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Differential effects of the blood pressure state on pulse rate
variability and heart rate variability in critically ill patients
Elisa Mejía-Mejía 1✉, James M. May 1, Mohamed Elgendi 2 and Panayiotis A. Kyriacou1

Heart rate variability (HRV) utilizes the electrocardiogram (ECG) and has been widely studied as a non-invasive indicator of cardiac
autonomic activity. Pulse rate variability (PRV) utilizes photoplethysmography (PPG) and recently has been used as a surrogate for
HRV. Several studies have found that PRV is not entirely valid as an estimation of HRV and that several physiological factors,
including the pulse transit time (PTT) and blood pressure (BP) changes, may affect PRV differently than HRV. This study aimed to
assess the relationship between PRV and HRV under different BP states: hypotension, normotension, and hypertension. Using the
MIMIC III database, 5 min segments of PPG and ECG signals were used to extract PRV and HRV, respectively. Several time-domain,
frequency-domain, and nonlinear indices were obtained from these signals. Bland–Altman analysis, correlation analysis, and
Friedman rank sum tests were used to compare HRV and PRV in each state, and PRV and HRV indices were compared among BP
states using Kruskal–Wallis tests. The findings indicated that there were differences between PRV and HRV, especially in short-term
and nonlinear indices, and although PRV and HRV were altered in a similar manner when there was a change in BP, PRV seemed to
be more sensitive to these changes.
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INTRODUCTION
Heart rate variability (HRV), which is defined as changes in heart
rate over time1, is an indicator that is used to evaluate the activity
of the cardiac autonomic nervous system (ANS) because of its
relationship with the parasympathetic and sympathetic activity
directed into the sinus node in the heart, which controls the heart
rate2,3. Several authors have found that HRV is associated with
cardiovascular conditions, such as myocardial infarction and heart
failure4, coronary artery disease, and sudden death5. As explained
in6, HRV has also been found to aid in the diagnosis and increase
the prognostic value of predisposing conditions for critical illness,
such as hypertension, and some HRV parameters have been found
to be abnormal even in the early stages of hypertension.
HRV is measured using electrocardiographic signals (ECG),

which represent the electrical activity generated by the heart
conduction system3,7, and standards of measurement have been
established to align the methodologies used in HRV studies, in
order to allow for comparisons among results8. Nonetheless, in
recent years, several studies have reported obtaining information
similar to HRV from other signals that also contain information
related to the cardiac cycle, such as pulse waves. One technique
that has attracted significant attention for detecting pulse-wave-
related HRV, also known as pulse rate variability (PRV), is
photoplethysmography (PPG)9, which is a noninvasive, simple,
and inexpensive technique that utilizes optical principles to obtain
the pulse wave from the microcirculation in peripheral tissue10,11.
Various studies have investigated PRV changes under different
conditions, such as in the presence of mental or somatic diseases
or during sleep, and used them to evaluate the effects of
pharmacological drugs on ANS responses8. There has also been a
special interest in the study of PRV under cardiovascular
conditions, such as diabetes, hypo- or hypertension, or cardiac
arrhythmias1.

Although some studies have shown that PRV is a promising
technique for identifying several conditions and that PRV is
highly correlated with HRV, these results have mainly been
observed in healthy or resting subjects in the supine position1.
On the other hand, some studies have argued that PRV is not
necessarily a good surrogate for HRV, mainly because of the
errors made when performing the processing and acquisition
methods and physiological factors, such as changes in pulse
transit time (PTT)1,12. As explained in refs. 13 and 14, PTT plays
an important role in the differences that are seen between PRV
and HRV.
PTT is the time it takes for the pulse wave to travel from the

heart to the peripheral tissue where it is being measured, and it
has been shown to be related to blood pressure (BP)15. BP
refers to the force that the heart uses to pump blood through
the circulatory system and is one of the main measurements
used to understand the behavior of the cardiovascular
system16. Its associated abnormalities, especially hypertension
(i.e., high BP), are associated with fatal cardiovascular
diseases17.
Because of the relationship between PTT and BP and the

effects of PTT on PRV measurements13,14, the aim of this study
was to evaluate the relationship between HRV and PRV
measured from ECG and PPG signals, respectively, obtained
from critically ill patients with hypotension, hypertension, or
normotension. It was hypothesized that HRV and PRV would
not exhibit the same behavior and that their relationship would
be affected by the BP state. To evaluate these hypotheses,
signals obtained from the public MIMIC-III database from
Physionet were analyzed, and PRV and HRV indices were
extracted and compared to assess the relationship between
HRV and PRV.
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RESULTS
Signal selection and segmentation
Data used in this study was obtained from the freely available
MIMIC-III Waveform18,19. The dataset was filtered according to the
length of the recordings and the quality of the ABP signals for
each patient. In total, 230 records with poor-quality (PQ) ABP
signals and a short duration were discarded. The signals from the
remaining 270 records were used in the subsequent analysis. All
signals were segmented in 5-min length segments with 10 s
overlap between consecutive segments. In total, 4937 5-min
segments were extracted, of which 54% were labeled as
hypertensive, 25% were labeled as hypotensive, and the remain-
ing 22% were labeled as normotensive events, according to the
ABP signals.

Extraction of indices
Time- and frequency-domain and nonlinear indices were obtained
from HRV and PRV signals (Table 1). Table 2 summarizes the
behavior of these indices when measured during hypotension,
normotension, and hypertension.

Correlation between PRV and HRV indices
The correlation between indices measured from PRV and HRV was
assessed and the obtained results are summarized in Fig. 1. Most of
the indices showed a good correlation between HRV and PRV during
all three BP states, although some of the indices tended to show a
lower correlation during normotension. Interestingly, the entropy-
and phase-derived indices had lower correlations. In addition, lower
correlation coefficients were observed for indices associated with
short-term changes, such as RMSSD, SD1, HF, and A1.

Comparison between HRV and PRV using the Friedman rank
sum test
Because most of the data obtained from the different indices were
non-normally distributed and did not comply with the assumption
of homogeneity of variances, Friedman rank sum tests were used
as a nonparametric alternative to repeated measures ANOVA to
compare the indices measured from HRV and PRV under different
BP states. The results from these tests for the comparison between
HRV and PRV are shown in Table 3. For most indices, there were
significant differences (p value < 0.001) between HRV and PRV,

Table 1. Indices extracted from pulse rate variability (PRV) and heart rate variability (HRV).

