases among individuals
with higher LPC score for Dementia is lower (29.8% ~ 44.7%) than
for other diseases (CKD: 98.8% ~ 99.6%, CAD: 74.8% ~ 89.1%, T2D:
54.0% ~ 84.0%, HF: 66.4% ~ 89.7%, GERD: 92.4% ~ 100%), which
may suggest that Dementia is a more difficult disease to diagnose
than other diseases. The prevalence of cases among individuals
with high LPC scores based on pre-selected phecodes has an
overall similar or higher range compared to LPC (CKD: 97.6% ~
100%, CAD: 80.0% ~ 96.4%, T2D: 80.3% ~ 98.6%, HF: 84.8% ~
93.7%, Dementia: 52.4% ~ 71.8%, GERD: 87.0% ~ 97.8%). The
PheRS and PheNorm show worse performance, with lower
prevalences of cases among individuals with high PheRS/
PheNorm scores relative to LPC, except for T2D and Dementia
with high PheNorm scores (CKD: 92.1% ~ 97.6%/71.5% ~ 97.6%,

Fig. 3 Distribution of final LPC scores for six phenotypes in the test set. LPC risk scores are derived based on all phecodes. Estimated
density and distribution of LPC risk scores cases vs. controls for a CKD (cases including G1, G2, G3a/b, and G4 stages), b CAD, c T2D, d HF, e
Dementia, and f GERD. For each phenotype: left, distribution of LPC risk scores in the test set. Middle, LPC risk score percentiles among cases
vs. controls. Right, case prevalence in 60 bins according to the percentiles of LPC risk scores. The center line, lower and upper bounds of the
box represent the median, first quartile (Q1, or 25th percentile), and third quartile (Q3, or 75th percentile) of the data, respectively. The whisker
is drawn up (down) to the largest (smallest) observed point from the data that falls within 1.5 times the interquartile range (=Q3− Q1) above
(below) the Q3 (Q1).
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CAD: 51.8% ~ 72.2%/55.8% ~ 86.9%, T2D: 46.0% ~ 60.1%/94.2% ~
99.3%, HF: 40.8% ~ 59.5%/85.6% ~ 99.2%, Dementia: 10.7% ~
24.7%/34.1% ~ 61.2%, GERD: 81.5% ~ 97.8%/91.3% ~ 97.8%).
Restricting phenotypic features to pre-selected phecodes results
in substantially higher prevalence of cases for high PheRS (CKD:
98.6% ~ 100%, CAD: 83.6% ~ 94.5%, T2D: 68.6% ~ 98.5%, HF:
73.8% ~ 91.3%, Dementia: 29.4% ~ 36.5%, GERD: 83.7% ~ 95.7%),
but small improvement for high PheNorm (CKD: 74.6% ~ 76.7%,
CAD: 58.3% ~ 89.4%, T2D: 90.5% ~ 99.3%, HF: 79.2% ~ 100%,
Dementia: 36.5% ~ 55.2%, GERD: 92.4% ~ 96.7%) (Supplementary
Figs. 5–8).
We have repeated the analyses above by considering a less

stringent control definition, namely including in addition to
controls defined by the algorithm also those with unknown
status. For CKD, we have noticed an interesting pattern. For the
most extreme values of the LPC quantitative disease risk scores,
we noticed a sudden decrease in prevalence, suggesting that
there are individuals with high quantitative disease risk scores that
have unknown case status (Fig. 4). Similar results are obtained
when using the other scores (PheRS, and PheNorm), with all or
selected phecodes (Supplementary Figs. 9–13). This emphasizes
the difficulties in obtaining accurate phenotypic labels, and the
potential of the quantitative disease risk scores as discussed here
to identify undiagnosed cases.

