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Patient-specific COVID-19 resource utilization prediction
using fusion AI model
Amara Tariq 1✉, Leo Anthony Celi 2,3,4, Janice M. Newsome5, Saptarshi Purkayastha 6, Neal Kumar Bhatia7, Hari Trivedi 1,5,
Judy Wawira Gichoya 5 and Imon Banerjee 1,5

The strain on healthcare resources brought forth by the recent COVID-19 pandemic has highlighted the need for efficient resource
planning and allocation through the prediction of future consumption. Machine learning can predict resource utilization such as
the need for hospitalization based on past medical data stored in electronic medical records (EMR). We conducted this study on
3194 patients (46% male with mean age 56.7 (±16.8), 56% African American, 7% Hispanic) flagged as COVID-19 positive cases in 12
centers under Emory Healthcare network from February 2020 to September 2020, to assess whether a COVID-19 positive patient’s
need for hospitalization can be predicted at the time of RT-PCR test using the EMR data prior to the test. Five main modalities of
EMR, i.e., demographics, medication, past medical procedures, comorbidities, and laboratory results, were used as features for
predictive modeling, both individually and fused together using late, middle, and early fusion. Models were evaluated in terms of
precision, recall, F1-score (within 95% confidence interval). The early fusion model is the most effective predictor with 84% overall
F1-score [CI 82.1–86.1]. The predictive performance of the model drops by 6 % when using recent clinical data while omitting the
long-term medical history. Feature importance analysis indicates that history of cardiovascular disease, emergency room visits in
the past year prior to testing, and demographic factors are predictive of the disease trajectory. We conclude that fusion modeling
using medical history and current treatment data can forecast the need for hospitalization for patients infected with COVID-19 at
the time of the RT-PCR test.
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INTRODUCTION
Multiple waves of SARS-CoV-2 virus infections threaten to over-
whelm the healthcare system1. A third of all hospitalized COVID-19
patients require admission and management in an intensive care
unit (ICU)2 to manage complications like acute respiratory distress
syndrome (ARDS), secondary sepsis, and multi-organ failure3.
Predictors of poor outcome and need for assisted ventilation
include clinical and laboratory markers like D-dimer levels and
SOFA score, and demographic features such as older age and
ethnicity3. Currently, there is no quantitative criterion that
combines clinical and laboratory-based markers to predict the
likely level of care required for a given patient at the time of
COVID-19 testing. Such a predictive model would allow resource
planning by understanding potential hospitalization requirements,
especially as testing is distributed out of hospitals.
Much of the literature regarding predictive modeling for COVID-

19 patients deal with either mortality prediction4–6, or analysis of
risk factors for mortality7. Instead, our work focuses on predicting
the probability of future hospitalization at the time of COVID-19
testing (Fig. 1a). This is in contrast to several recent papers that
focus on critical event prediction such as ICU admission8 and
mechanical ventilation9 at the time of presentation to the
emergency department. Recently published systematic review of
COVID19 related prediction models10 mentions only three studies
related to hospitalization risk prediction (see Supplementary Note
1 for detailed limitations of previously published studies). The
major limitation of the existing work, including the studies
mentioned by Wynants et. al.10, is the use of a narrow feature

selection based on expert opinion or published literature5,6,8,9,11–13.
We overcome this limitation by training multiple machine learning
architectures, including multi-branched deep dense network, for
the targeted prediction task, using all the data captured in the
electronic medical record (EMR) prior to COVID-19 infection. We
use interval-based feature representation for medications, comor-
bidities, past procedures, and laboratory results to ensure that
information collected at different time intervals is given due
importance by our predictive models. Compared to pre-selected
features, we include as many EMR variables as possible, filtering
features based on automatic methods while relying on experts to
provide intuitive representation or group structure for large
features set. We evaluate the predictive performance of each part
of the EMR data (demographic information, medication, past
procedures, comorbidities, and laboratory results) as well as
multiple fusion models that integrate the feature space14.