Indices Description, units of measurement

Time-domain7 AVNN Average value of the normal-to-normal beats (NN), s

SDNN Standard deviation of the NN, s

RMSSD Root mean squared value of successive differences of NN, s

NN50 Number of interval differences of successive NN intervals greater than 50ms

pNN50 Proportion of NN50 divided by the total number of NN intervals

Frequency-domain7 VLF Power of the power spectrum of interpolated PRV/HRV in the band between 0.0033 and 0.04 Hz, s2

LF Power of the power spectrum of interpolated PRV/HRV in the band between 0.04 and 0.15 Hz, s2

HF Power of the power spectrum of interpolated PRV/HRV in the band between 0.15 and 0.40 Hz, s2

TP Power of the power spectrum of interpolated PRV/HRV in the band between 0.0033 and 0.40 Hz, s2

nLF Normalized power of the LF band

nHF Normalized power of the HF band

LF/HF Ratio of the LF and HF bands

cLFx X coordinate of the centroid of the LF band, Hz

cHFx X coordinate of the centroid of the HF band, Hz

cTPx X coordinate of the centroid of the TP band, Hz

cLFy Y coordinate of the centroid of the LF band, s2

cHFy Y coordinate of the centroid of the HF band, s2

cTPy Y coordinate of the centroid of the TF band, s2

SpEn Spectral entropy of the power spectrum

Poincaré plot S Area of the ellipse formed in the Poincaré plot43, s2

SD1 Dispersion of the Poincaré plot points perpendicular to the line of identity43, s

SD2 Dispersion of the Poincaré plot points along the line of identity43, s

SD1/SD2 Ratio between SD1 and SD243

COM Normalized summation of the distances between each point of the Poincaré plot and its centroid

Entropy analysis BSE Basic scale entropy of PRV/HRV trends44

SSE Sign-series entropy of PRV/HRV trends45,46

ApEn Approximate entropy of PRV/HRV trends47

SampEn Sample entropy of PRV/HRV trends47

MSE Multiscale entropy of PRV/HRV trends47

Phase analysis47 D2 Correlation dimension of PRV/HRV trends

LYA Lyapunov exponent of PRV/HRV trends

DFA a48 A1 Short-range scaling exponent, α1
A2 Long-range scaling exponent, α2

a Detrended fluctuation analysis.
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regardless of the BP state. Only VLF and cTPy showed
nonsignificant differences between the two measurement sources
during normotension.

Comparison between BP states using Kruskal–Wallis tests
Kruskal–Wallis tests, a nonparametric alternative to one-way
ANOVA, were used to compare indices among BP states when
measured using PRV or HRV. Pairwise Wilcoxon tests were used as
post hoc analyses when the Kruskal–Wallis results indicated
significant differences. The results are shown in Tables 4 and 5,
and there were statistically significant differences among BP states
from all indices, except for cHFx measured using HRV. The
pairwise comparisons revealed that most of the indices showed
differences among the three stages, especially when measured
using PRV.

Bland–Altman analysis to assess agreement
Because neither correlation analyses nor ANOVA could be used to
evaluate the agreement between HRV and PRV measurements,
Bland–Altman analyses, as proposed in20, were performed for
each extracted index. Bias and LoAs were measured, and the
results are summarized in Figs. 2 and 3.
As shown in Fig. 2, most of the indices were overestimated

when measured from PRV. Some others were underestimated,
such as nLF, nHF, LF/HF, SSE, D2, A1, and A2. Indices associated
with short-term changes were especially overestimated when
measured from PRV. Although a general conclusion is difficult to
be achieved, for most of the indices the bias differed according
to the BP state. Interestingly, most indices showed a larger
absolute bias during normotension. A similar trend was observed
in the differences between the upper and lower LoAs, with large
differences especially in indices associated with short-term

Table 2. Mean ± standard deviation of indices measured from pulse rate variability (PRV) and heart rate variability (HRV) under each blood
pressure state.

Indices Hypotension Normotension Hypertension

PRV HRV PRV HRV PRV HRV

AVNN a 826.4 ± 104.5 826.0 ± 104.5 755.7 ± 136.6 755.4 ± 136.5 836.9 ± 93.9 836.5 ± 93.7

SDNN a 10.8 ± 7.12 9.49 ± 7.12 14.4 ± 10.6 12.9 ± 10.5 16.3 ± 12.5 15.0 ± 12.7

RMSSD a 11.8 ± 5.48 8.66 ± 4.33 14.7 ± 8.12 10.5 ± 6.23 15.6 ± 8.84 11.9 ± 7.64

NN50 2.58 ± 9.18 1.37 ± 6.97 4.88 ± 12.7 2.03 ± 9.21 6.13 ± 13.5 2.93 ± 8.03

pNN50 a 6.25 ± 21.0 3.00 ± 14.1 12.7 ± 34.0 5.27 ± 24.9 16.9 ± 38.6 8.21 ± 23.2

VLF b 1.31 ± 3.11 1.30 ± 3.20 1.54 ± 3.10 1.60 ± 3.18 4.21 ± 9.14 4.29 ± 9.44

LF b 0.75 ± 1.30 0.68 ± 1.15 1.05 ± 2.10 0.98 ± 2.01 2.06 ± 4.13 1.97 ± 4.31

HF b 1.44 ± 3.09 1.09 ± 2.75 1.69 ± 2.89 1.23 ± 3.06 2.15 ± 3.99 1.69 ± 3.93

TP b 3.50 ± 5.81 3.07 ± 5.31 4.28 ± 7.43 3.82 ± 7.46 8.41 ± 15.1 7.95 ± 15.4

nLF 0.71 ± 0.39 0.95 ± 0.51 0.93 ± 0.82 1.55 ± 1.36 0.97 ± 0.74 1.26 ± 0.92

nHF 0.26 ± 0.10 0.28 ± 0.11 0.24 ± 0.10 0.26 ± 0.11 0.27 ± 0.11 0.28 ± 0.11

LF/HF 0.43 ± 0.17 0.36 ± 0.17 0.42 ± 0.22 0.34 ± 0.24 0.36 ± 0.17 0.30 ± 0.16

cLFx 0.09 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 0.09 ± 0.01 0.08 ± 0.01

cHFx 0.27 ± 0.01 0.27 ± 0.01 0.28 ± 0.02 0.27 ± 0.02 0.28 ± 0.02 0.27 ± 0.02

cTPx 0.15 ± 0.05 0.13 ± 0.05 0.14 ± 0.05 0.12 ± 0.06 0.13 ± 0.05 0.11 ± 0.05

cLFy
c 6.84 ± 11.8 6.26 ± 9.84 10.9 ± 22.3 10.4 ± 21.5 24.0 ± 69.5 24.6 ± 81.1

cHFy
c 8.15 ± 22.9 6.78 ± 23.0 15.4 ± 24.8 10.3 ± 19.5 9.23 ± 16.3 7.39 ± 16.6

cTPy
c 48.3 ± 201.7 50.5 ± 204.4 35.1 ± 61.7 36.1 ± 66.1 105.6 ± 273.1 110.2 ± 279.0