LPC improves weighting of the disease-relevant phecodes
relative to PheRS and PheNorm
We show here that the weights for the disease ‘relevant’
phecodes are significantly higher compared with those of the
rest of the phecodes (the ‘irrelevant’ ones) for the proposed
LPC score (Table 2). The weights here are derived based on the
corresponding training dataset for each disease, including all
phecodes. We also show that case defining phecodes and pre-
selected phecodes tend to have higher weights in LPC relative

to PheRS and PheNorm (Fig. 5 and Supplementary Fig. 14).
Although the PheRS weights are also significantly higher for
the relevant phecodes, the p-values from the Wilcoxon rank-
sum test are much larger than those for the LPC score.
PheNorm does not perform well in selecting the relevant
phecodes, likely due to the approximate L2 penalty that
dropout training implies25. We observe that LPC has the
smallest rank-sum of pre-selected phecodes and the largest
percentage of relevant phecodes among top-ranked phecodes
for all phenotypes but Dementia, and the smallest rank-sum of
case defining phecodes for all phenotypes except CKD
(Supplementary Fig. 15). Note that the case defining phecodes
have no individual weights in PheNorm, since the case defining
phecodes are used together in constructing the response
variable (i.e., the number of case defining phecodes) in the
training component of PheNorm (see the “Methods” section for
more details).

Fig. 4 Distribution of CKD LPC risk scores in the test set vs. test set + individuals with unknown status. Estimated density and distribution
of LPC risk scores cases vs. controls in the a CKD test set and b with unknown status individuals added. LPC risk scores are derived based on
all phecodes. Left, distribution of LPC risk scores. Middle, LPC risk score percentiles among cases vs. controls. Right, the prevalence of
phenotype in 60 bins according to the percentiles of LPC risk scores. The center line, lower and upper bounds of the box represent the median,
first quartile (Q1, or 25th percentile), and third quartile (Q3, or 75th percentile) of the data, respectively. The whisker is drawn up (down) to the
largest (smallest) observed point from the data that falls within 1.5 times the interquartile range (=Q3−Q1) above (below) the Q3 (Q1).

Table 2. Weights for ‘relevant’ phecodes vs. the rest of the phecodes.

Disease PheRS LPC PheNorm

CKD 9.82E−05 1.42E−25 1.36E−05

CAD 2.41E−03 2.49E−33 7.36E−01

T2D 8.10E−08 3.54E−37 7.79E−01

HF 1.41E−02 4.66E−17 6.29E−01

Dementia 9.38E−01 1.04E−02 4.02E−02

GERD 4.15E−03 1.02E−04 1.54E−01

The ‘relevant’ phecodes include the case defining and pre-selected
phecodes. Wilcoxon rank-sum test one-sided p-values comparing weights
for ‘relevant’ phecodes vs. the rest of the phecodes are reported (with
alternative hypothesis: ‘relevant’ phecodes have greater weights).
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Applications to genetic association studies using the eMERGE-
seq dataset
The eMERGE Network created an eMERGE specific sequencing
platform and sequenced a cohort of 25,000 participants (including
14,813 Non-Hispanic White (NHW), 3,110 African American, 1,437
Asian, and 1,301 Hispanic) with an eMERGE-seq panel that
includes 109 actionable genes17. The 109 genes include 56 genes
from the American College of Medical Genetics and Genomics
(ACMG) published a recommendation for actionable findings and
additional genes deemed as potentially actionable that were
selected across all eMERGE sites26. Low-quality variant calls were
filtered out based on GATK recommendations, which resulted in
57,398 variants. Among the 25,000 participants, 21,363 individuals
have both sequencing data and quantitative disease risk scores.
More details on quality control steps are given in the “Methods”
section.
We have performed comprehensive association tests with both

rare and common variants within each individual gene27,28. For
each gene, we have combined several tests, as follows:

1. Burden and dispersion tests for common and low-frequency
variants (MAF > 0.01) with Beta (MAF, 1, 25) weights, where
Beta ( ⋅ ) is the probability density function of the beta
distribution with shape parameters 1 and 25.

2. Burden and dispersion tests for rare variants (MAF < 0.01 and
minor allele count (MAC) ≥ 5) with Beta (MAF,1, 25) weights.

3. Burden and dispersion tests for rare variants, weighted by
functional annotations (CADD, PolyPhen).

4. Burden test for aggregation of ultra-rare variants with MAC <
5 (e.g., singletons, doubletons).

5. Single variant score tests for common, low-frequency, and
rare variants in the gene.

We then applied the aggregated Cauchy association test29 to
combine the p-values from 1 to 5 to compute the final p-value for
a gene. We adjusted for age, gender, and ten principal
components of genetic variation. The distribution of LPC scores
is right-skewed (Fig. 3), therefore we assumed a generalized linear
model (GLM) based on the inverse-Gaussian distribution.
We focused on those rare variants that are predicted to be