RESULTS
Performance of fusion models
Table 1 reports the class-wise and aggregated (weighted average)
precision, recall, and F-score15 as well as confidence interval (95%
confidence) for distinguishing between hospitalization and self-
isolation on a held-out set of 569 unique patients. We compare
the performance of our fusion models against the performance of
individual source classifiers. Results demonstrate that fusing
multiple data sources from EMR increases the performance
beyond the performance of any individual source. Early fusion is
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the best performing model with 84 overall F1-score [CI 82.1–86.1]
and 85 F1-score for classifying patients who will need hospitaliza-
tion within 7 days of RT-PCR testing. Late (83 F1-score) and middle
fusion (82 F1-score) models also come very close to the
performance of the early fusion model.
Our EMR dataset is divided into ‘current’—15 days before

COVID-19 test, and ‘history’ interval (data from 1 year before the
test, excluding 15 days in the current history). It is evident that
information from ‘history’ interval is crucial for future hospitaliza-
tion prediction as the performance of fusion models without
‘history’ interval drops by an average of 6 F1-score (±1 std) than
that of models with both ‘current’ and ‘history’ intervals.
The receiver operating characteristics (ROC) curve and

precision-recall (PR) curve are shown in Fig. 2a. Early (AUROC
0.91 & AUPRC 0.9), late (AUROC 0.88 & AUPRC 0.87) and middle
(AUROC 0.87 & AUCPR 0.87) fusion achieve much higher Area
under the Receiver Operating Curve (AUROC) and Area under the
precision-recall curve (AUCPR), as compared to individual source
classifiers. Interestingly, models trained on comorbidities coded as
ICD9/10 and procedures performed on the patients also presents
high performance.
We also performed calibration analysis of the three fusion models.

Figure 2d shows calibration curves along with Brier scores for each
model after calibration through isotonic regression. The early fusion
model not only performs the best, but is the most reliable model
with the lowest Brier score after calibration. While calibrated middle
fusion tends to underestimate the positive class (risk of hospitaliza-
tion), late fusion model seems to swing between over and under
estimation with strong over estimation in the upper quadrant.
We present the performance of the early fusion model stratified

by race and ethnicity, gender, and age in Fig. 3a–c, respectively. In
terms of race and ethnicity, the model performs equally well for all
patients with a small drop in performance for Hispanic population
which is probably bias given the smaller number of evaluation
samples (see Supplementary Note 4 for detail). A similar
performance drop is observed for male patients. In terms of age,
our model achieves balance between most of the age ranges
except for less-than-30-years category where the model achieves
better performance. Generally healthier disposition of these
patients may account for this performance difference.

Feature importance
We investigated the interpretability of our best performing
models, i.e., early and late fusion models, in terms of feature

importance assigned to input features. The top features are shown
as bar plots in Fig. 2b (early fusion) and Fig. 2c (late fusion) where
we used 10-fold cross validation to compute average feature
weights; standard deviation is shown as error bars. From the early
fusion model, abnormal red blood cell counts, D-dimer test,
history of hypertensive disease and previous emergency room
encounters are most informative to predict hospitalization for
patients with COVID-19. Demographic factors such as race and
ethnicity (Black and Hispanic) as well as being male has high
importance in prediction. Following the similar trend of the early
fusion model, individual prediction using CPT and ICD data had
higher weights in the late fusion meta-learner. Individual source
model feature importance is presented in the Supplementary Note
4 and is consistent with the literature3,16–18: (1) comorbidities
related to the lungs and urinary systems seem to be important for
the classifier based on comorbidities, (2) treatment of thyroid-
related diseases are given the highest importance by medications-
based classifier.

DISCUSSION
In this study, we developed a multimodal fusion AI model from
demographics, medications, laboratory tests, CPT, and ICD codes
documented in the EMR to predict the severity of COVID-19 at the
time of testing, and whether a COVID-19 patient will need
hospitalization within 7 days of the RT-PCR test. This is in contrast
to existing COVID-19 prediction models that employ medical
information at the time of presentation to the hospital and predict
an event between 24 h and 7 days into the future5,6,8,9,19,20. Our
models rely on past health records of patients one year prior to
testing. This enables our model to provide input to a dashboard
that forecasts the utilization of hospital and ICU beds at the time
of COVID-19 testing. As national efforts for testing scale up such a
model can be used to further assign the patients the level of
monitoring they will need based on their risk of disease
progression. As mentioned in10, predictive models should serve
a clinical need and use representative patients’ set. We have been
careful to achieve both goals. We have used RT-PCR testing as a
criterion to select a representative set of patients for COVID-19.
Our model serves the clinical need of healthcare resource demand
projection.
From a technical perspective, existing predictive models include

logistic regression4,12,21, Lasso13,19, XGBoost5, Random Forest6,8,
convolutional neural network22, semantic word embedding
models20,22. We experimented with various classification models

