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A hierarchical deep learning approach with transparency and
interpretability based on small samples for glaucoma diagnosis

Yongli Xu 1 Man Hu@?°, Hanruo Liu**°, Hao Yang’, Huaizhou Wang3, Shuai Lu'?, Tianwei Liangz, Xiaoxing Li', Mai Xu®, Liu Li°,
Huigi Li%, Xin Ji®, Zhijun Wang®, Li Li@?%, Robert N. Weinreb” and Ningli Wang @>%*

The application of deep learning algorithms for medical diagnosis in the real world faces challenges with transparency and
interpretability. The labeling of large-scale samples leads to costly investment in developing deep learning algorithms. The
application of human prior knowledge is an effective way to solve these problems. Previously, we developed a deep learning
system for glaucoma diagnosis based on a large number of samples that had high sensitivity and specificity. However, it is a black
box and the specific analytic methods cannot be elucidated. Here, we establish a hierarchical deep learning system based on a
small number of samples that comprehensively simulates the diagnostic thinking of human experts. This system can extract the
anatomical characteristics of the fundus images, including the optic disc, optic cup, and appearance of the retinal nerve fiber layer
to realize automatic diagnosis of glaucoma. In addition, this system is transparent and interpretable, and the intermediate process
of prediction can be visualized. Applying this system to three validation datasets of fundus images, we demonstrate performance
comparable to that of human experts in diagnosing glaucoma. Moreover, it markedly improves the diagnostic accuracy of
ophthalmologists. This system may expedite the screening and diagnosis of glaucoma, resulting in improved clinical outcomes.
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INTRODUCTION

Disease diagnosis technology based on artificial intelligence (Al),
especially deep neural networks (DNN), is rapidly improving.
Multiple medical studies use Al to make automatic diagnosis and
achieve accuracy nearly as high as experts'~”. However, real world
clinical implementation of Al technology is not yet widespread.
The lack of transparency and interpretability of Al algorithms is a
major obstacle to the application of Al algorithms in clinical
practice®. Enhancing the understanding or interpretation of how a
given Al technology achieves certain decisions or predictions
might enhance its clinical implementation®. It is thought that if the
Al algorithm’s reasoning cannot be explained, then physicians
cannot verify whether the reasoning is plausible'®. Therefore,
many physicians seek transparency and interpretability of Al
algorithms to facilitate patient safety.

Instead of a single physician’s mistake harming a patient, the
potential for an Al algorithm inducing iatrogenic risk is vast.
Therefore, the use of Al algorithms as a tool to assist physicians in
diagnosis, rather than giving a completely independent diagnosis,
is desirable'’. Moreover, before Al systems are applied to clinical
diagnosis, one should verify and evaluate the actual influence of
adjunctive Al systems on physicians’ diagnostic abilities.

In addition, most DNN models are limited by their need for tens
of thousands of well-labeled samples'™ for training. In the case of
supervised learning, the accuracy of the DNN algorithm prediction
relies heavily on the accuracy of the underlying annotations
inputted into the algorithms; poorly labeled data will yield poor
results®'2. Only medical experts can give high-quality sample
annotations, and such large-scale sample annotations will

inevitably be laborious and costly. Therefore, designing Al
algorithms based on small samples with high accuracy is an
important direction of current Al research.

For Al diagnosis of ophthalmic diseases based on fundus
images, considerable progress has been made in recent years.
DNN algorithms are designed to diagnose diseases such as
diabetic retinopathy and age-related macular degeneration based
on fundus images''* ', In addition, the DNN models are also
used to predict cardiovascular risk factors based on fundus
images'’. In these studies, the DNN algorithms are black-box
models. Although these models have achieved high enough
prediction accuracy, the prediction results cannot be understood
by physicians.

In the field of Al diagnosis of glaucoma based on fundus
images, satisfactory prediction accuracy has been obtained. Ting
et al. designed a deep learning (DL) system for identifying multiple
eye diseases including glaucoma in multiethnic populations with
diabetes'®. This system was trained for detecting possible
glaucoma using 125,189 fundus images with an AUC of 0.942. Li
et al. developed a DL system for detecting glaucoma based on
31,745 fundus photographs from various clinical settings, with an
AUC of 0.986'%. Liu et al. established a DL system for detection of
glaucoma using a total of 281,943 fundus photographs and
assessed its generalization ability in various data sets, reporting an
AUC of 0.996 in primary local validation dataset'®. In above three
researches, the training of DL systems requires tens of thousands
of training samples, which has led to costly investment in
developing such Al diagnostic systems. In order to alleviate the
dependence on large training samples, Christopher et al. applied
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transfer learning and data augmentation technology to establish a
DL system for glaucoma screening based on 14,822 training
samples, and obtained an AUC of 0.91°°. The design of above DL
systems does not use expert knowledge, but rather only mines
statistical information, which leads to the need for large training
samples. In addition, the diagnostic logic of the DL systems in
above researches is not transparent to physicians, and the
diagnostic results are not interpretable. When making glaucoma
diagnosis based on fundus images, glaucoma specialists need to
synthesize a variety of features, such as vertical cup-to-disk ratio
(VCDR), shape of neuroretinal rim, hemorrhage, peripapillary
atrophy, retinal nerve fiber layer defects (RNFLD), and so on.
Integration of a physician’s diagnostic reasoning into the design of
the Al would make the results of the diagnostic system easier to
understand and accept, while reducing the requirement for
training sample capacity.

