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A hierarchical expert-guided machine learning framework for
clinical decision support systems: an application to traumatic
brain injury prognostication
Negar Farzaneh 1✉, Craig A. Williamson2,3,4, Jonathan Gryak1,5 and Kayvan Najarian1,2,5,6,7

Prognosis of the long-term functional outcome of traumatic brain injury is essential for personalized management of that injury.
Nonetheless, accurate prediction remains unavailable. Although machine learning has shown promise in many fields, including
medical diagnosis and prognosis, such models are rarely deployed in real-world settings due to a lack of transparency and
trustworthiness. To address these drawbacks, we propose a machine learning-based framework that is explainable and aligns with
clinical domain knowledge. To build such a framework, additional layers of statistical inference and human expert validation are
added to the model, which ensures the predicted risk score’s trustworthiness. Using 831 patients with moderate or severe traumatic
brain injury to build a model using the proposed framework, an area under the receiver operating characteristic curve (AUC) and
accuracy of 0.8085 and 0.7488 were achieved, respectively, in determining which patients will experience poor functional
outcomes. The performance of the machine learning classifier is not adversely affected by the imposition of statistical and domain
knowledge “checks and balances”. Finally, through a case study, we demonstrate how the decision made by a model might be
biased if it is not audited carefully.
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INTRODUCTION
Traumatic Brain Injury (TBI), often referred to as the “silent
epidemic”, is the leading cause of death among young
Americans1,2. While accurate early prognostication of TBI out-
comes can guide physicians and families through early resuscita-
tion and treatment planning, such a prognostic system remains
unavailable. After initial resuscitation, most patients with severe
brain injury die as a result of withdrawal of life-sustaining
treatment. Consequently, there is a critical need for accurate
tools that can identify and prevent early withdrawal from
treatment in severe TBI patients who still have a reasonable
chance for a favorable outcome3,4. Even experienced neurosur-
geons and neurocritical care practitioners frequently overestimate
the likelihood of poor neurological outcome in comparison with
validated prediction scores5. By accurately predicting long-term
functional outcomes, physicians can make more evidence-based
and informed decisions in such cases.
Over the last four decades, several studies aimed to produce

prognostic models by using patient responsiveness6–8, radio-
graphic images9–11, or said images in combination with other risk
factors11–16. However, the accuracy and generalizability of these
models over complex and heterogeneous cohorts are question-
able17,18. A primary reason for the failure of these models is the
oversimplification of the risk assessment method employed, in
which only a limited number risk factors are considered.
Artificial intelligence has shown great promise in enhancing the

medical decision-making process, specifically when there is a
significant complexity and uncertainty involved with the risk
assessment task19. Machine learning algorithms enable integrat-
ing multiple sources of information in a complex non-linear

fashion for accurate data-informed prognostication. A few recent
studies sought to tackle the oversimplification in previous TBI
prognosis studies by employing machine learning methods20,21.
However, this approach comes with a trade-off: a sophisticated
machine learning model’s rationale for an individual decision is
not readily interpretable by clinicians. The black box nature of
such algorithms prevents them from being integrated into
medical practice where transparency is imperative22–26. Accep-
tance of such models by clinicians in real-world settings requires
the underlying reasoning of a model to be explainable, under-
standable, and trustworthy25–27.
Another concern is the susceptibility of machine learning

models to poor performance over unobserved data. This is
particularly acute in medical applications where, due to privacy
and intellectual property issues, it is costly and often impractical to
have an ideal data set that is sufficiently large and heterogeneous
to represent all subtypes of the condition under study. Thus,
during the training stage, machine learning can potentially learn
unrealistic cohort-specific patterns that are not generalizable25 or
clinically significant. Such models introduce additional sources of
bias to the prediction model25, which will not be readily
detectable if employed in a black box fashion.
In this work, we propose a machine learning framework that

incorporates additional layers of statistical inference and human
expert validation to create an intelligible model for predicting long-
term functional outcomes of TBI patients using data available at
the time of hospital admission. Inspired by Caruana et al.27, an
intelligible model is defined as a model that is both interpretable
and aligned with clinical domain knowledge. The proposed
machine learning framework constructs an intelligible model
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through performance explanation, human expert validation, and
final model training. To explain the decision-making process of the
machine learning model, Shapley values were used to estimate
the contribution of each variable to the final decision28,29. Next,
the contribution of each variable was clinically validated at the
population level, with variables determined to be non-robust or
exhibiting counterintuitive behaviors subsequently excluded. The
results of this process suggest that including counterintuitive
features introduces bias to the model. To further explore this
hypothesis, a case study was performed on one of the features
with counterintuitive behavior in which its impact on model bias
was analyzed.