Fig. 1 Study design. a Proposed AI model decision point shows the prediction of two patients with distinct outcomes. b CONSORT diagram
for Cohort selection process including decision nodes and a number of excluded cases.
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and found XGBoost and multi-branched deep dense network to
be the most suitable. The technical novelty lies in a thorough
exploration of vast and heterogeneous feature spaces, handling of
information collected over long time periods, and their intuitive
fusion with minimal expert supervision, Lasso13,19, XGBoost5,
Random Forest6,8, convolutional neural network22, semantic word
embedding models20,22. We experimented with various classifica-
tion models and found XGBoost and multi-branched deep dense
network to be the most suitable. The technical novelty lies in a
thorough exploration of vast and heterogeneous feature spaces,

handling of information collected over long time periods, and
their intuitive fusion with minimal expert supervision.
A review of feature importance provides insight for future

research and feedback from the community on the significance of
various predictors of COVID-19 disease trajectory. For example,
several papers have been published on the disparate outcome
based on race and ethnicity, with more deaths observed in blacks
and Hispanics23,24. When only demographics are used in the
model, they have a lower F1 score (69% versus 84% for the early
fusion model), which could potentially be explained by other
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Fig. 2 Statistical analysis of the models. a PR (left) and ROC (right) curves for model distinguishing between self-isolation and hospitalization
outcomes. Each colored line represents a separate model and the color scheme is consistent between PR and ROC curves. Feature importance
from (b) early fusion—shows the importance of top 25 individual EMR data component, c late Fusion model—shows the importance of
individual EMR data sources. The standard deviation bar (red) is generated via 10-fold cross-validation on the training data. d Calibration curve
for early, late and middle fusion models along with Brier scores for each calibrated model.
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clinical and systemic factors that contribute to worse severity
among minorities. In our sample cohort, the distribution of
comorbidities (respiratory illness, hypertension, renal disease and
diabetes) is weighted heavily among African Americans and older
patients (>50 years). This may explain the weighting of the CPT
and ICD codes that represent interventions and patient comorbid-
ities. Overall model performance does not vary across races and
ethnicity. A review of feature importance provides insight for
future research and feedback from the community on the
significance of various predictors of COVID-19 disease trajectory.
For example, several papers have been published on the disparate
outcome based on race and ethnicity, with more deaths observed
in blacks and Hispanics23,24. When only demographics are used in
the model, they have a lower F1 score (69% versus 84% for the
early fusion model), which could potentially be explained by other
clinical and systemic factors that contribute to worse severity
among minorities. In our sample cohort, the distribution of
comorbidities (respiratory illness, hypertension, renal disease, and
diabetes) is weighted heavily among African Americans and older
patients (>50 years). This may explain the weighting of the CPT
and ICD codes that represent interventions and patient comorbid-
ities. Overall model performance does not vary across races and
ethnicity.
Inflammatory marker laboratory levels like procalcitonin, ferritin,

and lactate noted to be important for COVID-19 care are not
routinely collected in care, and hence are not represented in the
top laboratory markers in our patient cohort. Our models show
that the immediate pre-testing period is an important predictor of
COVID-19 severity and need for hospitalization, especially when

patients are recently started on anticoagulation, thyroid, or
respiratory medications. Moreover, the complete blood count
has the highest feature importance. To our knowledge, the
complete blood count has not been linked to COVID-19 disease
course.
Our study has important limitations. The models were trained

on a population of patients who were cared for in a highly
integrated academic healthcare system with 56.4% African
American and 2% Asian population. The models may not perform
well in a different patient demographic or health system. Second,
the number of patients for training and validation is limited given
we only consider patients with RT-PCR tests before September
2020. The limited number of patients with sparse data make the
modeling problem challenging. Even though early fusion results in
the best prediction, statistical metrics (precision, F1-score) indicate
late and middle fusion results are very similar (p < 0.05, see
Supplementary Note 4). We believe that middle fusion with
consistent backpropagation may generate the optimal result with
larger training data.