In this study, we developed a hierarchical deep learning system
(HDLS) using 1791 fundus photographs for glaucoma diagnosis.
Compared with the studies mentioned above, this research has
made the following technical novelties: First, the diagnostic
thinking of glaucoma experts is integrated into the design of
DNN, and high prediction accuracy is obtained using only small
training samples. Second, a framework that integrates deep
classification network and deep segmentation network is
designed, and the classification network is used to assist in
improving the segmentation accuracy of optic cup (OC) by the
segmentation network. Considering that OC is the most important
anatomical structure in glaucoma diagnosis, the improvement of
OC segmentation accuracy further improves the accuracy of
glaucoma diagnosis. Last, this integrated system is transparent
and interpretable: In addition to providing automatic diagnosis
results, this system can also provide diagnosis logic and diagnosis
confidence assessment. Above technical novelty provides a
practical solution of Al for assisted diagnosis of glaucoma in the
real world.

RESULTS
Overall Data

We developed a HDLS using 1791 fundus photographs from
Beijing Tongren Hospital. We evaluated the predictive perfor-
mance of this system on validation dataset 1 and validation
dataset 2. Validation dataset 1 includes 6301 fundus photographs
from Beijing Tongren Hospital; Validation dataset 2 includes 1964
fundus photographs from two hospitals in Tibet and Ningxia
Autonomous Region in China. Furthermore, we evaluated the
accuracy of doctors’ diagnosis with the assistance of HDLS on
validation dataset 3, which includes 400 fundus photographs
randomly selected from the validation dataset 1. The demo-
graphic information of the training and validation datasets is
shown in Table 1.

The 1791 fundus photographs in training dataset included 875
images with referable glaucomatous optic neuropathy (GON) and
916 images with unlikely GON. To train the image segmentation
network, the optic disc (OD), OC, and RNFLD of the fundus images
in training dataset were manually labeled by one senior glaucoma
specialist (M.H.). The 6301 fundus photographs in validation
dataset 1 included 2884 images with referable GON and 3417
images with unlikely GON. The 1964 fundus photographs in
validation dataset 2 included 619 images with referable GON and
1345 images with unlikely GON. Validation dataset 3 included 200
images with referable GON and 200 images with unlikely GON.

Study pipeline

The proposed HDLS comprehensively simulates the diagnostic
thinking of glaucoma experts. In Fig. 1 (a), it is showed how an
ophthalmologist diagnoses glaucoma. The position of the OD is
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2 senior Glaucoma specialists
2 senior Glaucoma specialists
2 senior Glaucoma specialists
2 senior Glaucoma specialists

Assessor

Ethnicity/Race,
Han-Chinese
Han-Chinese
Tibetan-Chinese
Hui-Chinese
Han-Chinese
Han-Chinese

Clinic-based
Clinic-based
Clinic-based
Clinic-based

Cohort

Female No./Total (%)

532 (54.6)
1675 (49.7)
533 (51.9)
186 (48.2)

Age Mean (SD), y
52.6 (13.5)
51.9 (14.6)
53.8 (15.2)
54.3 (11.5)

Individuals

975
3371
1027
386

Eyes
1791
6301
1964
400

Images
1791
6301
1964
400

Source Datasets
Tibet and Ningxia

Baseline characteristics of participants.
Tongren
Tongren
Tongren

Validation dataset 1
Validation dataset 2
Validation dataset 3

Training dataset

Table 1.
Datasets
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Fig. 1

Schematic diagram of the hierarchical deep learning system (HDLS) simulating doctors’ diagnostic thinking. a The process of

doctors’ diagnosis of glaucoma. b The process of diagnosing glaucoma of the HDLS. This system includes three modules: The pre-diagnosis
module is used for preliminary diagnosis based on the overall information of the fundus photographs. The image segmentation module is
used to segment OD, OC, and RNFLD based on the pre-diagnostic results. For fundus photographs pre-diagnosed as glaucoma, a glaucoma-
specific network is used to segment the OC. The final diagnosis module is used to calculate MCDR and ISNT-score based on the segmentation.
Finally, these two indicators are used to make a final diagnosis in combination with the status of RNFLD. OD optic disc, OC optic cup, RNFLD
retinal nerve fiber layer defects, MCDR mean cup-to-disk ratio, ISNT inferior, superior, nasal, temporal.

determined, and whether there is peripapillary atrophy, hemor-
rhage, or RNFLD is ascertained. The topography of the OC is
evaluated and this information is combined with the above to
determine whether there is glaucomatous optic neuropathy. In
fact, the determination of the OC and the diagnosis of glaucoma is
an interactive process. In Fig. 1 (b), it is showed how the HDLS
simulates the diagnostic thinking of glaucoma experts. This
system includes three modules: pre-diagnosis module, image
segmentation module, and final diagnosis module. The pre-
diagnosis module is used for preliminary diagnosis based on the
overall information of the fundus photographs. The image
segmentation module is used to segment image features based
on the preliminary diagnostic results. In particular, for fundus
photographs pre-diagnosed as glaucoma, a glaucoma-specific
network is used to segment the OC. The final diagnosis module is
used to analyze the characteristics of the neuroretinal rim based
on the segmentation. In this process, the mean cup-to-disk ratio
(MCDR) is used to describe the scale characteristics, and the ISNT
(inferior, superior, nasal, temporal) score is used to describe the
morphological characteristics of the rim. Finally, these two
indicators are used to make a final diagnosis in combination with
the status of RNFLD.