SpEn 24.5 ± 1.65 24.2 ± 1.95 23.9 ± 1.29 23.2 ± 1.60 23.8 ± 1.91 23.4 ± 2.14

S 0.06 ± 0.03 0.05 ± 0.02 0.07 ± 0.05 0.05 ± 0.04 0.08 ± 0.05 0.06 ± 0.04

SD1 a 8.32 ± 3.87 6.12 ± 3.06 10.4 ± 5.74 7.43 ± 4.41 11.1 ± 6.25 8.39 ± 5.40

SD2 2.34 ± 0.30 2.34 ± 0.30 2.14 ± 0.39 2.14 ± 0.30 2.37 ± 0.27 2.37 ± 0.27

SD1/SD2 a 3.65 ± 2.00 2.70 ± 1.71 4.86 ± 2.51 3.48 ± 1.90 4.73 ± 2.71 3.59 ± 2.31

COM a 0.34 ± 0.60 0.28 ± 0.58 0.64 ± 1.21 0.55 ± 1.14 0.84 ± 1.61 0.76 ± 1.59

BSE 5.65 ± 0.29 5.29 ± 0.45 5.68 ± 0.23 5.31 ± 0.40 5.71 ± 0.23 5.45 ± 0.36

SSE 2.69 ± 0.17 2.78 ± 0.12 2.66 ± 0.21 2.80 ± 0.14 2.63 ± 0.18 2.75 ± 0.15

ApEn 0.43 ± 0.13 0.40 ± 0.17 0.42 ± 0.12 0.36 ± 0.16 0.42 ± 0.13 0.38 ± 0.16

SampEn 0.45 ± 0.20 0.43 ± 0.25 0.40 ± 0.16 0.34 ± 0.19 0.42 ± 0.20 0.39 ± 0.23

MSE 4.99 ± 1.95 4.47 ± 2.16 4.63 ± 1.93 4.20 ± 1.88 4.86 ± 1.92 4.48 ± 1.98

D2 −0.54 ± 33.2 −0.98 ± 19.6 −1.12 ± 31.7 −0.34 ± 8.56 −1.19 ± 33.2 −1.31 ± 20.1

LYA 3.27 ± 1.10 3.03 ± 1.04 3.52 ± 1.18 3.13 ± 1.08 3.54 ± 1.12 3.34 ± 1.14

A1 0.67 ± 0.39 0.77 ± 0.65 0.68 ± 0.18 0.80 ± 0.25 0.74 ± 0.21 0.84 ± 0.25

A2 0.87 ± 0.25 0.91 ± 0.27 0.90 ± 0.24 0.94 ± 0.23 0.88 ± 0.23 0.91 ± 0.24

a Values multiplied by 1 × 10−3.
b Values divided by 1 × 109.
c Values divided by 1 × 106.
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changes. The largest differences were observed for D2, SampEn,
and most of the frequency-domain indices. NN50 and
pNN50 showed a bias and difference between LoAs of zero, which
shows very good agreement between HRV and PRV.
The BAR results are shown in Table 6. For NN50 and pNN50, the

bias and difference between LoAs were equal to zero for all
conditions, and thus, the ratio was not measured because the
agreement was total. The agreement tended to remain as good,
moderate, or insufficient regardless of the BP state. Most of the
indices that showed insufficient agreement are associated with
short-term changes.

DISCUSSION
HRV has been proposed as a useful, noninvasive, indirect
measurement of the cardiac ANS. It has been used for several
decades as an indicator of parasympathetic and sympathetic
activity3, and it has been studied as a biomarker for a broad range
of diseases. However, it has been found that the measurement of
HRV in real-life scenarios can be impaired by several conditions,
especially because of the cumbersome instrumentation needed
for the acquisition of the ECG signals, which has, to some extent,
precluded the usefulness and acceptance of HRV as a tool for

clinicians to diagnose and monitor diseases, and for larger public
health applications6. Hence, several researchers have started to
investigate the possibility of replacing HRV information with a very
similar signal, PRV, which is based on pulse waves that are easier
to obtain and more ubiquitous, such as PPG signals9. Nonetheless,
the promise of PRV as a valid surrogate for HRV has been
questioned, and some studies have concluded that, although they
are very similar, PRV and HRV are not exactly the same and that
PRV may not be a suitable surrogate for HRV, especially when
measured in disease states and in older subjects1,12.
Various explanations for the differences between HRV and PRV

have been given. Some authors argue that the differences are
mainly due to processing issues, such as the identification of
fiducial points from the PPG signal21,22, the sampling rate used for
the acquisition of the signals23–25, and the processing techniques
used for the analysis of PRV26. However, other authors have
suggested that, although these factors may affect PRV, physiolo-
gical issues may have a more profound effect on the differences
between these two signals12,27. The relationship between HRV and
PRV may be affected by not only PTT but also other factors, such
as external forces on the arterial vessels28, the presence of
pathologies, including cardiovascular disorders28–30, and the body
location at which PRV is being measured8,31. An important