RESULTS
Study cohort
In this study, as in most recent TBI clinical trials, the long-term
functional outcome after TBI is assessed using the Glasgow
Outcome Scale-Extended (GOSE), a global scale for functional
outcomes, at 6 months after injury. The original Glasgow Outcome
Scale (GOS) and its more detailed and recent revision, the GOSE,
are the most widely accepted systems to rate TBI outcomes,
having been used in more than 90% of high-quality TBI
randomized trials. The GOSE has been extensively validated, is
the most widely cited measure of acute brain injury outcomes,
and is recommended by both the US National Institutes of Health
(NIH) and the UK Department of Health30. In this study, GOSE 1–4
(death, persistent vegetative state, and severe disability) were
regarded as unfavorable outcomes, while GOSE 5-8 (moderate
disability, and good recovery) correspond to patients with
favorable outcomes.
This is a secondary analysis of the Progesterone for Traumatic

Brain Injury Experimental Clinical Treatment (ProTECT) III data set that
includes adults who experienced a moderate to severe brain injury
caused by blunt trauma (ClinicalTrials.gov identifier NCT00822900)31.
This study is approved by the University of Michigan Institutional
Review Boards (IRB). The written informed consent from patients is
waived by IRB because this study involves no more than minimal risk
to the subjects. Patients were excluded from ProTECT III if they had
an initial Glasgow Comma Scale (GCS) of 3, bilateral dilated
unresponsive pupils, or were otherwise determined to have non-
survivable injuries. The data set includes electronic data for 882
patient31. Among the 882 patients, 831 met the inclusion criteria. Of
831 individuals admitted to the hospital, 348 were identified to have
experienced poor outcomes, with the remaining 483 attaining a
favorable recovery at six months.
A rich source of patient-level information is available in the

Electronic Health Records (EHR) contained within the ProTECT III
data set. This information includes demographic data, baseline
features, radiology reports, laboratory values, injury severity scores,
and medical history. Demographics and clinical characteristics of
the patient cohort are summarized in Table 1. In this study, only
data available at the time of hospital admission was used.

Intelligible variable selection using computational analysis
and human validation
Among 62 candidate variables that were extracted from the EHR
(see Supplementary Table 1 for the full list of EHR variables and
their definitions), 21 were shown to be statistically robust (see
Supplementary Table 2 for Kendall’s τ correlation coefficients of
the robust variables and the corresponding p-values). The
robustness was estimated with respect to the global distribution
of SHAP (SHapley Additive exPlanations) contribution. Of the initial
62 features, the 21 selected features are not necessarily those with
the highest contributions. For example, creatinine, WBC, and
potassium were among the top features in terms of the amount of

contribution; however, their behavior was not statistically robust
(Fig. 1 and Supplementary Figs. 1a and 2a).
The 21 automatically selected robust variables where then

carefully evaluated to identify those with unexpected or counter-
intuitive behaviors (Supplementary Figs. 3 and 4). Three variables
were identified by a physician board-certified in neurology and
neurocritical care to exhibit behavior contrary to clinical domain
knowledge: active substance abuse, inactive gastrointestinal

Table 1. Demographic and clinical characteristics of study subjects.