Transparency and interpretability of the model

The HDLS gives diagnosis evidence in a form that ophthalmologists
can understand. The diagnostic evidence consists of three parts, as
shown in Fig. 2. The first part is the segmentation of OD, OC, and
RNFLD (see Fig. 2b and c), the second part is a two-dimensional
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feature display: the MCDR and ISNT score based on image
segmentation (see Fig. 2d), and the third part is the comparison
of the fundus image currently being evaluated with fundus images
that have been clearly diagnosed in the database, in terms of
MCDR, ISNT score, and RNFLD (see Fig. 2e-g). Furthermore, the
HDLS can display a predictive reliability. In a two-dimensional plane
composed of the MCDR and ISNT score, the red region indicates a
diagnosis of glaucoma with high confidence, green indicates a
diagnosis of normal eye with high confidence, and yellow indicates
a diagnosis with low confidence.

Performance of the HDLS in validation datasets 1 and 2
In validation dataset 1, we evaluated the performance of the
proposed HDLS. Figure 3 shows the receiver operating character-
istic (ROC) curve. We can see that, the area under the ROC curve
(AUCQ) is 0.981 (95% Cl, 0.978-0.985). From Table 2 we can see that,
when the threshold is set as 0.8, the sensitivity and specificity
reach 96.1% (95% Cl, 95.3-96.8%) and 93.9% (95% Cl, 93.1-94.7%),
respectively. Furthermore, we evaluate the performance of the
HDLS in reliable region and suspicious region, respectively. The
sensitivity and specificity in the reliable region can reach 97.7%
(95% Cl, 97.0-98.3%) and 97.8% (95% Cl, 97.2-98.4%), which are
significantly higher than the results in the suspicious region.
However, the sensitivity and specificity in the suspicious region
can still reach 91.9% (95% Cl, 90.0-93.8%) and 83.2% (95% Cl,
80.8-85.7%).

In validation dataset 2, the AUC is 0.983 (95% Cl, 0.977-0.989),
and when the threshold is set as 0.8, the sensitivity and specificity
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Fig. 2 Schematic of transparency and interpretability for hierarchical deep learning system. a Original fundus image. b Segmentation of
OD, OC, and RNFLD. ¢ Magnification of the image shown in (b). d Two-dimensional plane of MCDR and ISNT score. e-g Comparison of the
fundus image currently being evaluated with fundus images that have been clearly diagnosed in the database in terms of MCDR, ISNT score,
and RNFLD. OD optic disc, OC optic cup, RNFLD retinal nerve fiber layer defects, MCDR mean cup-to-disk ratio, ISNT inferior, superior, nasal,

temporal.

reaches 95.6% (95% Cl, 94.0-97.3%) and 94.1% (95% (|,
92.8-95.3%), respectively. Furthermore, the sensitivity and speci-
ficity in the reliable region are significantly higher than the results
in the suspicious region.

We compared the prediction accuracy of the proposed HDLS
with two automatic glaucoma diagnosis algorithms based on
deep learning’®?". In validation dataset 1 and 2, the proposed
HDLS achieved the highest AUC values. The detailed experimental
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results were showed in Supplementary Fig. 1 in Supplementary
Note 1.

Accuracy of OD, OC, and RNFLD segmentation by HDLS

We presented the segmented OD, OC, and RNFLD by HDLS in
validation dataset 3 to two glaucoma experts (M.H. and HW.). The
two glaucoma experts independently classify the segmentation into

Published in partnership with Seoul National University Bundang Hospital
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Fig. 3 Graph showing receiver operating characteristic (ROC) curve derived from the validation dataset 1. a and validation dataset 2 (b)
that was obtained using the hierarchical deep learning system. AUC area under curve.

Table 2. Performance of the hierarchical deep learning system in different confidence regions on validation datasets 1 and 2.
Number of images % (95% Cl)
Datasets Regions True False True False Sensitivity Specificity
Positive Negative Negative Positive
Overall region 2770 114 3210 207 0.9605 (0.953-0.968) 0.9394 (0.931-0.947)
validation dataset 1 Reliable region 2019 48 2455 55 0.9768 (0.970-0.983) 0.9781 (0.972-0.984)
Suspicious region 751 66 755 152 0.9192 (0.900-0.938) 0.8324 (0.808-0.857)
Overall region 592 27 1265 80 0.9564 (0.940-0.973) 0.9405 (0.928-0.953)
validation dataset 2 Reliable region 493 8 929 17 0.9840 (0.973-0.995) 0.9820 (0.974-0.991)
Suspicious region 99 19 336 63 0.8390 (0.772-0.906) 0.8421 (0.806-0.878)
Table 3. Accuracy evaluation of hierarchical deep learning system for OD, OC, and RNFLD segmentation.
Segmentation Images with referable GON Images with unlikely GON
Completely-correct ~ Approximately correct Incorrect Completely-correct ~ Approximately correct Incorrect
No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)
oD 386 (96.5) 12 (3) 2 (0.5) 391 (97.75) 9 (2.25) 0 (0)
oC 331(82.75) 53 (13.25) 16 (4) 380 (95) 14 (3.5) 6 (1.5)
RNFLD 372 (93) 16 (4) 12 (3) 392 (98) 0 (0) 8(2)