deleterious, as follows. First, we identified rare variants that have

Fig. 5 Weights for all phecodes used to build PheRS and LPC for six phenotypes. Scatter plots of weights for a CKD (cases including G1, G2,
G3a/b, and G4 stages), b CAD, c T2D, d HF, e Dementia, and f GERD. The weights for the case defining and pre-selected phecodes are
highlighted.
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allele frequency < 0.01 in the Genome Aggregation Database
(gnomAD v2.1.1), which integrates a large population reference
cohort spanning 125,748 exome sequences30. Next, variant
functional consequences were annotated using ANNOVAR31 and
RefSeq transcript data32. Moreover, the deleteriousness of protein-
coding variants was assessed using PolyPhen-233. The final set of
selected qualifying variants includes missense variants predicted
as probably damaging by PolyPhen-2 and loss-of-function (LoF)
variants with putative functional effects such as frameshift
insertion, frameshift deletion, splicing variant, start-loss, stop-gain,
and stop-loss.
We report those genes with p-value < 0.05/18 000= 2.78E−06

as exome-wide significant. We focus here on the results of the LPC
score using pre-selected phecodes since these scores led to more
powerful genetic analyses; the genetic analyses of the quantitative
disease risk scores including all phecodes is less powerful likely
due to the increased environmental variation that requires
increased sample sizes for improved power. Indeed no significant
results are found for the LPC (Supplementary Figs. 16–19), PheRS
(Supplementary Figs. 20–23), and PheNorm scores with all
phecodes (Supplementary Figs. 24–27).

The significant results for LPC with pre-selected phecodes are
shown in Fig. 6, and the results for the individual ethnic groups are
shown in Supplementary Figs. 28–31. The associations we
detected are driven by rare variants with MAF < 0.01. Indeed, for
almost all significant associations the overall signal is driven by
predicted deleterious variants with MAF < 0.01 and MAC ≥ 5
(Table 3 and Supplementary Table 6). The exception is LMNA
and CAD, with the association driven by ultra-rare variants with
MAC < 5. We show for each significant gene the individual variants
that contribute to the overall signal along with their MAC
(Supplementary Figs. 33–37). The results for the two other scores
PheRS and PheNorm with pre-selected phecodes are shown in
Table 3, Supplementary Table 6, and Supplementary Figs. 38, 39–
48, and 49–52. There are no significant results for PheNorm. In
contrast, several genes are exome-wide significant when using
PheRS with pre-selected phecodes (Supplementary Fig. 38).
We detected significant associations between the LPC score

with pre-selected phecodes for CKD and rare variants in LDLR (p=
1.53E−06) in the European cohort. Recent large-scale multi-ethnic
GWAS studies have demonstrated that LDLR, low-density lipopro-
tein receptor, is significantly associated with CAD34,35, LDL36,37,

Fig. 6 Exome-wide significant gene-based test results for 107 autosomal genes on the eMERGE-seq panel using LPC with pre-selected
phecodes for six diseases. Results are shown for those phenotypes and ethnic groups with at least one exome-wide significant result: a CKD
and European, b CAD and European, c HF and European, d HF and African American, e CKD and Asian. The horizontal line corresponds to the
exome-wide significance level.
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and total cholesterol36,37. Similarly, associations with rare variants
in LDLR were also identified in whole-exome sequencing studies
for LDL-C levels and risk of myocardial infarction (MI)38–40.
Furthermore, mutations that affect APOE binding to LDL receptors
(LDLR) render renal cells to be more susceptible to glomerular
injury based on animal studies41. In fact, we also detected
significant associations with rare variants in LDLR (p= 7.85E−10)
and the LPC score for CAD, also within the European cohort. Rare
variants in LMNA also show significant association with Heart
Failure in the African American cohort (p= 2.68E−06). LMNA
encodes the lamin proteins that compose the nuclear membrane.
Mutations in LMNA can disrupt the reorganization of lamin-
associated chromatin domains in cardiac myocytes through
altered DNA methylation and dysregulated gene expression42.
Recently, several studies have observed an association between
LMNA mutations and high risk of various cardiac disorders, which
include dilated cardiomyopathy that reduces the heart’s ability to
supply blood and causes heart failure42–44. Finally, we have also
detected a significant association between rare variants in NF2
and Heart Failure (p= 1.0E−06). NF2 encodes the neurofibromin 2
(merlin), which regulates Hippo signaling pathways in cardiomyo-
cytes and potentially aggravates ischemia/reperfusion injury in the
heart45.
Within the Asian group, we detected significant associations of