Characteristic GOSE ≤ 4 GOSE > 4

Total subjects, n 348 483

Female, n 97 (27.87%) 127 (26.29%)

Age, median [Q1, Q3] 45 [29, 59] 31 [22, 45]

Abbreviated injury score
[Q1, Q3]

29 [22, 36] 22 [14, 29]

Head injury severity score,
median [Q1, Q3]

4 [4, 5] 3 [3, 4]

Cause of injury

Motor vehicle collision, n 99 (28.45%) 204 (42.24%)

Motorcycle/scooter/ATV/bicycle
crash, n

82 (23.56%) 126 (26.09%)

Pedestrian struck by moving
vehicle, n

66 (18.97%) 42 (8.70%)

Fall, n 63 (18.10%) 70 (14.49%)

Assault, n 24 (6.90%) 22 (4.55%)

Other or unknown, n 14 (4.02%) 19 (3.93%)

Initial Glasgow coma scale

Motor response, median
[Q1, Q3]

4 [3, 5] 5 [4, 5]

Eye opening response, median
[Q1, Q3]

1 [1, 2] 2 [1, 3]

Verbal response, median
[Q1, Q3]

1 [1, 2] 2 [1, 2]

Radiology findings

Subdural hematoma, n 224 (64.37%) 182 (37.68%)

Subdural hematoma (max
width), median [Q1, Q3]

17.5 [0.0, 70.0] 0 [0.0, 23.5]

Subarachnoid hemorrhage (#),
median [Q1, Q3]

2 [1, 3] 0 [0, 2]

Intra-ventricular hemorrhage, n 114 (32.76%) 75 (15.53%)

Intraparenchymal hematoma
(max width), median [Q1, Q3]

0 [0, 0] 0 [0, 0]

Brain contusion (#), median
[Q1, Q3]

1 [0, 2] 0 [0, 1]

Brain contusion (max width),
median [Q1, Q3]

2.0 [0.0, 38.0] 0.0 [0.0, 13.75]

Diffuse axonal injury finding (#),
median [Q1, Q3]

0 [0, 1] 0 [0, 0]

Third ventricle compression, n 125 (35.92%) 53 (10.97%)

Transtentorial herniation, n 97 (27.87%) 34 (7.04%)

Laboratory values

Glucose, median [Q1, Q3] 147.0
[126.0, 174.0]

139.0 [115.0,
167.25]

Hgb, median [Q1, Q3] 13.40
[12.15, 14.60]

14.0 [12.70, 15.0]

Platelets, median [Q1, Q3] 240.0 [201.0,
288.75]

236.0
[199.0, 283.0]

aPTT, median [Q1, Q3] 26.8 [24.0, 29.8] 25.8 [23.5, 28.1]

INR, median [Q1, Q3] 1.1 [1.0, 1.2] 1.1 [1.0, 1.17]
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disease, and platelet count (Fig. 2a and Supplementary Fig. 3). The
results show that the existence of either active substance abuse or
active gastrointestinal disease lowers the risk of poor outcomes,
which is contrary to clinical domain knowledge. The decrease in
platelet count was observed to be associated with better
outcomes which also contradicts medical literature32,33. These
counterintuitive associations might be either derived from the
collinearity between variables, thereby representing an (un)known
proxy variable, or induced by noise in the data set, both of which
can introduce bias into the model if not addressed properly. The
collinearity effect becomes of crucial importance if it exists
between these risk factors and the level of care patients received,
which can lead to self-reinforcing positive feedback34. For
example, patients with active gastrointestinal disease, substance
abuse, or coagulation dysfunction (low platelet) might receive
more aggressive care that affects their outcome. However, if this
bias is not accounted for at the algorithm development level, in
real-world settings the model will assess these patients as having
a lower chance of unfavorable outcome, resulting in them
potentially receiving less aggressive care that they would have
otherwise.
These biases are studied in the case study on active substance

abuse in the following section. Regarding active gastrointestinal
disease and platelet count contributions, no meaningful correla-
tion or explanation was observed in the data set. It is possible that
they reflect a latent variable or the observed behavior is merely
specific to the study cohort.
These three variables were excluded from the study, leaving 18

EHR variables to be included in the final prognostic model. The
selected variables include features from radiology reports,
laboratory values, and baseline clinical features (see Supplemen-
tary Table 1 for detailed information).