OD optic disc, OC optic cup, RNFLD retinal nerve fiber layer defects, GON glaucomatous optic neuropathy.

completely correct, approximately correct, and incorrect (Table 3).
The sum of completely correct and approximately correct for OD,
OC, and RNFLD segmentation reached 99.75%, 97.25% and 97.50%,
respectively. We further analyzed the reasons of incorrect
segmentation. The 2 cases of incorrect segmentation of OD are
due to the influence of peripapillary atrophy. And 15 out of 22 cases
of incorrect segmentation of OC are due to the tilt of the OD. In
fundus images with referable GON, 10 out of 12 cases of missing
segmentation of RNFLD (false negative) are due to diffuse RNFLD;
and in fundus images with unlikely GON, the 8 cases of incorrect
segmentation of RNFLD (false positive) are due to the uneven
distribution of the optic nerve fiber layer.

Efficacy of MCDR and ISNT score in diagnosing glaucoma

Based on the segmentation of OD and OC, we calculated two
indicators, the MCDR and ISNT score. The MCDR is compared with
the VCDR evaluated by a glaucoma expert (M.H.). From Fig. 4 (a) it
can be seen that, the median of the MCDR obtained by HDLS is
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roughly equivalent to the VCDR by the glaucoma expert. The
correlation coefficient value of VCDR estimated by the glaucoma
expert and MCDR predicted by HDLS is 0.93 (P < 0.001). We also
compared the efficacy of HDLS with general network and
glaucoma-specific network and found that the mean absolute
error of the MCDR predicted by the HDLS is smaller than both the
general network and glaucoma-specific network (Supplementary
Fig. 2 in Supplementary Note 2). From Fig. 4 (b), we can see that, in
case the MCDR predicted by HDLS is in the range [0.5, 0.6] and
[0.6, 0.7], compared with eyes with referable GON, eyes without
GON have higher ISNT scores (P<0.001 and P=0.014, respec-
tively). This indicates that the ISNT score has a significant effect on
distinguishing referable GON from Non-GON.

Accuracy of diagnosing glaucoma by doctors with the
assistance of HDLS

We tested the accuracy of diagnosing glaucoma by doctors with
the assistance of HDLS in validation dataset 3. Four senior

npj Digital Medicine (2021) 48
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Fig. 4 Evaluation of efficacy of MCDR and ISNT score. a Comparison of MCDR predicted by hierarchical deep learning system (HDLS) with
VCDR evaluated by the glaucoma expert. b Comparison of ISNT score obtained by HDLS between referable GON and unlikely GON. The
median (50th percentile) is represented by the horizontal centerline, and the 25th and 75th percentiles as the lower and upper limits of
the box. The upper and lower horizontal bars represent the maximum and minimum values, respectively, of a 1.5 interquartile range. The
diamond symbols represent outliers. Outliers were denoted in the figure because they resided outside of the 1.5 interquartile range. MCDR

mean cup-to-disk ratio, VCDR vertical cup-disc ratio, ISNT inferior, superior, nasal, temporal; GON glaucomatous optic neuropathy.

Diagnose Referring P

independently  to HDLS value
Technician Sensitivity  0.36 0.76 0.000
group Specificity ~ 0.93 0.97 0.009
Junior Sensitivity  0.67 0.84 0.000
group Specificity  0.89 0.96 0.000
Senior Sensitivity  0.93 0.96 0.063
group Specificity  0.88 0.95 0.000

sensitivity

ROC
1.0
0.8 F{/ ——HDLS
o Senior group
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0.4

0.2

0.0
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Fig. 5 Comparison between doctors’ independent diagnosis and doctors’ diagnosis with the assistance of hierarchical deep learning
system (HDLS). In the right figure, the starting points of the arrows represent the results of independent diagnosis, and the end points
represent the results with the assistance of HDLS. The red line represents the receiver operating characteristic (ROC) curve of the HDLS.

ophthalmologists, four junior ophthalmologists, and four techni-
cians were invited to participate in the evaluation. It can be seen
from Fig. 5 that the mean sensitivity and specificity of
independent diagnosis of the junior group and technician group
is significantly lower than that of the HDLS; the mean sensitivity
and specificity of independent diagnosis of the senior group is
roughly equivalent to that of the HDLS. It is notable that both the
junior group and technician group significantly improved the
sensitivity and specificity when referring to the diagnosis
recommendations of HDLS (P<0.01). The senior group also
improved the sensitivity and specificity when referring to the
diagnostic recommendations of the HDLS (P=0.063 and P<
0.001, respectively), and the average diagnostic accuracy
exceeded that of HDLS.

On the validation dataset 3, each of the four junior ophthalmol-
ogists independently diagnosed 100 fundus images with referable
GON and 100 fundus images with unlikely GON. The three most
common reasons for missed diagnosis of glaucoma were: (1) not
identifying insignificant RNFLD, (2) using only color but not
vascular curvature information to identify localized rim thinning,
(3) difficulty in assessing highly myopic eyes with severe tilt of the
disc. For 90 out of 104 cases of these situations, HDLS can provide
clues to correct diagnosis. The most common reason for the

npj Digital Medicine (2021) 48

misclassification of normal eyes to glaucoma for junior ophthal-
mologists is physiologic large cups. For 28 out of 35 cases of this
situation, HDLS can calculate a high ISNT score, indicating that the
rim conforms to the ISNT rule, thus giving a clue that the eye
tends to be normal. (Fig. 6).