METHODS
Cohort description
With the approval of Emory Institutional Review Board (IRB), we collected
all the EMR data from all patients flagged as COVID-19 positive (ICD10
diagnosis code - U07.1 + codes for symptoms or notes in the record) in 12
different facilities in Emory University Healthcare (EUH). Since only de-
identified data were used, IRB waived off the requirement of informed
consent by the patients. Between January and September 2020, there were
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3194 such patients. We collected PCR testing information available from all
EUH facilities. We found that 3120 of 3194 patients had at least one
positive PCR test for COVID-19. The remaining patients either had no
positive test or had missing test results. We collected all hospitalization
(admission/discharge) data for COVID-19 positive patients from January
2020. We carefully examined the data to identify patients who were
admitted to the hospital after testing positive for COVID-19, but excluding

hospitalization unrelated to COVID-19 (i.e., hospitalization after 7 days of
RT-PCR testing).
Figure 1a shows the overall architecture of our model including possible

outcomes. Figure 1b shows inclusion and exclusion criteria for selecting
patients that were hospitalized or not hospitalized after COVID-19 testing.
We found 1504 patients who were hospitalized with COVID-19 diagnosis
and 1340 patients who were not hospitalized. The rest had irreconcilable

Table 1. Performance for binary classification models with hospitalization and non-hospitalization as two targets, in terms of class-wise and
aggregated (weighted average) precision, recall, and F-score; C.I. (95% confidence) was computed using bootstrapping over 1000 iterations with
random samples.

Precision Recall F1-score Number of samples

Demographics Non hospitalization 68 63 65 277

Hospitalization 71 74 72 328

Overall 69 69 69

C.I. 66.8–71.6 66.9–71.7 66.8–71.6

Prescriptions Non hospitalization 62 86 72 277

Hospitalization 82 55 66 328

Overall 73 69 69

C.I. 71.2–75.5 67.2–71.9 66.7–71.4

ICD-9 Non hospitalization 74 84 79 277

Hospitalization 85 75 80 328

Overall 80 79 79

C.I. 78.1–82.0 77.1–81.4 77.2–81.4

CPT Non hospitalization 74 83 78 277

Hospitalization 84 75 79 328

Overall 79 79 79

C.I. 77.1–81.6 76.5–81.0 76.6–81.1

Laboratory test results Non hospitalization 72 78 75 277

Hospitalization 80 75 77 328

Overall 76 76 76

C.I. 74.1–78.8 74.0–78.8 74.4–79.1

Late fusion Non hospitalization 84 77 81 277

Hospitalization 82 88 85 328

Overall 83 83 83

C.I. 81.3–85.3 81.1–85.2 81.0–85.2

Early fusion Non hospitalization 83 82 82 277

Hospitalization 85 86 85 328

Overall 84 84 84

C.I. 82.1–86.1 82.1–86.1 82.1–86.1

Middle fusion Non hospitalization 82 78 80 277

Hospitalization 82 86 84 328

Overall 82 82 82

C.I. 79.9–84.0 79.8–84.0 79.8–83.9

Late fusion – w/o ‘history’ interval Non hospitalization 76 75 75 277

Hospitalization 79 80 79 328

Overall 78 78 78

C.I. 76.5–79.8 75.6–79.7 75.5–79.7

Early fusion – w/o ‘history’ interval Non hospitalization 75 79 77 277

Hospitalization 82 77 79 328

Overall 78 78 78

C.I. 76.3–80.5 76.0–80.2 76.1–80.3

Middle fusion – w/o ‘history’ interval Non hospitalization 69 83 76 277

Hospitalization 83 69 75 328

Overall 77 75 75

C.I. 74.7–79.0 73.2–77.6 73.2–77.6
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information including hospitalization before testing positive for COVID-19.
Such hospitalization may be unrelated to COVID-19 or the patient self-
quarantined early after testing but later had to be admitted to hospital

(more than 7 days after testing), indicating progression of the disease. Of
the 1504 patients admitted to the hospital, 365 patients were later
admitted to ICU while the remainder stayed in a regular inpatient ward.
Table 2 highlights the overall characteristics of our patient populations,

including comorbidities, and Fig. 4a–c shows the common comorbidities in
our patient population for different age groups and the correlation
between race, ethnicity, and comorbidities.
We aim to develop an AI model to help plan healthcare resource needs

for each COVID-19 patient by predicting the need for hospitalization at the
time the patient takes a RT-PCR test (Fig. 1a). Our predictive models
employ retrospective EMR data prior to COVID-19 testing, including
diagnoses, prescribed medications, laboratory test results, and demo-
graphics collected over a year prior to the test. In our dataset, such
information is available from January 2019 to September 2020. Our study
complies with TRIPOD25 guidelines for reporting. Our study complies with
TRIPOD25 guidelines for reporting. Cohort and models are described in the
following sub-sections. Performance is reported in the Results section and
interpretation of results and limitations of our approach are detailed in the
“Discussion” section.