Fig. 1 Linear relationship between pulse rate variability and heart rate variability. Spearman correlation coefficients (ρ) were measured
between a time-domain indices, b absolute and entropy indices from the frequency domain, c relative indices from the frequency domain,
d centroid-related indices from the frequency domain, e Poincaré plot indices, f entropy-related indices, g phase-related indices, and h indices
resulting from the detrended fluctuation analysis. All indices were obtained from pulse rate variability and heart rate variability in each blood
pressure state (hypotension, normotension, and hypertension).
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contributor to these differences is respiratory activity, which
affects vasoconstriction and modulates aortic and left-ventricular
pressure, altering the time of opening of the aortic valve during
the cardiac cycle32. Nonetheless, several processes take part in the
information transmission from the pure electrical ECG and the R
waves to the mechanical PPG pulse wave, as is explained in ref. 33.
These factors may also explain in part the differences observed
between HRV and PRV, especially under non-resting conditions
and in non-healthy, older subjects. Hence, PRV should not be
considered a surrogate of HRV, but should be treated as an
independent biomarker instead, which may contain additional
information not available in HRV33.
Thus, because of the differences observed in previous studies

between HRV and PRV, the aim of this study was to assess the
relationship between these two signals in critically ill subjects
hospitalized in intensive care units. Because these subjects
exhibited changes in BP, PRV, and HRV were also compared when

the subjects experienced normotension or hyper- and hypoten-
sive events.
A first analysis was performed comparing PRV and HRV indices

using linear correlation. Among the time-domain indices, an
almost perfect correlation was observed between HRV and PRV for
AVNN, regardless of BP state. For SDNN, NN50, and pNN50, higher
correlations were observed as BP increased, but pNN50 had the
lowest correlation of the time-domain indices in all BP states.
RMSSD, which reflects short-term changes in HRV and PRV2, had a
lower correlation, with a correlation coefficient below 0.8, during
normotension.
The frequency-domain indices exhibited different trends.

Absolute indices (VLF, LF, HF, and TP) and the ratio between LF
and HF (LF/HF) had stable and high correlations. For normalized

Table 3. Friedman rank sum tests results for the comparison between
pulse rate variability and heart rate variability in the different blood
pressure states. ‡: p value less than 5.00 × 10−2; †: p value less than
5.00 × 10−3; ⋆: p value less than 5.00 × 10−4.

Indices Friedman rank sum test p values

Hypotension Normotension Hypertension

AVNN 9.48 × 10−14⋆ 6.24 × 10−10⋆ 1.53 × 10−21⋆
SDNN 3.32 × 10−72⋆ 2.01 × 10−50⋆ 9.98 × 10−169⋆
RMSSD 1.21 × 10−181⋆ 1.40 × 10−158⋆ 0.00⋆
NN50 7.25 × 10−22⋆ 2.30 × 10−50⋆ 1.01 × 10−134⋆
pNN50 1.23 × 10−22⋆ 5.56 × 10−52⋆ 8.87 × 10−137⋆
VLF 2.48 × 10−3

† 4.83 × 10−1 2.42 × 10−9⋆
LF 3.78 × 10−34⋆ 3.27 × 10−46⋆ 8.82 × 10−89⋆
HF 7.96 × 10−180⋆ 4.73 × 10−160⋆ 0.00⋆
TP 1.86 × 10−79⋆ 7.94 × 10−73⋆ 1.00 × 10−159⋆
nLF 4.39 × 10−17⋆ 6.89 × 10−19⋆ 5.16 × 10−16⋆
nHF 1.12 × 10−136⋆ 1.07 × 10−151⋆ 3.10 × 10−236⋆
LF/HF 3.62 × 10−109⋆ 1.31 × 10−129⋆ 4.12 × 10−189⋆
cLFx 3.05 × 10−14⋆ 6.61 × 10−24⋆ 2.49 × 10−66⋆
cHFx 4.05 × 10−22⋆ 1.44 × 10−30⋆ 6.27 × 10−66⋆
cTPx 5.12 × 10−134⋆ 8.87 × 10−163⋆ 4.34 × 10−250⋆
cLFy 1.17 × 10−19⋆ 8.72 × 10−24⋆ 3.47 × 10−34⋆
cHFy 1.13 × 10−142⋆ 7.43 × 10−136⋆ 1.33 × 10−242⋆
cTPy 1.40 × 10−7⋆ 4.31 × 10−1 1.61 × 10−9⋆
SpEn 5.09 × 10−56⋆ 1.32 × 10−90⋆ 1.74 × 10−172⋆
S 4.08 × 10−183⋆ 5.69 × 10−161⋆ 0.00⋆
SD1 1.21 × 10−181⋆ 1.40 × 10−158⋆ 0.00⋆
SD2 8.76 × 10−14⋆ 5.67 × 10−10⋆ 1.42 × 10−21⋆
SD1/SD2 1.69 × 10−179⋆ 3.20 × 10−156⋆ 0.00⋆
COM 2.75 × 10−73⋆ 2.70 × 10−50⋆ 1.56 × 10−169⋆
BSE 1.35 × 10−262⋆ 1.58 × 10−230⋆ 0.00⋆
SSE 2.22 × 10−77⋆ 7.27 × 10−114⋆ 1.34 × 10−251⋆
ApEn 2.58 × 10−21⋆ 8.74 × 10−57⋆ 4.37 × 10−83⋆
SampEn 2.44 × 10−19⋆ 8.46 × 10−56⋆ 4.03 × 10−88⋆
MSE 3.63 × 10−30⋆ 2.21 × 10−29⋆ 9.07 × 10−30⋆
D2 1.09 × 10−11⋆ 3.28 × 10−22⋆ 1.00 × 10−14⋆
LYA 1.18 × 10−12⋆ 7.83 × 10−18⋆ 5.71 × 10−16⋆
A1 1.71 × 10−102⋆ 1.04 × 10−101⋆ 8.73 × 10−215⋆
A2 5.62 × 10−25⋆ 2.89 × 10−29⋆ 1.45 × 10−34⋆

Table 4. Kruskal–Wallis and post hoc multiple comparisons p values
for the comparison among blood pressure states from indices
measured from pulse rate variability. ‡: p value less than 5.00 × 10−2; †:
p value less than 5.00 × 10−3; ⋆: p value less than 5.00 × 10−4.