Case study: active substance abuse
In this section, the contribution of active substance (alcohol and
non-prescribed drug) abuse to risk prediction, along with its
possible underlying explanations and potential concerns if not
properly addressed, is evaluated. As shown in Fig. 2a, active
substance abuse negatively contributes to the predicted risk of
poor outcome, which is counterintuitive as alcohol and substance
abuse are independent predictors of mortality risk.
However, in the study data set, patients with active substance

abuse tend to be younger (Fig. 2b); thus, this variable might reflect
the age of a patient. Moreover, the active substance abuse value is
correlated with injury etiology, being more common in patients
experiencing TBI due to assault (ρ= 0.19, p-value < 0.01), and
head ISS (Injury Severity Score) (ρ=−0.12, p-value < 0.01).
Although no causal correlation can be drawn, we speculate that
in the proposed model active substance abuse is a confounding
variable due to its simultaneous association with injury severity
and assault.
To quantify the effect of active substance abuse on the final

prediction, an experiment was performed in which the active
substance abuse value was manually set to either zero or one for
each test patient. The difference in the predicted risk δ p is
calculated as

δpi ¼ p̂ yi ¼ 1 Xi;i 6¼a; Xa ¼ 0
�
�

� �� p̂ yi ¼ 1 Xi;i 6¼a; Xa ¼ 1
�
�

� �

; (1)

where yi corresponds to the outcome while Xi and Xa are the
complete variable set and active substance abuse variable,
respectively. Figure. 2c shows the histogram of the difference in
the predicted risk on the test data set. The average, minimum, and
maximum value of δ p are 0.014, 0.001, and 0.042, respectively.
Based on these results, it can be concluded that in a scenario in
which two TBI patients are admitted to a hospital with identical
characteristics except for substance abuse, the patient with

Fig. 1 An example of a variable with non-robust contribution behavior. a, b, c, and d are the SHAP contribution of creatinine levels to the
predicted risk score when training on different bootstrapping sample sets.

Fig. 2 An example of a variable with counterintuitive behavior. a Shows that active substance abuse yields a negative contribution. Center
line and box limits correspond to median and upper and lower quartiles, respectively. b Shows the difference in age distribution between
active substance abusers and others. c Shows difference in the predicted risk scores of the test population if the active substance abuse value
is set zero or one.
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substance abuse would be predicted to have on average 1.4%
(and up to 4.2%) higher chance of a favorable outcome. To
address such collinearity-induced biases, variables that exhibited
counterintuitive contribution behaviors were excluded from the
variable set.

Prognosis of traumatic brain injury functional outcome
An XGBoost classifier was implemented to predict the
functional outcome - GOSE at 6 months. More information
regarding the selection of the XGBoost algorithm is available in
Supplementary Methods Section and Supplementary Table 3.
The classifier was trained, validated, and tested once using the
full set of 62 candidate variable, once using 21 identified robust
variables, and once using the final 18 intelligible variables
(Table 2). Although the performance on the training set
decreased slightly after excluding non-robust and counter-
intuitive variables; AUC, accuracy, and F1 score performance on
the validation and test sets were well-preserved throughout
this process. These results support the conclusion that the
excluded features do not affect the performance of the model.
The proposed model’s predictive performance before and after
excluding non-robust and counterintuitive variables is com-
pared with those of other classifiers in the Supplementary
Results Section as well as Supplementary Tables 3 and 4.

Explaining the rationale behind predicted risk scores
The SHAP contribution values provide a detailed view into the risk
factors leading to the probability risk score at both the population
(Fig. 3 and Supplementary Fig. 4) and individual (Fig. 4) levels. At
the population level, age and the number of brain regions with
subarachnoid hemorrhage are by far the most impactful features
in determining the elevated risk of poor outcome (Fig. 3). As can
be observed in Fig. 3a, the contribution of a variable may vary
across different patients even if the patients share the same value
for that variable. For example, compression of the third ventricle
can increase the risk of poor outcome from 3.97% to 6.60%
depending on the combination of other risk factors.
At the individual level, each feature returns a contribution. The

aggregate of all feature contributions yields the predicted risk
score. For example, for patient shown in Fig. 4a, the presence of
subarachnoid hemorrhage in two brain regions increases the
predicted risk by 1.84%, while the eye opening response at the
time of admission reduces the risk by 4.03%.