DISCUSSION

Recently, several reports of deep learning methods for detecting
glaucoma from retinal fundus images with high sensitivity and
specificity have been published'>'®%°, However, these models are
black box models. In clinical reality, doctors cannot understand
the mechanism of the models’ prediction, and therefore it is
difficult for them to adopt the results. In addition, the training of
these models often requires tens of thousands of well-labeled
samples, which requires huge costs. Our study has a number of
unique differences when compared with the previous studies.
First, we integrate the deep classification network and the deep
segmentation network into one system, which not only considers
the global information of the image, but also fuses the prior
knowledge of the experts to achieve a sufficiently high prediction
accuracy (AUC of 0.981, sensitivity of 96.1%and specificity of 93.9%
on validation dataset 1; AUC of 0.983, sensitivity of 95.6% and

Published in partnership with Seoul National University Bundang Hospital
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Fig. 6 Examples of fundus images misdiagnosed by junior doctors and technicians. Above: original images; Below: images analyzed by
hierarchical deep learning system (HDLS). a Glaucomatous fundus image with insignificant retinal nerve fiber layer defects (RNFLD).
b Glaucomatous fundus image with vascular curvature information indicating localized rim thinning. ¢ Glaucomatous fundus image with high

myopia. d Normal fundus image with physiologic large cup.

specificity of 94.1% on validation dataset 2) using a small training
dataset. Second, this system not only gives the diagnosis results,
but also provides a diagnosis basis consistent with the expert’s
thinking, so that it can be understood and accepted by
ophthalmologists. It also provides important prerequisites for
clinical implementation. Finally, we evaluated the practicality of
the system in the clinic. We find that when doctors use this
system, the diagnostic accuracy is significantly improved, which
shows application prospect of this system. In China, there are a
large number of areas with scarce medical resources and a
shortage of glaucoma specialists, such as the Tibet Autonomous
Region and Ningxia Hui Autonomous Region. The proposed HDLS
achieved high prediction accuracy for glaucoma diagnosis on the
fundus photographs collected from the above two regions
(validation dataset 2), which provided a powerful tool for Al-
aided glaucoma diagnosis in these regions.

Several DNN-based OC and OD features extraction models for
glaucoma detection have been proposed. Liu et al.'® used DNN for
glaucoma diagnosis and a heat map showed that the features
were extracted from the OD area, but how DNN used these
features to make a diagnosis was incomprehensible to doctors. Fu
et al?' used DNN to segment the OD and OC. The VCDR was
calculated and used as an indicator to diagnose glaucoma.
However, only using VCDR to diagnose glaucoma is far from fully
simulating doctors’ complete diagnosis idea. We compared the
accuracy of the proposed HDLS with the two methods mentioned
above in diagnosing glaucoma. In both validation dataset 1 and 2,
the proposed HDLS achieved the highest AUC values.

In the field of deep learning, ensemble learning is an important
method to improve the accuracy of DNN prediction®’. Most
existing ensemble learning frameworks have a parallel structure:
the prediction results of multiple DNNs determine the final
prediction®. In this study, we proposed a HDLS, which used
multiple decision-making modules to jointly determine the final
prediction in series. In this system, the pre-diagnosis module is at
the front, the image segmentation module is at the middle, and
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the feature extraction and final decision-making module is at the
end. The output of the image segmentation module is transpar-
ent, and the feature extraction and final decision modules are
transparent and interpretable. The integrated framework design of
this series structure has the following advantages: on the one
hand, it integrates the prediction performance of each DNN, which
improves the accuracy of prediction, on the other hand, the final
prediction of the system is transparent and interpretable, and it is
easier for doctors to understand and accept.

This system simulates an ophthalmologist’s reasoning to
diagnose glaucoma. The decision-making process of HDLS
designed in this study is a process of mutual confirmation of
diagnosis and segmentation. When making a diagnosis, various
features of fundus images need to be integrated. Among them,
the segmentation of the OC is a key and difficult point. For some
fundus images, it is difficult to reflect the three-dimensional
structure of the OC with limited two-dimensional information,
which makes it even difficult for doctors to segment the OC
accurately. However, the thinning of the rim is often accompanied
by the corresponding position of RNFLD or splinter hemorrhage
and these features provide hints and clues to the determination of
the OC. The precise segmentation of the OC provides an
important basis for the final diagnosis of glaucoma. In the HDLS,
the prediction of the pre-diagnosis module is based on the global
information of the image and provides clues for the segmentation
of the OC. For the images pre-diagnosed as glaucoma, a
segmentation network for suspected glaucoma is applied; for
the images pre-diagnosed as normal, a general segmentation
network is applied. The idea of designing an integrated diagnostic
system by simulating the reasoning of an ophthalmologist is also
relevant for intelligent diagnosis design of other diseases.