Indices KW a Multiple comparisons

PW1 b PW2 c PW3 d

AVNN 2.1 × 10−60⋆ 7.5 × 10−36⋆ 6.3 × 10−1 3.8 × 10−59⋆
SDNN 9.8 × 10−57⋆ 1.0 × 10−25⋆ 1.8 × 10−55⋆ 1.9 × 10−4⋆
RMSSD 1.1 × 10−53⋆ 2.8 × 10−20⋆ 1.4 × 10−55⋆ 1.6 × 10−3

†

NN50 8.5 × 10−43⋆ 1.7 × 10−6⋆ 6.6 × 10−41⋆ 8.7 × 10−12⋆
pNN50 1.5 × 10−43⋆ 1.3 × 10−6⋆ 1.4 × 10−41⋆ 5.6 × 10−12⋆
VLF 2.7 × 10−70⋆ 1.5 × 10−14⋆ 7.6 × 10−64⋆ 3.5 × 10−21⋆
LF 5.1 × 10−75⋆ 2.5 × 10−4⋆ 1.1 × 10−66⋆ 2.1 × 10−30⋆
HF 9.2 × 10−32⋆ 1.6 × 10−8⋆ 1.3 × 10−33⋆ 2.8 × 10−4⋆
TP 1.3 × 10−62⋆ 2.5 × 10−11⋆ 1.6 × 10−57⋆ 2.9 × 10−19⋆
nLF 4.7 × 10−5⋆ 2.7 × 10−4⋆ 7.4 × 10−1 2.3 × 10−4⋆
nHF 4.2 × 10−29⋆ 6.1 × 10−3

‡ 1.9 × 10−29
† 1.5 × 10−8

†

LF/HF 4.8 × 10−20⋆ 6.2 × 10−1 5.0 × 10−19⋆ 2.8 × 10−8⋆
cLFx 8.8 × 10−12⋆ 5.5 × 10−12⋆ 2.1 × 10−4⋆ 1.8 × 10−5⋆
cHFx 1.6 × 10−7⋆ 3.5 × 10−5⋆ 4.6 × 10−7⋆ 6.9 × 10−1

cTPx 2.0 × 10−21⋆ 1.2 × 10−2
‡ 3.1 × 10−21⋆ 7.8 × 10−7⋆

cLFy 3.2 × 10−73⋆ 1.3 × 10−6⋆ 4.4 × 10−67⋆ 3.1 × 10−26⋆
cHFy 1.3 × 10−40⋆ 3.0 × 10−29⋆ 3.8 × 10−31⋆ 1.6 × 10−6⋆
cTPy 1.1 × 10−56⋆ 2.5 × 10−43⋆ 2.5 × 10−48⋆ 2.3 × 10−1

SpEn 2.5 × 10−40⋆ 4.2 × 10−39⋆ 5.8 × 10−28⋆ 8.3 × 10−3
‡

S 1.3 × 10−49⋆ 2.3 × 10−6⋆ 8.6 × 10−51⋆ 6.8 × 10−12⋆
SD1 1.1 × 10−53⋆ 2.8 × 10−20⋆ 1.4 × 10−55⋆ 1.6 × 10−3

†

SD2 2.0 × 10−60⋆ 7.9 × 10−36⋆ 6.2 × 10−1 3.6 × 10−59⋆
SD1/SD2 1.2 × 10−64⋆ 4.9 × 10−53⋆ 2.8 × 10−51⋆ 2.3 × 10−2

‡

COM 1.1 × 10−56⋆ 8.8 × 10−26⋆ 2.1 × 10−55⋆ 2.0 × 10−4⋆
BSE 1.4 × 10−7⋆ 9.5 × 10−1 2.5 × 10−6⋆ 1.7 × 10−4⋆
SSE 7.1 × 10−24⋆ 4.4 × 10−2

‡ 2.2 × 10−23⋆ 3.0 × 10−8⋆
ApEn 1.1 × 10−6⋆ 1.2 × 10−5⋆ 9.5 × 10−6⋆ 1.0

SampEn 8.2 × 10−10⋆ 9.2 × 10−11⋆ 1.4 × 10−5⋆ 2.8 × 10−2
‡

MSE 1.1 × 10−5⋆ 6.0 × 10−6⋆ 1.2 × 10−2
‡ 1.5 × 10−2

‡

D2 5.7 × 10−3
‡ 4.0 × 10−1 3.5 × 10−3

† 7.0 × 10−1

LYA 2.9 × 10−14⋆ 6.9 × 10−8⋆ 2.3 × 10−14⋆ 1.0

A1 1.3 × 10−37⋆ 3.7 × 10−2
‡ 3.8 × 10−33⋆ 1.7 × 10−16⋆

A2 2.4 × 10−2
‡ 1.8 × 10−2

‡ 3.9 × 10−1 2.8 × 10−1

a Kruskal–Wallis test results.
b Pairwise comparisons (PW) between hypotension and normotension.
c PW between hypotension and hypertension.
d PW between normotension and hypertension.
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indices, on the other hand, there were differences according to
the BP state, with better correlations during normotension.
Spectral entropy (SpEn) exhibited a behavior similar to that
observed for RMSSD. Indices related to the centroid of the
frequency bands in the y-coordinate were relatively stable, while
the x-coordinate of the centroids featured the worst correlations,
especially for the x-coordinate of the HF band centroid.
The correlations for the nonlinear indices were, in general,

worse than those for the time- and frequency-domain indices. This
was especially true for the phase-related indices, the correlation
dimension and the Lyapunov exponent. Among the Poincaré plot
indices, SD2 had a nearly perfect correlation between HRV and
PRV, while SD1/SD2 and SD1 exhibited behaviors similar to that of
RMSSD. The correlations for the entropy-related indices were also

relatively poor. The correlation for the BSE values was strongly
affected by normotension, and although SampEn, ApEn, and SSE
were stable regardless of the BP state, their correlation coefficients
were low. Finally, A1 and A2 from the detrended fluctuation
analysis behaved similarly to SD1 and SD2, respectively, probably
because of the differences between the short- and long-term
changes in HRV and PRV.
PRV and HRV were also compared using a Friedman rank sum

test, as a nonparametric alternative of a repeated-measured
ANOVA. The results indicated that there were differences
between PRV and HRV in all BP states for all indices, except for
the measurements of VLF and cTPy, which showed nonsignifi-
cant differences between HRV and PRV during normotension.
These two indices need to be considered with care because they
are probably a reflection of long-term changes, especially VLF,
and require recordings longer than 5 min. In general, these
results indicate that PRV and HRV are not the same, regardless of
the BP state.
In addition, it was also determined if there were individual

differences in PRV and HRV among BP states. The Kruskal–Wallis
test results revealed that, in general, both HRV and PRV were
different among hypotension, normotension, and hypertension
states. The only index for which there was not a statistically
significant difference was cHFx when measured from HRV. Based
on the post hoc comparisons, it was concluded that PRV showed
more differences than HRV. Again, as was observed for the
correlations, these differences were especially observed in the
nonlinear indices and in indices reflecting short-term changes,
such as RMSSD, SD1, SpEn, and A1. Interestingly, most of the
differences were observed when normotension was compared to
either of the two other BP states.
Finally, agreement between HRV and PRV was assessed using