The most impactful features for the patient shown in Fig. 4a are
age, eye opening response, motor response, subarachnoid
hemorrhage, brain contusion, and subdural hematoma are
different from the features that contribute to predicted risk score
of the patient shown in Fig. 4b.

DISCUSSION
This was a secondary analysis of data from the ProTECT III data set,
a large clinical trial of patients with moderate and severe TBI. An
explainable, expert-guided machine learning framework was
developed to automatically predict the long- term functional
outcome of TBI patients as defined by GOSE. It is widely
acknowledged that transparency and trustworthiness of machine
learning models are important factors in real-world applicability,
particularly in medical diagnostic and prognostic systems. The
proposed framework seeks to move beyond the black box
application of machine learning algorithms. SHAP values were
used to estimate the contribution of each variable to the predicted
risk scores at both the population and individual levels. Studying
the contributions at the global level enables two rounds of
variable selection to be performed, based on: (1) robustness of the
contribution of a variable, and (2) clinical domain knowledge.
Among 62 candidate variables from EHR, 21 demonstrated

robust global behavior where the global behavior was modeled
using Kendall’s τ correlation coefficient. Of the 21 robust variables,
3 variables (active substance abuse, active gastrointestinal disease,
and platelet count) showed counterintuitive effects on the
predicted risk score. Based on the observed behaviors patients
with active substance abuse and active gastrointestinal disease
were determined to have a better chance of favorable outcome.
The lower platelet count was found to be associated with
favorable outcomes, which contradicts the clinical literature32,33.
These three variables were excluded from the study as well,
leaving 18 robust and clinically validated variables to be included
in the final prognostic model.
Finally, an XGBoost classifier was trained to classify patients as

having unfavorable (GOSE ≤ 4) or favorable (GOSE > 4) expected
outcomes. The final model achieved an AUC, accuracy, and
F1 score of 0.8085, 0.7488, and 0.7045, respectively, on the test set.
Importantly, the results show that the performance of the model is
not negatively affected by reducing the input variable set after
imposing the statistical and domain knowledge constraints (Table 2).
Tree-based models, including XGBoost, are prone to overfitting in

Table 2. Performance of the TBI prognostic model.

All candidate variables Excluding non-robust variables Excluding non-robust &
counterintuitive variables

Sample set Training Validation Test Training Validation Test Training Validation Test

AUC
(SD)

0.9372
(0.0236)

0.7822
(0.0126)

0.8094 0.9080
(0.0249)

0.7877
(0.0177)

0.8046 0.8912
(0.0252)

0.7836
(0.0189)

0.8085

Accuracy
(SD)

0.8522
(0.0327)

0.7500
(0.0169)

0.7536 0.8165
(0.0317)

0.7484
(0.0250)

0.7440 0.8053
(0.0285)

0.7451
(0.0255)

0.7488

F1 score
(SD)

0.8281
(0.0360)

0.7129
(0.0190)

0.7052 0.7855
(0.0344)

0.7104
(0.0299)

0.6864 0.7740
(0.0375)

0.7076
(0.0315)

0.7045

Sensitivity
(SD)

0.8477
(0.0305)

0.7434
(0.0489)

0.7011 0.8008
(0.0319)

0.7394
(0.0527)

0.6667 0.8018
(0.0637)

0.7393
(0.0570)

0.7126

Specificity
(SD)

0.8554
(0.0440)

0.7549
(0.0456)

0.7917 0.8279
(0.0450)

0.7549
(0.0439)

0.8000 0.8078
(0.0238)

0.7494
(0.0443)

0.7750

Precision
(SD)

0.8106
(0.0529)

0.6880
(0.0330)

0.7093 0.7722
(0.0498)

0.6862
(0.0329)

0.7073 0.7500
(0.0252)

0.6813
(0.0329)