Handling temporal EMR data
Since the clinical encounter data have been generated over more than a
year time-period, it is important for the model to be able to differentiate
and put justifiable emphasis over more recent versus historical medical
information. However, the COVID-19 pandemic resulted in a scenario
where patients may have their first healthcare encounter due to infection
with very little past medical history. Therefore, the generated EMR data are
very sparse and finer time-interval division results in prohibitively large
fraction of missing data values. To handle such missing data and at the
same time achieve temporal distinction between information, we divide
EMR data for each patient into two intervals, i.e., current and history (Fig.
1a). The current interval includes all information collected between 24 h
before the RT-PCR test and 15 days before the time of test. The history
interval includes all information collected prior to the current interval. We
experimented with several temporal data splitting schemes including
weekly, monthly, and quarterly splits. The sparsity of data renders most of
these splits suboptimal for modeling. We observed that above mentioned
scheme of current and history interval suffices for distinguishing between
EMR information on the temporal axis for the given problem while
avoiding insurmountable data sparsity.

Table 2. Stratified patient characteristics.

Variables Total cohort
(2844 patients)

Train (2275
patients)

Test (569
patients)

AGE, mean(SD) 55.6 (17.9) 55.5 (18.0) 55.7 (17.9)

GENDER [mean age/std]

Male 1470 (46%)
[56.7 (16.8)]

1115 (46%)
[56.8 (17.0)]

254 (42%)
[56.5 (16.2)]

Female 1719 (54%)
[54.5 (18.8)]

1298 (54%)
[54.5 (18.8)]

351 (58%)
[55.2 (19.1)]

Race

African American 1678 (56.4%) 1357 (56.1%) 321 (54.4%)

Caucasian/White 593 (19.7%) 474 (19.6%) 119 (19.7%)

Asian 79 (2.6%) 62 (2.6%) 17 (2.8%)

American Indian or
Alaska Native

11 (0.4%) 6 (0.3%) 5(0.8%)

Multiple 10 (0.3%) 6 (0.3%) 4 (0.7%)

Native Hawaiian
Pacific Islander

6 (0.2%) 2 (0.1%) 4 (0.7%)

Unknown 638 (21.1%) 511 (21.1%) 127 (21.0%)

Ethnic group

Hispanic or Latino 233 (7.7%) 188 (7.8%) 45 (7.4%)

Non-Hispanic
or Latino

2131 (70.5%) 1706 (70.6%) 425 (70.3%)

Unknown 659 (21.8) 524 (21.7%) 135 (22.3%)

Comorbidities

Respiratory disease 1799 (59.5%) 1435 (59.3%) 364 (60.2%)

Hypertension 1372 (45.4%) 1092 (45.2%) 280 (46.3%)

Renal disease 1016 (33.6%) 806 (33.3%) 210 (34.7%)

Diabetes 467 (15.4%) 380 (15.7%) 87 (14.4%)

Fig. 4 Patients characteristics as heatmaps. Heatmaps of a common comorbidities in our patient population according to different age
groups, b relation between race and comorbidities, c relation between ethnic group and comorbidities. The value represented as % and
darker color represents higher value.
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Multi-modal EMR data
The following data were extracted from the EMR.

(1) Demographic information: includes gender (male/female), race
(African American, Caucasian, Native Hawaiian or Other Pacific
Islander, Asian, American Indian or Alaska Native, Multiple,
Unknown), ethnic group (Hispanic or Latino, Non-Hispanic or Latino,
Unknown), and age in years.

(2) In-patient and out-patient medications: With physician feedback and
RxNorm categorization, we created groups for important medications

of the top 50 most-frequent in-patient and out-patient medications
into 21 distinct groups. Details of medication and medication groups
are provided in Supplementary Note 2. If a certain medication is not
mentioned in a patient’s record, it is assumed that the patient was
not prescribed or administered that medication.

(3) CPT code: We selected all CPT codes occurring at least 500 times in
the dataset, resulting in a set of 168 features. If a code is not
mentioned in a patient’s record, we assume that the procedure
corresponding to that CPT code was never performed for the patient.