Bland–Altman analysis and three measurements were obtained
from these to evaluate the agreement between HRV and PRV: the
bias, difference between limits of agreement, and BAR. For the
time-domain indices, SDNN and RMSSD were overestimated when
using PRV, whereas AVNN, NN50, and pNN50 had a bias close to
zero. The absolute-power frequency-domain indices were also
overestimated when using PRV, especially HF, LF/HF, and TP. On
the contrary, the relative power indices were usually under-
estimated. The y-coordinate of the centroid of the HF band was
also largely overestimated when using PRV. This same trend was
observed for all Poincaré-plot indices, as well as for SampEn and
ApEn, whereas SSE, D2, and both A1 and A2 were underestimated.
The degrees of over- and underestimation tended to be larger
during normotension. This same trend was observed for the limits
of agreement: larger differences were observed during normoten-
sion and when some short-term indices, such as RMSSD, HF, cHFy,
SD1, and A1, were measured.
The obtained BARs indicated good agreement for AVNN, VLF,

LF, HF, TP cHFx, cLFy, cHFy, cTPy, SpEn, SD2, BSE, SSE, MSE, LYA,
and A2. Insufficient agreement was observed for SDNN, RMSSD,
nLF, nHF, LF/HF, cLFx, cTPx, S, SD1, SD1/SD2, COM, ApEn, SampEn,
D2, and A1. Most short-term indices showed an extremely large
BAR, which indicates a very poor agreement between HRV and
PRV for the measurement of these indices in critically ill patients
regardless of the BP state. There was no indication that BP
changes caused significant changes in the agreement.
In conclusion, the obtained results indicate that PRV and HRV

were not the same regardless of the BP state of the subjects,
especially when nonlinear indices and indices associated with
short-term changes were analyzed, which agrees with the results
of previous studies8,14,30,34. Interestingly, the differences tended to
be larger during normotension. However, although they are not
the same and PRV tends to over- or underestimate HRV, both
signals behave similarly in most cases. Nonetheless, the
Kruskal–Wallis results indicate that PRV seems to be more sensitive
to changes in BP. This could be considered as an indication that

Table 5. Kruskal–Wallis and post hoc multiple comparisons p values
for the comparison among blood pressure states from indices
measured from heart rate variability. ‡: p value less than 5.00 × 10−2; †:
p value less than 5.00 × 10−3; ⋆: p value less than 5.00 × 10−4.

Indices KWa Multiple comparisons

PW1 b PW2 c PW3 d

AVNN 3.8 × 10−61⋆ 3.5 × 10−36⋆ 6.4 × 10−1 6.1 × 10−60⋆
SDNN 4.0 × 10−53⋆ 4.8 × 10−26⋆ 6.1 × 10−51⋆ 3.2 × 10−4⋆
RMSSD 2.6 × 10−63⋆ 4.0 × 10−15⋆ 2.2 × 10−63⋆ 1.3 × 10−11⋆
NN50 5.8 × 10−46⋆ 5.3 × 10−2 2.9 × 10−36⋆ 8.0 × 10−21⋆
pNN50 5.7 × 10−46⋆ 5.1 × 10−2 2.5 × 10−36⋆ 9.4 × 10−21⋆
VLF 4.2 × 10−68⋆ 3.8 × 10−19⋆ 3.1 × 10−63⋆ 4.2 × 10−16⋆
LF 3.0 × 10−64⋆ 2.2 × 10−4⋆ 1.7 × 10−57⋆ 1.6 × 10−25⋆
HF 3.8 × 10−30⋆ 1.1 × 10−1 1.8 × 10−26⋆ 1.2 × 10−13⋆
TP 5.6 × 10−57⋆ 5.0 × 10−9⋆ 1.3 × 10−51⋆ 2.8 × 10−19⋆
nLF 7.1 × 10−7⋆ 1.2 × 10−6⋆ 2.4 × 10−3

† 4.4 × 10−3
†

nHF 1.4 × 10−20⋆ 3.9 × 10−9⋆ 3.1 × 10−22⋆ 1.0

LF/HF 1.5 × 10−17⋆ 3.3 × 10−11⋆ 2.0 × 10−16⋆ 2.7 × 10−1

cLFx 7.6 × 10−17⋆ 6.9 × 10−15⋆ 5.8 × 10−11⋆ 7.9 × 10−4
†

cHFx 5.5 × 10−1 - - -

cTPx 3.2 × 10−17⋆ 2.4 × 10−8⋆ 4.1 × 10−18⋆ 1.0

cLFy 1.3 × 10−65⋆ 8.3 × 10−7⋆ 5.9 × 10−61⋆ 2.5 × 10−22⋆
cHFy 8.9 × 10−20⋆ 8.2 × 10−8⋆ 1.1 × 10−21⋆ 8.9 × 10−1

cTPy 2.0 × 10−55⋆ 1.2 × 10−46⋆ 2.9 × 10−45⋆ 3.7 × 10−1

SpEn 9.8 × 10−48⋆ 1.4 × 10−48⋆ 3.9 × 10−25⋆ 6.5 × 10−10⋆
S 5.7 × 10−59⋆ 6.3 × 10−2 2.4 × 10−50⋆ 2.4 × 10−27⋆
SD1 2.6 × 10−63⋆ 4.0 × 10−15⋆ 2.2 × 10−63⋆ 1.3 × 10−11⋆
SD2 3.7 × 10−61⋆ 3.8 × 10−36⋆ 6.3 × 10−1 5.9 × 10−60⋆
SD1/SD2 3.1 × 10−71⋆ 6.4 × 10−61⋆ 2.1 × 10−56⋆ 4.7 × 10−1

COM 2.7 × 10−53⋆ 2.7 × 10−26⋆ 4.6 × 10−51⋆ 3.6 × 10−4⋆
BSE 8.6 × 10−34⋆ 1.0 6.3 × 10−24⋆ 1.0 × 10−21⋆
SSE 1.9 × 10−23⋆ 9.7 × 10−4