0.6966

Performance of the TBI prognostic model trained using all candidate variables, only robust variables, and robust and clinically validated variables. Standard
deviation (SD) is calculated over 5 cross-validation folds.
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the presence of many initial variables. This is evinced in Table 2,
where the performance of XGBoost on the training set decreased
after removing non-robust and counterintuitive variables.
In the final model, age and the total number of brain regions

with subarachnoid hemorrhage were the most impactful features
in predicting the risk score. These variables were followed by GCS
motor score, intra-ventricular hemorrhage, GCS eye opening
response, third ventricle compression, and subdural hematoma.
Among laboratory values, hemoglobin, glucose, aPTT (activated
Partial Thromboplastin Time), and INR (International Normalized
Ratio) were determined to be appropriate predictors.
At the individual level, the model enabled the predicted risk

score to be analyzed with respect to which risk factors contributed
to a particular decision and to what extent. This tool enables end-
users to judge the rationale behind the models’ decision making
and act accordingly.
To our knowledge, no prior study has used explanatory

methods such as SHAP values to select intelligible variables for
black box machine learning classifiers. Using SHAP values for
model explanation has become increasingly popular35. It is a

powerful tool to peer inside black box models and understand
how they arrive at a particular decision. Multiple recent studies
used only SHAP values for variable selection35–39, however, only
the variables with the greatest impact as defined by average
absolute SHAP value were chosen. This is in contrast to this study,
in which it was shown that variables with the greatest
contribution are not necessarily robust (Fig. 1 and Supplementary
Fig. 2a). For example, in the initial model, creatinine level was
among the most impactful variables, while through the boot-
strapping experiment it was shown to have non-robust behavior
(Fig. 1). Moreover, the selected high impact features might not
align with domain knowledge. For example, in Ogura et al.36, the
total number of traumatic injuries was attributed to a lower risk of
death. Thus, our study proposes a framework to “intelligibly” select
variables using SHAP values, and highlights the importance of
collaboration with domain experts.
GOSE at 6-months is the global gold standard functional

outcome classification score in TBI prognostication studies. This
score is commonly used in major clinical trials, such as ProTECT31

and RescueICP40. However, TBI patient functional outcome can be

Fig. 3 Summary of the SHAP contributions in the final model. a Shows the summary plot of the contribution of all 18 variables in the final
model. Each point corresponds to one patient, while color corresponds to the value of the variable, with the spectrum from blue to pink
associated with low to high values. b Shows variables in order of their importance, where importance of a variable is defined by the average of
the absolute SHAP values. Variable types are denoted as rad: radiology report and lab: laboratory value.
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influenced by non-TBI-related post-injury adverse events. For
example, in the test data set, there was a 40-year-old patient that
was admitted to the hospital with a 23mm unilateral subdural
hematoma, with no sign of subarachnoid hemorrhage or
increased intracranial pressure (e.g., third ventricle compression
and transtentorial herniation) indicated in the radiology report.
This patient’s best motor and eye opening responses were both 4
and within their respective upper quartiles. The patient was
predicted to have a 27% chance of poor outcome; however, in
reality, the patient died. Looking into post-admission information,
the patient developed pneumonia after discharge from the
hospital at day 86 post-injury, leading to the patient’s death. This
is not the only case of non-TBI-related adverse events experienced
post-injury. In the training set there was a 36-year-old subject that,
except for 9 mm-wide intraparenchymal hematoma in one brain
region, showed no other head abnormalities based on the
radiology report. This patient was discharged to home at day 5
post-injury but died of a gun shot at day 87 post-injury. Although
it is important, the information about non-TBI adverse events is
not recorded for all patients, and even for the patients with such
information, it is not mentioned in the data set whether functional
GOSE outcome is derived by non-TBI adverse events or TBI alone.
To avoid any subjective input, in particular in non-death cases, we
did not consider post-injury clinical consolidated comorbidities as
an exclusion criteria in this study. Though this limitation of GOSE
introduces noise into the ground truth labels that can adversely
affect machine learning performance, it is nonetheless the current
best proxy for TBI outcomes. It should also be noted that the
choice of thresholds, such as a GOSE > 4 being defined as a
favorable outcome in this study, is somewhat arbitrary and lacks
nuance. Ideally, equally validated but more detailed and objective
means to measure TBI outcomes will become available for future
studies.
It is also important to acknowledge that there can be “self-

fulfilling prophecies” in clinical settings that can influence model
performance in ways that are very challenging to mitigate. Self-
fulfilling prophecies occur when a perceived poor prognostic
factor is present, leading to early withdrawal of care, which then is
seen as providing evidence that the prognostic factor is valid3,41,42.