The output of the segmentation module is the boundaries of
the OD, OC, and RNFLD. The further feature extraction module
calculates MCDR and ISNT score based on the OD and OC
boundaries. These results can be visualized on the fundus images
(see Fig. 2b, c), which is convenient to evaluate the accuracy of
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segmentation based on one’s own experience. The MCDR and
ISNT score can also be displayed on a two-dimensional plane (see
Fig. 2d), so that doctors can have a quantitative understanding of
the glaucomatous features in the image. And the final diagnosis is
made based on the status of MCDR, ISNT score and RNFLD. Based
on each index, the image to be evaluated are compared with
those with clear diagnosis in the database (see Fig. 2e-g), and the
diagnosis is explained based on the examples. In addition, HDLS
also gives confidence of prediction. For samples located in reliable
regions (see red and green regions in Fig. 2d), the sensitivity and
specificity reached 97.7% and 97.8% in validation dataset 1, and
98.4% and 98.2% in validation dataset 2, respectively. The division
of the confidence region provides an important reference for
doctors to make a final diagnosis based on their own experiences
and HDLS's recommendations.

Despite the promising results, our study has several limitations.
First, the diagnostic evidence of HDLS did not include other
factors besides OC, OD, and RNFLD, such as hemorrhage and
peripapillary atrophy. Although the black-box classification net-
work of the pre-diagnostic module may incorporate these factors,
it is not explicitly expressed in the final diagnosis result. In
addition, every fundus image was resized to a resolution of
512x512 given the limitations in the GPU’s computational power.
As a result, the fine texture details of the retinal fiber layer are
partially lost in the compressed fundus images, which affected the
accuracy of the segmentation module in detecting RNFLD.
Especially for diffuse RNFLD in glaucoma, the prediction of the
segmentation module has false negatives; for normal fundus
images with uneven retina fiber layer thickness, the prediction of
the segmentation module has false positives. Furthermore, the
proposed HDLS was only evaluated in the medical records
collected in the ophthalmology clinic, but not on the general
population records. Considering that glaucoma-assisted screening
at medical examination centers is an important potential
application scenario of HDLS, it is of great significance to evaluate
our model in natural populations.

METHODS
Ethics approval

The study was conducted according to the tenets of the Declaration of
Helsinki and it was approved by the institutional review board (IRB) of
Beijing Tongren Hospital (identifier, 121 2017BJTR519). As the study was a
retrospective review and analysis of fully anonymized color retinal fundus
images, the medical ethics committee exempted the need for the patients’
informed consent.

Study participants and fundus photograph grading

To establish the HDLS, a total of 2000 fundus images were obtained from
Beijing Tongren hospital from 2013 to 2014. For patients with same name
or ID number, only one of them was included. The 2000 fundus images
include 1000 glaucoma and 1000 non-glaucoma based on the initial label
when imported into the database which matches the most recent
diagnosis of the patient. For the initial glaucoma diagnosis, clinicians
comprehensively evaluated the fundus image, visual field, and intraocular
pressure. Glaucoma was defined as eyes with either glaucomatous optic
neuropathy (GON) or glaucomatous visual field loss, with or without raised
intraocular pressure. GON was defined as either diffuse or focal narrowed
neuroretinal rim; excavation; RNFL defects; peripapillary hemorrhages; or
cup-disc ratio >0.7. Glaucomatous visual field loss was diagnosed if any of
the following findings were evident on two consecutive visual field tests: a
glaucoma hemifield test outside normal limits, pattern standard deviation
(PSD) <5%, or a cluster of three or more nonedge points in typical
glaucomatous locations, all depressed on the pattern deviation plot at a
level of P < 0.05, with one point in the cluster depressed at a level of P <
0.01. Then each image in the training dataset was subjected to a 2- tiered
grading system. The label was masked to evaluators. The first tier of
graders consisted of 1 trained medical student and 1 nonmedical
undergraduate. They conducted initial quality control according to the
following criteria which has been described previously'®: (1) the image did
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Table 4. Classification for glaucomatous optic neuropathy.

Classification Clinical features

Unlikely glaucomatous optic No sign of the conditions below
neuropathy

Probable glaucomatous
optic neuropathy

Any conditions of the following:
0.7 < VCDR < 0.85;

general rim thinning >60° or
localized rim

thinning <60° (11 to 1 o’clockor5to 7 o
‘clock);

RNFL defects;

peripapillary hemorrhages.
Definite Glaucomatous optic Any conditions of the following:
neuropathy VCDR > 0.85;

localized notches;

RNFL defect corresponds to narrowing
of rim or localized notches.

RNFL retinal nerve fiber layer, VCDR vertical cup-disc ratio.

not contain severe resolution reductions or significant artifacts; (2) the
image field included the entire optic nerve head and macula; (3)
the illumination was acceptable (ie, not too dark or too light); (4) the
image was focused sufficiently for grading the optic nerve head and retinal
nerve fiber layer. The second tier of graders consisted of 2 senior glaucoma
specialists with more than 10 years of experience with glaucoma diagnosis
(M.H. and H.W.). This study focuses on using deep learning to predict
glaucomatous structural changes in fundus images. Therefore, the two
glaucoma experts used only the fundus image to detect GON, without
reference to intraocular pressure or visual field. Each grader independently
diagnosed and recorded each image according to the criteria in Table 4.
After this process, images were classified as unlikely, probable, and definite
GON. Referable GON was defined as probable or definite GON. There were
140 images graded as poor quality and 69 images of which the two
glaucoma specialists were disagreed on the diagnosis. These images were
excluded from the training dataset. To train the image segmentation
network, the OD, OC, and RNFLD of the remaining fundus images were
manually labeled by one senior glaucoma specialist (M.H.).