† 3.7 × 10−10⋆ 1.9 × 10−20⋆
ApEn 4.2 × 10−10⋆ 1.9 × 10−10⋆ 7.1 × 10−6⋆ 1.5 × 10−2

‡

SampEn 4.7 × 10−16⋆ 3.4 × 10−17⋆ 1.7 × 10−7⋆ 6.6 × 10−5⋆
MSE 1.5 × 10−4⋆ 1.2 × 10−3

† 1.0 2.3 × 10−4⋆
D2 1.2 × 10−7⋆ 4.2 × 10−2

‡ 2.8 × 10−3
† 5.5 × 10−7⋆

LYA 3.3 × 10−24⋆ 3.3 × 10−3
† 1.4 × 10−22⋆ 7.8 × 10−9⋆

A1 4.8 × 10−30⋆ 3.0 × 10−6⋆ 7.0 × 10−32⋆ 3.2 × 10−5⋆
A2 2.4 × 10−2

‡ 1.1 × 10−1 1.0 2.3 × 10−2
‡

a Kruskal–Wallis test results.
b Pairwise comparisons (PW) between hypotension and normotension.
c PW between hypotension and hypertension.
d PW between normotension and hypertension.

E. Mejía-Mejía et al.

6

npj Digital Medicine (2021)    82 Published in partnership with Seoul National University Bundang Hospital



PRV contains additional information not available in HRV, which
might help increase the applicability of the technique in clinical
scenarios. Moreover, the widespread use of PPG in wearable
devices is generating a lot of research with PRV, which is aiming to
apply this more practical technique, in comparison with HRV, for
the diagnosis and monitoring of several physiological phenomena
related to disease (i.e., cardiovascular disease, mental health). This,
in turn, shows the applicability and potential of PRV for public
health studies and, hence, for screening subjects that may need
later further analyses in the clinical setting, with more
specialized tools.
Future studies are needed to clarify the origin of the differences

between HRV and PRV and to evaluate the capability of PRV to
identify BP states, which aid in the noninvasive, continuous
measurement of BP. Moreover, it is critical that measurement and
analysis guidelines and standards are adopted for PRV studies.
This would enhance the quality of the research in this field,
allowing the comparability among results obtained in different
studies, and possibly increasing the applicability of PRV in clinical
settings.
This study has several limitations. First, the signals used were

obtained from an available database from Physionet. Thus, several
variables were not controlled for, and although all subjects were

hospitalized in an intensive care unit, their diagnosis was
unknown, which may have affected the results. Another limitation
involves the segmentation of the data into 5-min-long segments,
which may have been too short for the extraction of some indices,
especially frequency-domain indices. However, this length was
considered necessary to obtain as many segments as possible
during each BP state and still ensure sufficient data for the PRV
and HRV analysis. Moreover, an overlap of 10 s was used to
separate the segments, which might have been too short to reflect
BP changes. Again, this was done to produce a larger database.
Another limitation of the study involves the classification of
segments in each BP state, specifically determining exactly which
state was predominant in each segment, especially in subjects
who exhibited two or more BP states during the entire recording.
A larger number of available segments might have helped to
mitigate this effect, and outliers for each PRV and HRV index were
corrected. It is important to mention that MIMIC-III database lacks
synchronicity35, which could bias the results obtained in this
study. Finally, it is also worth noting that some of the extracted
indices were not optimized, especially the nonlinear indices such
as Poincaré-plot indices, BSE, SSE, phase indices, and DFA-related
indices. Using an optimization procedure for these indices might
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lead to different results than those obtained in this study, as can
be seen in ref. 30.

METHODS
Signal selection
A subset of 500 records was obtained from the MIMIC-III Waveform
Database18,19. Each record in the subset contained the ECG, PPG, and
invasive arterial BP (ABP) signals, which were obtained at a 125 Hz
sampling rate, from critically ill subjects in adult intensive care units. As the
MIMIC-III is a publicly available database, ethical approval was not required
for this study.
These records were filtered to reject PQ signals and signals with length

of less than 5min. First, signals with a duration of less than 5min were
discarded. Then, a signal quality index (SQI) algorithm was employed to
detect good- and poor-quality ABP signals, as shown in Fig. 4. In the signal
quality assessment algorithm, the onsets from each ABP signal were
detected by applying the algorithm described in ref. 36, and the cardiac
cycles were obtained. Then, the quality of each cardiac cycle was assessed
using SQIs proposed in the literature37–39. A K-means clustering algorithm
was employed to automatically group good-quality (GQ) and poor-quality
(PQ) cardiac cycles in two clusters, with the SQIs used as features. Because
it was expected that most of the cycles would be of good quality, the
larger cluster was considered the GQ cluster. Then, the ratio (RGQ) between
the number of cycles grouped as “good-quality cycles” and the total

number of cycles was obtained as in (Eq. 1). The records with a RGQ greater
than or equal to 80% were considered GQ signals, and the remaining
records were discarded.

RGQ ¼ ð100%Þ nGQ
nGQ þ nPQ

(1)

Signal processing
MATLAB® (version 2020a) was used for signal processing. ECG, PPG, and
ABP signals were segmented into 5-min-long segments, with an overlap of
10 s between consecutive segments.
After segmentation, 5-min-long ABP signals were filtered using a 12 Hz,

fourth-order, lowpass Butterworth filter. Peaks and onsets were detected,
corrected, and interpolated using a cubic spline to obtain systolic blood
pressure (SBP) and diastolic blood pressure (DBP) trends . From the SBP
and DBP information, events of hypertension (SBP greater than 140mmHg
or DBP greater than 90mmHg) and hypotension (SBP lower than 90mmHg
or DBP lower than 60mmHg) were identified. Then, each 5 min segment
was labeled as hypertension, normotension, or hypotension according to
the most frequent label in each 5min segment. An example of these
trends and labels is shown in Fig. 5.
For HRV analysis, R peaks were detected from each 5-min segment

obtained from the ECG signals, using the algorithm proposed in ref. 40. HRV
was measured as the time difference, in milliseconds, between consecutive
R peaks. For the frequency-domain analysis, the uneven HRV series was
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interpolated using a cubic spline interpolation and a sampling rate of 4 Hz,
and the power spectrum was obtained using the Fast Fourier Transform
(FFT). Outliers in both the original and interpolated time series were
defined as values higher or lower than the mean value plus or minus 1.96
times the standard deviation of the series. These outliers were then
replaced with the mean value of the five previous values in the time series.
Figure 6a illustrates this process.
Similarly, after segmentation, the onset of each cardiac cycle from the