In addition to imperfect labels, the input variables are
susceptible to bias or error. ProTECT III was conducted at 49
trauma centers in the United States43. Given this fact, there exists a
potential level of noise or measurement error due to the
subjectivity involved in radiology readings, the intrinsic differ-
ences in tools for measuring laboratory values, human error
during data entry process, among other sources. These measure-
ment errors in EHR can lead to potential loss of predictive power
as well44. Given these aforementioned limitations - imperfect
labeling, self-fulfilling prophecy, and measurement error - it is
important to be cautious when applying models to individual
patients.
Finally, the generalizability of the proposed model needs to be

validated on an external data set and its utility determined
prospectively in a clinical setting prior to its incorporation into
standard practice. This was not undertaken in this study due to
limited data availability. However, we believe that incorporating
human domain knowledge into the model can potentially
compensate for the lack of generalizability inherent in most black
box machine learning methods. Involvement of clinicians in the
model development process can help to eliminate suspect
variables from the model whose presence may be due to
confounding or statistical artifact, thereby increasing the like-
lihood that physicians will utilize the model.
In conclusion, a machine learning framework was proposed that

enabled the creation of an explainable model for individualized-
level prognostication of TBI functional outcomes. The proposed
framework is transparent with respect to understanding how
input variables result in the model’s decision at both the individual
and patient population levels. Such a model can achieve high
accuracy, avoid collinearity-induced biases, and ultimately accel-
erate adoption of machine learning models in clinical settings.

METHODS
The proposed framework for TBI outcome prediction is outlined in Fig. 5.
First, a machine learning classifier is trained to predict the risk score for
each patient (Machine Learning Module Section), with SHAP values being
used to explain the model’s predictions (Explanation Module Section).

Fig. 4 SHAP force plots corresponding to predicted risk scores for individuals. The base value corresponds to the average model output
over the training set and is the proportion of the training samples belonging to the class GOSE 1–4. Red and blue arrows, respectively, depict
the amount of positive and negative contribution of variables to the predicted risk score. The model output value corresponds to the
predicted risk score. For example, the patient shown in plot a has a 33% probability of experiencing GOSE 1–4, while the patient shown in b
has a 92% probability of experiencing GOSE 1–4. Variable types are denoted as rad: radiology report and lab: laboratory value.
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Next, the global behavior of the SHAP values for each input variable is
evaluated, with only those shown to be statistically robust selected for
further consideration. These robust variables are then validated by a
multidisciplinary team of clinical experts, with features with counter-
intuitive behavior investigated further and excluded to avoid potential
sources of bias (Intelligible Variable Selection Module Section). Although
excluding counterintuitive variables might negatively affect the overall
accuracy, it is an essential step to develop a sensible and trustworthy
algorithm that can be used operationally in a clinical setting.
The experimental design is outlined in Fig. 6. To ensure that the final

prognostic model is not affected by the test set, 25% of the whole data set
will be randomly selected and set aside. This test data set will remain
untouched until the prognostic model is trained and finalized.

Data pre-processing
First, among all EHR variables available in the ProTECT III data set, those
available at the time of admission were selected. Next, these selected
variables were reviewed by an expert board-certified physician in
neurology and neurocritical care, with all those deemed clinically relevant
chosen as input variables. Information regarding race or ethnicity was
excluded, as this information could reinforce an unwanted retrospective
bias and/or discrimination rather than a direct cause of the predicted
outcome34,45. Missing values were replaced by the average of available
cases in the training set.

Machine learning module
The XGBoost (eXtreme Gradient Boosting) algorithm was employed to
classify each patient as experiencing either a favorable or unfavorable
outcome at 6 months and to estimate its corresponding probability.