rare variants in APOB and LPC score for CKD (p= 1.0E−07). APOB
encodes the apolipoprotein B that is a major protein component
of LDL. Higher serum levels of apolipoprotein A1 were associated
with lower prevalence of CKD and higher eGFR in two multi-ethnic
populations, while a higher apolipoprotein B/A1 ratio was
significantly associated with lower eGFR46.
For the PheRS score with pre-selected phecodes, we found

significant associations for CKD and rare variants in the checkpoint
2 gene (CHEK2, p= 4.13E−07). Variants in CHEK2 have been found
to be significantly associated with eGFR in the context of
hypertension47. As with LPC, we have detected a significant
association between rare variants in LDLR and CAD PheRS score
with pre-selected phecodes (p= 5.82E−07). PheRS for Heart
Failure also shows a significant association with rare variants in
LDLR (p= 2.31E−06). Additionally, CAD and Heart Failure PheRS
are significantly associated with rare variants in CFTR (p= 1.27E
−06, p= 1.19E−06). CFTR was previously identified as a suscept-
ibility locus for CAD in a European-ancestry GWAS study48.

Within the African American cohort, we also detected a significant
association between GERD PheRS and rare variants in CACNA1S
(p= 1.38E−06).

Replication of significant association findings in other ethnic
groups. We investigated if the significant associations discovered
in a specific ancestry could be replicated in other ancestries. We
report the p-values of the combined tests for each of the four
populations for the five significant loci detected by LPC with pre-
selected phecodes and their associated phenotypes in Supplcase
defining phecodesementary Table 4. The significant association of
LDLR and CKD in the European ancestry is nominally significant
(p < 0.05) in the African American cohort (p= 1.43E−03). The
association between LMNA and HF discovered in the African
American ancestry is replicated in the European population (p=
5.99E−04). Among the six significant associations found by PheRS
with pre-selected phecodes, three significant associations in the
European ancestry, CFTR and CAD, CFTR and HF, and LDLR and HF,
are replicated in the African American population with nominal
significance (p= 3.53E−02, p= 1.95E−02, and p= 4,81E−02,
respectively). These replications provide additional evidence for
our genetic findings, and also reflect the increased power of the
European and African American cohorts which have larger sample
sizes relative to the two other ancestries.

Binary phenotypes defined based on phecodes. A common way to
analyze phenotypes derived from EHR data is to use binary ICD
codes for phenotypes of interest49. To compare with such a
strategy, here we used the case defining phecodes (Supplemen-
tary Table 2) to identify cases and controls in each ethnic group,
and then ran the same association tests as discussed above for the
quantitative disease risk scores, focusing on data from Europeans
since the European group is the only group with an adequate
number of cases (Supplementary Table 5). Results are shown in
Supplementary Fig. 53. We have not detected any significant
associations between rare variants in 107 autosomal genes and
the binary phenotypes, in contrast to several associations we have
identified with the quantitative disease risk scores, as described
above. This comparison with results from binary phecode-defined
phenotypes illustrates the potential benefit for genetic association
studies when using quantitative disease risk scores.

Table 3. Genes showing significant association with at least one disease using LPC and PheRS with pre-selected phecodes.