5-min-long PPG signals was obtained as the intersection point of the
tangent lines arising from the maximum slope point and the valley of the
waveform. This fiducial point was selected because of its robustness for
PRV analysis21,41. PRV was measured as the time difference, in milliseconds,
between consecutive onsets from the PPG signal, as shown in Fig. 6b.
Similar to the method used for HRV trends, PRV was interpolated using a
4 Hz sampling rate and a cubic spline interpolation, and outliers were
detected and corrected. Again, FFT was used to obtain the power
spectrum.
As was explained previously, time- and frequency-domain indices and

nonlinear indices extracted from Poincaré plot, entropy, phase, and
detrended-fluctuation analyses were obtained, as summarized in Table 1.

Statistical analysis
All statistical analyses were performed in MATLAB® and R (version 3.6.1). A
significance level of 5% (p value < 0.05) was considered significant for all
analyses, and the normality of data was assessed using a Lilliefors test.
The aim of this study was to assess the differences between HRV and

PRV indices extracted from critically ill subjects during hypo-, normo-, and
hypertensive events. Hence, the level of the linear relationship between
PRV and HRV indices was evaluated using the Spearman correlation
coefficient. The differences between HRV and PRV were also evaluated
using Friedman rank sum tests, and the differences among BP states were
assessed using Kruskal–Wallis tests, with pairwise Wilcoxon tests with
Bonferroni correction as post hoc analyses.
Moreover, because a good correlation does not imply good agreement,

the agreement between HRV and PRV during each of the BP states was
assessed using Bland–Altman analysis20. From the Bland–Altman plots, the
bias and difference between limits of agreement (LoAs) were obtained,
and the ratio of agreement (BAR) was measured using (Eq. 2) and (Eq. 3), as
suggested in refs. 8,42. Agreements were categorized as good (BAR ≤ 10%),
moderate (10% < BAR ≤ 20%), or insufficient (BAR > 20%).

LoA ¼ x ± 1:96σx ; x ¼ HRV� PRV (2)

BAR ¼ ð100%Þj 1:96σx
HRVþ PRV

j; x ¼ HRV� PRV (3)

Table 6. Ratio of agreement (BAR, %) derived from Bland–Altman
analysis as suggested in refs. 1,6. Good agreement (↑): BAR < 10%;
moderate agreeement (↔ ): 10% ≤ BAR < 20%; insufficient agreement
(↓): BAR ≥ 20%.

Indices Hypotension Normotension Hypertension

AVNN 3.92 × 10−1↑ 5.01 × 10−1↑ 4.43 × 10−1↑

SDNN 2.64 × 103↓ 1.81 × 103↓ 1.57 × 103↓

RMSSD 5.12 × 103↓ 5.31 × 103↓ 4.29 × 103↓

NN50 0.00↑ 0.00↑ 0.00↑

pNN50 0.00↑ 0.00↑ 0.00↑

VLF 2.27 × 10−7↑ 5.01 × 10−8↑ 7.81 × 10−8↑

LF 6.29 × 10−7↑ 4.99 × 10−7↑ 3.71 × 10−7↑

HF 1.36 × 10−6↑ 1.33 × 10−6↑ 9.33 × 10−7↑

TP 2.23 × 10−7↑ 2.27 × 10−7↑ 1.16 × 10−7↑

nLF 7.41 × 101↓ 6.44 × 101↓ 6.65 × 101↓

nHF 4.47 × 101↓ 6.03 × 101↓ 4.53 × 101↓

LF/HF 1.05 × 102↓ 1.37 × 102↓ 1.26 × 102↓

cLFx 3.07 × 101↓ 3.96 × 101↓ 5.81 × 101↓

cHFx 3.49↑ 7.39↑ 7.86↑

cTPx 2.14 × 102↓ 2.41 × 102↓ 2.40 × 102↓

cLFy 6.08 × 10−5↑ 4.00 × 10−5↑ 2.63 × 10−5↑

cHFy 3.36 × 10−4↑ 2.45 × 10−4↑ 2.43 × 10−4↑

cTPy 1.70 × 10−5↑ 8.54 × 10−6↑ 2.83 × 10−6↑

SpEn 7.04 × 10−2↑ 1.72 × 10−1↑ 8.91 × 10−2↑

S 1.00 × 103↓ 1.01 × 103↓ 8.08 × 102↓

SD1 7.24 × 103↓ 7.51 × 103↓ 6.07 × 103↓

SD2 1.39 × 10−1↑ 1.77 × 10−1↑ 1.56 × 10−1↑

SD1/SD2 1.66 × 104↓ 1.61 × 104↓ 1.46 × 104↓

COM 3.36 × 105↓ 2.27 × 105↓ 1.66 × 105↓

BSE 1.58↑ 1.41↑ 1.37↑

SSE 2.90↑ 3.12↑ 3.49↑

ApEn 4.09 × 101↓ 9.03 × 101↓ 6.70 × 101↓

SampEn 5.28 × 101↓ 1.39 × 102↓ 8.97 × 101↓

MSE 3.80↑ 5.14↑ 2.71↑

D2 3.33 × 102↓ 1.17 × 103↓ 9.49 × 102↓

LYA 4.15↑ 4.58↑ 1.85↑

A1 3.58 × 101↓ 3.17 × 101↓ 3.10 × 101↓

A2 1.13 × 101↔ 9.12↑ 7.47↑

Fig. 4 Signal quality assessment algorithm. This algorithm was
applied for discarding low-quality arterial blood pressure signals.
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Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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Fig. 6 Electrocardiography and photoplethymography analysis
for the extraction of heart rate variability and pulse rate
variability, respectively. Example of a an electrocardiography
(ECG) and b a photoplethysmography (PPG) signal. R peaks (black
circles on the ECG signal) were detected from ECG signals to
measure heart rate variability (HRV) as the time interval between
consecutive R peaks (RR intervals). Onsets (black circles on the PPG
signal) were detected from PPG signals to measure pulse rate
variability (PRV) as the time interval between consecutive onsets
(PP intervals).
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