To verify the repeatability of the labeling results, M.H. labeled the
boundaries of the OD, OC, and RNFLD in the training dataset twice (the
interval between the two markings is more than one month). We used Dice
coefficient as an index to evaluate the consistency of two labeling results.
Dice coefficient is defined as the ratio of the intersection area and average
area of two labeling results. On the training set, the average Dice
coefficient of the OD, OC and RNFLD labeled twice by M.H. were 0.97, 0.91
and 0.90, respectively. This shows that the labeling results of H.M. have
high repeatability. To verify the reliability of the labeling results, another
senior glaucoma specialist (H.W.) also labeled the boundaries of the OD,
OC, and RNFLD in the training dataset. The average Dice coefficient of the
OD, OC and RNFLD labeled by HW. and M.H. in the first time was 0.96, 0.87,
and 0.88, respectively. This shows that the labeling results of the two senior
glaucoma specialists are highly consistent. Finally, we used the OD, OC,
and RNFLD labeled by M.H. in the first time as the ground truth of the
training dataset.

To test the HDLS, we collected fundus images from multiple centers: A
total of 7000 fundus images were obtained from Beijing Tongren hospital
from 2015 to 2018 and a total of 2100 fundus images were obtained from
two hospitals in western China (People’s Hospital of Ningxia Hui
Autonomous Region, Tibetan Hospital of Tibet Autonomous Region) from
2012 to 2018. For patients with same name or ID number, we only included
one of them. To avoid overlap between validation and training datasets,
patients with the same name or ID number as those in the training dataset
were excluded. The 7000 fundus images in validation dataset 1 include
3300 glaucoma and 3700 non-glaucoma based on the initial label when
imported into the database which matches the most recent diagnosis of
the patient. Then each image was also subjected to a 2- tiered grading
system mentioned above. There were 475 images graded as poor quality
and 224 images of which the two glaucoma specialists were disagreed on

Published in partnership with Seoul National University Bundang Hospital



the diagnosis. These images were excluded. The remaining images
constitute the validation dataset 1.

The 2100 fundus images in validation dataset 2 include 700 glaucoma
and 1400 non-glaucoma based on the initial label when imported into the
database which matches the most recent diagnosis of the patient. Then
each image was also subjected to a 2- tiered grading system mentioned
above. There were 82 images graded as poor quality and 54 images of
which the two glaucoma specialists were disagreed on the diagnosis.
These images were excluded. The remaining images constitute the
validation dataset 2.

From validation dataset 1, we randomly sampled 200 fundus images
with referable GON and 200 fundus images with unlikely GON to constitute
validation dataset 3. On validation dataset 3, we evaluated the accuracy of
HDLS in extracting the image features (OD, OC, and RNFLD), the statistical
significance of the MCDR and ISNT scores predicted by HDLS for
diagnosing glaucoma. At last we tested the accuracy of doctors’ prediction
when diagnosing glaucoma assisted by HDLS. Three groups of doctors
were invited to participant in the test including 4 senior doctors
(ophthalmologists with more than 8 years of work experience), 4 junior
doctors (ophthalmologists with 3-5 years of work experience), and 4
technicians (non-ophthalmologists temporarily trained for glaucoma
diagnosis). To make testing fairer, we randomly selected 100 fundus
images with referable GON and 100 fundus images with unlikely GON to
form dataset A, and the remaining cases formed dataset B. The first (last)
two doctors of each group made diagnosis on fundus images in dataset A
(B) independently, and made diagnosis on fundus images in dataset B (A)
with reference to HDLS.

Model development

The proposed HDLS includes three modules: pre-diagnosis, image (OD, OC
and RNFLD) segmentation, and final diagnosis based on expert knowledge.
Among them, the first two modules are designed based on deep learning.
A DNN model is a sequence of mathematical operations applied to the
input, such as pixel values in an image. There can be millions of parameters
in this mathematical function®*. Deep learning is the process of training
the parameters of the DNN to perform a given task.

In this study, the pre-diagnosis was treated as a classification problem in
deep learning: predict whether a fundus image is with GON. We used the
Inception-v3 neural-network architecture®® to make the pre-diagnosis. The
segmentation of OD, OC, and RNFLD is treated as an image segmentation
problem in deep learning: predict whether each pixel belongs to the target
region. We used a U-shaped convolutional DNN?® to make the image
segmentation. For the OD segmentation, during the training process, the
parameters of the DNN are initially set to random values. Then, for each
annotated fundus image, the OD segmented by the DNN is compared with
that annotated by the glaucoma expert, and the parameters of the DNN
are then modified slightly to decrease the error on that image (stochastic
gradient descent). This process is repeated for every image in the training
set many times over. Finally, the locations of OD segmented by the DNN
will be very close to those annotated by glaucoma specialist for images in
the training set. The training process of DNNs for glaucoma pre-diagnosis,
OC segmentation and RNFLD segmentation is like that of OD
segmentation.