Ethnicity Disease Gene p.all p.common p.rare

LPC with pre-selected phecodes

European CKD LDLR 1.530E−06 NA 1.530E−06

European CAD LDLR 7.852E−10 NA 7.852E−10

European HF NF2 1.009E−06 NA 1.009E−06

African American HF LMNA 2.680E−06 NA 2.680E−06

Asian CKD APOB 1.006E−07 6.146E−01 7.317E−08

PheRS with pre-selected phecodes

European CKD CHEK2 4.128E−07 NA 4.128E−07

European CAD LDLR 5.816E−07 NA 5.816E−07

European CAD CFTR 1.266E−06 NA 1.266E−06

European HF CFTR 1.189E−06 NA 1.189E−06

European HF LDLR 2.306E−06 NA 2.306E−06

African American GERD CACNA1S 1.907E−06 2.455E−01 1.387E−06

The p-values from the combined test (p.all), the tests including only common variants (p.common), and tests including only rare variants (p.rare). No exome-
wide significant results were identified for PheNorm. Only the significant results are shown for combined tests. See Supplementary Table 6 for both combined
and individual tests results.
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DISCUSSION
We have proposed an almost unsupervised method to derive a
quantitative disease risk score, LPC, based on phenotypic features
available in EHR from health systems. The proposed quantitative
disease risk score has several advantages: (1) it can be derived on
a large number of individuals using only minimal clinical input, (2)
it can be derived with only weak labels, as opposed to limited
gold/silver standard label information that may be available in the
EHR, (3) it can help stratify individuals according to disease risk
severity, and identify undiagnosed cases, (4) it can identify
disease-relevant features, and (5) it can take advantage of
biobanks linked to clinical information from EHR to perform
potentially more powerful genetic association studies. Beyond
these advantages, LPC, as a quantitative disease risk score,
represents a different, promising direction in deriving phenotypes
from EHR features, that can provide a more meaningful
characterization of clinical risk for diseases of interest beyond
the prevalent binary (case-control) classification.
Although we have focused here on using structured data such

as phecodes, it is important to supplement these with other
unstructured data including NLP features extracted from clinical
notes, health information generated via mobile health devices,
etc. to improve prediction accuracy. The proposed score can easily
incorporate such features when available. In our limited analyses,
incorporating lab measurements for CKD did not significantly
improve the prediction accuracy. A possible reason may be that
the presence of lab measurements is correlated to the presence of
relevant phecodes/symptoms and that decreases the potential
benefit from including them (Supplementary Fig. 54).
The different quantitative disease risk scores can be regarded as

weighted linear combinations of phenotypic features, with
different ways to derive the weights. The weighting scheme is
particularly important when all phecodes are included, and as we
have shown the proposed LPC score can upweight the disease-
relevant phecodes, leading to higher accuracy relative to the
comparison scores, PheRS and PheNorm. However, when the
phecodes are pre-selected according to their potential relevance
for the disease under investigation, the weighting strategy is less
important, as expected.
The proposed score is easy to compute using features available

in the EHR, is scalable to many diseases, and is almost
unsupervised. This is important because labeling clinical data
requires detailed knowledge from human experts, and can be
time-consuming. Although LPC does not require explicit labels in
the training stage, it does require some knowledge of case status,
so training sets can be enriched in cases. An alternative to highly
accurate labels are labels derived from simple filters, such as at
least one relevant ICD-9 code for the phenotype of interest (or
similar silver standard labels). We explored the performance when
using such different training sets, and found minimal effect on the
performance. Another important advantage of the proposed
quantitative score is that it can serve as a measure of disease
severity, and therefore helps identify individuals with higher
severity, and even individuals without a clinical diagnosis. In
particular, for CKD we have shown that LPC correlates very well
with the CKD staging by estimated glomerular filtration rate
(eGFR) and even helps identify individuals with very high LPC
scores which are missed by the phenotyping algorithm because
they miss laboratory-based eGFR measurement.
We have performed genetic associations with the derived

quantitative disease risk scores, using targeted sequencing data
from eMERGE-seq, and have shown that we can identify several
significant associations with variants in potentially relevant genes
for the diseases considered here. In contrast, using phecodes to
define binary phenotypes as commonly done in genetic associa-
tion studies based on EHR phenotypes has led to no significant
genes in Europeans, the group with the largest number of cases

for the phenotypes considered here, highlighting the increase in
power afforded by quantitative disease risk scores. The availability
of large EHR systems linked to biobanks such as the eMERGE and
UK Biobank opens up the possibility to perform genetic
associations with a large number of phenotypes genome-wide.
One of the issues recently recognized in such studies is the
potential for highly imbalanced datasets where the number of
controls can be much higher than the number of cases for a
particular phenotype49; conventional association tests, which do
not adjust for case-control imbalance can lead to biased results
and increases in false positives. The proposed approach by
deriving quantitative disease risk scores for all individuals
alleviates this bias.
In summary, we propose almost unsupervised methods to

derive quantitative disease risk scores from information in EHR
that require minimal input from domain experts, and that can
improve the utility of using such EHR-derived phenotypes in
genomics research. Future work in developing new quantitative
disease risk scores could be beneficial for leveraging the rich
phenotypic information in EHR.