(4) Comorbidities: are coded as ICD-9 codes which we grouped based on

Fig. 5 Proposed fusion AI model architectures. a Early fusion, b late fusion, c middle fusion/branched NN model.
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hierarchical structure26. Further details are provided in the supple-
mentary material. We use each group as a feature resulting in 108
distinct features.

(5) Comorbidities: are coded as ICD-9 codes which we grouped based on
hierarchical structure26. Further details are provided in Supplementary
Note 2. We use each group as a feature resulting in 108 distinct
features.

(6) Laboratory test results: included in our data are coded in Logical
Observation Identifiers Names and Codes (LOINC). We selected 30
most frequent laboratory tests. Each laboratory test value for a patient
is coded as ‘Normal’ (value within normal range), ‘Abnormal’ (value
outside of normal range), and ‘Unknown’ (no value provided).
Selected laboratory tests and their normal ranges are provided in
Supplementary Note 2.

For each modality except for demographics which remains unchanged
between current and history interval, feature values from each interval
were concatenated to form a representation vector.

Fusion AI models development
In order to integrate data from different EMR sources, we explored three
types of fusion techniques—early, late and middle fusion14 combined with
various classification models including Logistic Regression, Random Forest,
Multi-layer neural network, and XG Boost15.
Figure 5 summarizes the proposed fusion architectures used in our

methodology.

Early Fusion is commonly known as ‘feature-level’ fusion where we
concatenated features from all selected sources in a single vector
representation that is passed as input through an AI model. Chao et al.
used an early fusion type model to combine information from lung
imaging data with demographic information, blood tests, and vitals to
predict ICU admission27. We have experimented with early fusion to
combine a wider variety of non-imaging information including
demographic features, CPT and ICD-9/10 codes, laboratory test results
and past medications. The core challenge is that the EMR feature values
are highly heterogeneous, and include categorical, continuous, and text
representation. They also need to be normalized before concatenation.
In our dataset, all demographic features except for age are categorical
resulting in 0/1 feature values. We normalized the continuous feature of
age such that its value lies between 0 and 1. Medication and CPT codes
are nominal features normalized between 0 and 1. Comorbidities (ICD-9
groups) are categorical features with 0/1 values. Each lab results are
formulated in three categorical features, i.e., ‘Normal’, ‘Abnormal’, and
‘Unknown’. We experimented with four discriminative models (Logistic
Regression, Random Forest, Multi-layer Perceptron, XG Boost15) for early
fusion once concatenated feature vector was generated. We experi-
mented with four discriminative models (Logistic Regression, Random
Forest, Multi-layer Perceptron, XG Boost15) for early fusion once
concatenated feature vector was generated.
Late Fusion is known as ‘decision-level’ fusion where feature vectors
from each modality are passed through separate discriminative models
and result probability values are concatenated to form a final feature
vector for each patient. For example, Ning et al.28 used deep learning-
based late fusion architecture to create feature vectors based on
probabilities estimated by processing CT and CF data for COVID-19
patients through CNN and DNN, respectively. This feature vector is
passed through a meta-learner to combine the prediction of each
model and generate the final label. The meta-learner is trained to learn
the importance of each prediction source, instead of each individual
features, and the most predictive source (source with highest prediction
accuracy) is expected to weigh high in the meta-learner. In our
experiments, XGBoost was the best performing discriminator for
demographics, medications, and comorbidities while Random Forest
was the most accurate discriminator for CPT codes and laboratory test
results. We used XGBoost as meta-learner based on its performance.
These selections were made by experimenting with the training set.
Middle Fusion/Branched NN model joins the learned feature representa-
tion from intermediate layers of the neural network with the features
from other sources. We designed a branched neural network (NN)
model for the middle fusion technique. Feature vector from reach
modality is passed through a separate branch of NN model consisting
of dense, dropout, and activation layers. The resulting compressed
representation from each branch are concatenated and passed through
another branch consisting of dense, dropout and activation layer, to

generate the final output (Fig. 5c). We performed detailed hyperpara-
meter tuning to determine the optimal number of layers in each
branch, dropout rate, activation, number of epochs, and optimizer (see
Supplementary Note 3).

In addition to the fusion models, we developed machine learning
models using each EMR source individually to examine the importance of
that information source for prediction. We randomly select 80% (2275
patients) of the total cohort to train the models and evaluate the
performance on the rest (20%, 569 patients). The same test set is used to
validate all the models and the training set was further divided to tune the
hyperparameters.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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