XGBoost is a sequential tree growing algorithm with weighted samples.
Compared to other boosting methods, XGBoost incorporates regulariza-
tion parameters, making it relatively robust against noise and outliers while
reducing over-fitting. The XGBoost package in Python was used to build
this prognostic model46.

Explanation module
SHAP (SHapley Additive exPlanations)28,29 and LIME (Local Interpretable
Model-Agnostic Explanations)47 are two popular prediction explaining
techniques48. In this study, the machine learning model’s outcome
predictions were explained using SHAP as it leverages a theoretical
foundation of cooperative game theory to unify multiple other feature
explanation methods, including LIME28,29. Contrary to the SHAP method,
LIME is calculated based on the assumption of local linearity of decision
boundaries, which does not necessarily hold true28,49.
In game theory, the Shapley value fairly distributes both gains and costs

between multiple players with different skill sets in a coalition. Inspired by
this concept, in the machine learning context, SHAP values can fairly
distribute a predicted probability among input features. This distribution
can be either positive or negative. The positive contribution of a variable
indicates that it increases the prediction probability, while a negative
contribution denotes a reduction in that probability. Accordingly, SHAP
values enable model interpretation at both the individual patient and
population levels.
At the patient level, SHAP estimates the contribution of each variable to

the predicted outcome. It provides a sense of which variables are
contributing to the predicted outcome and to what extent. In the
aggregate, the distribution of SHAP values over the whole data set reveals
the global behavior of the trained model and input features. In this study,
SHAP values were calculated using the Tree SHAP algorithm available in

Fig. 6 The experimental design. a At study onset, 25% of the data was set aside for final evaluation. The remaining 75% was used to develop
the model, either in b the bootstrap step for variable selection, or c training the prognostic model using 5 fold cross-validation.

Fig. 5 The proposed framework for developing an intelligible TBI prognostic model. After training an initial machine learning model, input
features are selected based on statistical robustness and clinical validity. The machine learning model is retrained after each step of feature
selection.
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the SHAP Python package developed by Lundburg and Lee28,29. Tree SHAP
is a computationally efficient algorithm to estimate SHAP values for tree
ensemble models29.

Intelligible variable selection module
Step 1 - Statistical analysis to identify variables with robust
contribution behaviors. While the global behavior of SHAP values for
some variables is robust regardless of the sampled training set, there are
variables for which their global contribution distribution vary based on the
selected training sample set. For example, the global behavior of creatinine
contribution is highly sensitive to the training sample set. As shown in Fig. 1
depending on the randomly selected training sample set, the marginal effect
of creatinine contribution significantly fluctuates. To identify and exclude
variables with non-robust and unreliable SHAP contribution behavior, a
bootstrap-based procedure was employed. 1000 bootstrap samples were
drawn with replacement from the training set. For each bootstrap sample a
separate XGBoost model was trained. Next, the SHAP contribution behavior
was estimated for each variable using Kendall’s τ correlation coefficient.
Kendall’s τ is a summary statistic that in this usage assesses the strength and
direction of the association between a variable and its SHAP contribution. For
each variable, if its correlation coefficient, either positive or negative, is
marginally significant with p-value < 0.1, variable is selected to be included in
the remainder of the process. The choice of the p-value is arbitrary. In this
study, since there is a subsequent variable selection step that examines
variable behavior in detail from a clinical perspective, only variables whose
behavior was strongly non-significant (p-value > 0.1) were excluded during
the statistical inference process.
Step 2 - Clinical expert validation of input variables. Once the robust

features are selected, the XGBoost classifier is again trained and its
predictions are explained using SHAP values. Next, human experts
investigated the model explanation in order to complement the machine
learning approach. An interdisciplinary team of an expert board-certified
physician in neurology and neurocritical care, data scientists, and engineers
studied each input variable’s contribution to the final outcome prediction.
SHAP values of the whole population are used to investigate each variable’s
marginal effect on the predicted probability. If a variable showed a
counterintuitive behavior it was further studied for potential sources of
biases. If no logical explanation could be derived, the variable was excluded
from the study. Finally, using a robust and medically justified subset of the
variables in the XGBoost model, the TBI prognostic model was developed.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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