METHODS
Notations
Suppose we have J phenotypic features for a given set of n subjects; these
include phecodes, but can also include laboratory values and other clinical
covariates. Each phenotypic feature is centered and scaled by its sample
standard deviation in the preprocessing step. The goal is, for a given
(complex) disease phenotype, to construct a quantitative disease risk score
(QRS) as a weighted linear combination of multiple phenotypic features,
i.e., the score for subject i is defined as

QRSi ¼
XJ

j¼1

wjxij ; (1)

where xij is the standardized value of jth phenotypic feature for subject i.
Here we consider several possible (almost) unsupervised methods to
derive the set of weights wj’s. We denote by Xn×J the matrix of J
standardized phenotypic features for the n subjects. Let Q be the J × J
sample correlation matrix of the J phenotypic features.

Phenotype risk score (PheRS)
The phenotype risk score (PheRS) has been recently proposed to combine
binary phecodes in an individual14, with phecodes’ weights based on the
inverse prevalence of the phecode in the controls in the training dataset.
Given a dataset of N subjects, the weight for phenotypic feature j is
calculated as:

wj ¼ log
N
nj
; (2)

where nj is the number of individuals with phenotypic feature j. Hence, less
prevalent phenotypic features are given higher weight compared to the
more common ones. The rationale behind this weighting scheme is that
lower frequency phecodes are more likely to be related to the risk of
disease in general, an assumption that may be reasonable. However, these
weights are not related to the phenotype under consideration.
For subject i, the PheRS for a specific disease is calculated as in14:

PheRSi ¼
XJ

j¼1

wj1fsubjectihasphenotypicfeaturejg: (3)

PheNorm
PheNorm is a phenotyping algorithm that does not require expert-labeled
samples for training15. PheNorm relies on automated feature curation. To
make it comparable to LPC and PheRS, we only trained PheNorm using
phecode features. We implemented a version of PheNorm in two steps, as
follows.
In the first step, we normalize the most predictive features such as the

number of ICD codes or mentions of the target phenotype to resemble a
normal mixture distribution. Specifically, we denote by xPHECODE the
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number of case defining phecodes for a given disease. We use the health
care utilization measure denoted by xutl to normalize xPHECODE since
xPHECODE tends to be high for subjects with more health care utilization
regardless of their true disease status; the number of distinct age at
observation in ICD code history is considered in our implementation. The
distribution of the normalized count of phecodes zPHECODE ¼ log ð1þ
xPHECODEÞ � αlog ð1þ xutlÞ with an appropriate choice of α is approximately
a normal mixture distribution with zPHECODE∣Y ~ N(μY, σ

2), where Y is an
indicator of the true disease status. The optimal value of α is chosen to
minimize the difference between the empirical distribution of z and its
normal mixture approximation (see ref. 15 for more details). In the second
step, we aggregate the information in the larger set of additional features
(pre-selected or all other phecodes, excluding the case defining phecodes)
with denoising self-regression via dropout training. The data matrix with
columns of the normalized counts of case defining phecodes and set of
candidate features Z= [zPHECODE, z1,…,zp], is randomly corrupted to obtain
~Z with

~Zij ¼ ZWij

ij ðMeanðZ:jÞÞ1�Wij ; (4)

where Mean (Z.j) is the mean of the jth column Z and {Wij} are independent
and identically distributed Bernoulli random variables with drop out rate
PðWij ¼ 0Þ ¼ r (r= 0.3 in our applications). Then zPHECODE is predicted with
~Z by ordinary least squares regression to obtain the regression coefficient
vector β. The final PheNorm score of subject i can be obtained by the
weighted linear combination of health care utilization and candidate
feature sets, with feature vector zi,

PheNormi ¼ z>i β: (5)

The actual implementation follows the scripts in R package sureLDA50,
where random sampling with replacement of observations in each training
set is used to form a bootstrap of size 105.

Principal component based score (LPC)
Principal component analysis (PCA) is a standard approach to reduce the
dimension of the phenotypic feature space, and identify a small number of
principal components (PCs). In particular, we have the spectral decom-
position of Q, Q ¼ PJ

j¼1 λjuju
>
j , where λ1 ≥⋯≥ λJ > 0 are eigenvalues of Q

and uj is the jth eigenvector associated with the jth largest eigenvalue.
One possible composite score is based on using the entries of the top

eigenvector u1 (i.e., the loadings) as the weights for the J phenotypic
features. Beyond the first principal component, it is possible that additional
principal components are also informative51,52, and so we consider
combining multiple PCs as a linear combination (LPC), especially when
including a large number of phenotypic features. The general form of the
LPC score for subject i is

LPCi ¼
XK

k¼1

βkPCik ; (6)

where K ≤ J represents the number of PCs being included in the linear
combination, and PC= XU is the PC score matrix (U is the matrix of
eigenvectors). K can be determined using the Tracy-Widom test53, a
hypothesis test to identify significant eigenvalues of the covariance matrix.
There are several considerations with the LPC method. The first is the

choice of the sign of individual PCs in the linear combination, since the
signs of the PCs are arbitrary. We use the training data to help us identify
the sign of each PC. Namely, the sign of each PC is adjusted so that the
mean PC value of "cases” is higher than that for "controls”. We refer to the
LPC approach as almost unsupervised, as we do use some approximate
label information to determine the signs of individual PCs in the linear
combination. However, we do not need to use gold or even silver standard
labels, and weakly defined labels are sufficient (e.g., we could define as
"cases” those individuals with some lab result present, e.g., the estimated
glomerular filtration rate (eGFR) in the case of CKD). The second important
consideration is the choice of weights. We choose here to use the
corresponding eigenvalues λ as weights, so higher weight is assigned to
those components with higher amount of variance explained. However the
lower PCs (corresponding to smaller eigenvalues) can be as useful for
prediction as the top PCs, and hence the approach here may not be
optimal. If some amount of labeled data is available, weights can be
learned by regression models, such as principal component regression and
partial least squares.
Another possible approach would be to do non-negative matrix

factorization (NMF)54. Unlike PCA, NMF constrains the factor loadings to

be non-negative. Although we do not expect improved accuracy
compared with the less constrained PCA approach, NMF can lead to
better interpretability.

Construction of feature matrix
Each individual in the eMERGE network has raw longitudinal records of
ICD-9 and ICD-10 codes, which can be mapped to phecodes55, and the
presence of a particular phecode is defined by at least two occurrences of
the corresponding ICD-9 or ICD-10 codes in individual health records. Each
phecode is used as a proxy of the corresponding condition. Note that here
the absence of a phecode may be due to no assessment of the condition
or no record of healthy condition. The feature matrix of 98,486 individuals
is centered and scaled before splitting into training and test sets for the
Eigen and PC-based approaches. The phecode features are on the original
scale for PheRS derivation.

Polygenic risk score calculation
We used the LDPred computational algorithm56 to derive a genome-wide
polygenic risk score for CKD, CAD, and type 2 diabetes in the eMERGE
cohort (n= 102, 138). We used the optimized GWAS summary statistics
(weights) for these traits from19,57,58. More specifically, we calculated the
PRS by summing the genotype of each risk allele carried by an individual
and weighting each variant by its natural logarithm of the relative risk
extracted from the GWAS. We then performed an association between
these PRS scores and each phecode in turn.

Quality control of eMERGE-seq panel variants
Quality control (QC) for the sequencing dataset is performed based on the
quality metrics of variant and genotype calling according to GATK best
practices recommendations59. Specifically, we filter out the low-quality
SNVs with QD (quality by depth) < 2, MQ (root mean square mapping
quality) < 40, FS (Fisher strand) > 60, SOR (strand odds ratio) > 3, MQRank-
Sum (mapping quality rank-sum test) <−12.5, or ReadPosRankSum (read
position rank-sum test) <−8. For indels, we exclude the variants that have
QD < 2, ReadPosRankSum <−20, FS > 200, or SOR > 10. After QC, the
resulting dataset includes 57,398 variants.

Ethics statement
The study was approved by the Columbia University Institutional Review
Board (IRB protocol numbers IRB-AAAP7926 and IRB-AAAO4154) and
individual IRBs at all eMERGE-III network sites contributing human genetic
and clinical data. All eMERGE participants provided informed consent to
participate in genetic studies.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The development version of R package QDRS and documentation of quantitative
disease risk scores from eMERGE dataset are available online (https://github.com/
danqingxu/QDRS). The eMERGE-III genetic datasets with linked phenotypes are
accessible through dbGAP (accession number: phs001584.v1.p1).
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