In the pre-diagnosis module, based on the above-mentioned deep
learning methods, a pre-diagnosis classification network (PDCN) is built
using the fundus images in training dataset. This PDCN is a black-box
predictor and focuses on the global information of a fundus image to
make glaucoma pre-diagnosis. This network is used to simulate the
doctor’s initial diagnosis based on the global information of a
fundus image.

In the image segmentation module, for the segmentation of OD and
RNFLD, the annotated locations of OD and RNFLD in training dataset are
used to train a segmentation network, respectively. For the segmentation
of OC, we design two different networks: A general segmentation network
(GSN) and a glaucoma-specific segmentation network (GSSN). First, the
annotated location of OC in all fundus images in training dataset is used to
train the GSN. And then, the annotated location of OC in glaucoma fundus
images in training dataset is used to train the GSSN. In the prediction of
fundus images in the validation set, for fundus images predicted as normal
eyes by the PDCN, the OC is segmented using the GSN; and for the fundus
images predicted with glaucoma by the PDCN, the OC is segmented using
the GSSN.

In the final diagnosis module, firstly, the segmentation of OD and OC are
used to extract features based on expert knowledge. The MCDR and ISNT
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score are computed based on the OD and OC segmentation as
quantitative indicators reflecting the features of the neuroretinal rim.
MCDR is the mean CDR within a range of 360 degrees along the
neuroretinal rim; ISNT score is a quantitative indicator of the ISNT rule?’.
ISNT rule describes the special asymmetric structure of the rim of typical
normal eyes: the inferior rim is the widest portion of the rim, followed by
the superior rim, the nasal rim, and the temporal rim. If the CDR of a typical
normal eye in the range of 0-360 degrees is displayed in a Cartesian
coordinate system (the horizontal axis represents the position, and the
vertical axis represents the value of the CDR) and fits it as a curve, then this
curve generally has a typical bimodal structure. The curve of glaucoma
generally does not have this specific structure. Therefore, we designed the
ISNT score as an indicator to describe the degree of matching between the
rim of the fundus image to be predicted and the above-mentioned specific
structure: a large ISNT score indicates that the rim conforms to the ISNT
rule. Considering that for two standardized curves with similar shapes,
their corresponding vectors have a large inner product, we designed the
method to calculate ISNT score as follows.

First, a CDR vector with 360 dimensions is computed based on the
segmentation of OD and OC. Second, the CDR vector is normalized: each
component is subtracted from the average of this vector and divided by
the standard deviation of this vector. Finally, the inner product of this
normalized vector and a baseline vector is calculated as the ISNT score.
Here, the baseline vector is the average CDR vector of 500 typical normal
eyes. The fundus images of these typical normal eyes were collected in the
physical examination center of Tongren Hospital, and are not included in
the training dataset and validation datasets. The OD and OC of each
fundus image are labeled by a senior glaucoma specialist (M.H.).

Furthermore, based on the MCDR and ISNT score mentioned above, a
two-dimensional classification line is established by support vector
machines (SVM)?. The final diagnostic criteria are with a decision tree®
structure: (1) if there is a RNFLD, then it is predicted as glaucoma; (2) if
there is no RNFLD, then make a prediction based on the two-dimensional
classification line: (i) cases above or on the classification line are predicted
as normal eyes, (ii) cases below the classification line is predicted as
glaucoma.

In the above prediction process, the pre-diagnosis of the classification
network has a certain deviation, leading to the prediction of some normal
eyes as glaucoma, so that while the sensitivity of the final diagnosis is
improved, the specificity is slightly reduced, resulting in an imbalance
between sensitivity and specificity in the final diagnosis. Compared with
threshold of 0.5, the threshold of 0.8 for the softmax output makes the
specificity of the pre-diagnosis classification network higher than the
sensitivity, thereby reducing the imbalance between the sensitivity and
specificity of the final diagnosis. Therefore, the threshold was set as 0.8 for
the softmax output of the classification network. In all the following
evaluations on validation datasets, the threshold was kept as 0.8.

Evaluating the algorithm

On validation datasets 1 and 2, we used sensitivity, specificity and AUC to
evaluate the performance of the proposed HDLS. For the AUC of HDLS, it
needs to be calculated based on the probability p that HDLS predicts as
GON for each sample. In this study, this probability is calculated based on
the RNFLD state predicted by the segmentation module and the
probability p; of glaucoma predicted by the SVM based on the MCDR
and ISNT score: For fundus images with RNFLD, set p=(1+p,) / 2; for
fundus images without RNFLD, set p = p;.

On validation dataset 3, two glaucoma experts evaluate the accuracy of
HDLS for segmenting OC, OD, RNFLD according to the following criteria: If
there is no deviation in the segmentation of the target area, it is determined
to be completely correct; if there is a deviation in the segmentation of the
target area but the deviation does not affect the diagnosis result, it is
determined to be approximately correct; if the deviation in the segmenta-
tion of the target area is too large to affect the diagnosis result, it is
determined to be incorrect. And then, we used the correlation coefficient
between the MCDR predicted by HDLS and VCDR marked by the glaucoma
expert to evaluate the accuracy of HDLS for predicting VCDR. On validation
dataset 3, we used sensitivity and specificity to evaluate the accuracy of
doctors to diagnose glaucoma independently and with the assistance of
the HDLS.
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Statistical analysis

The 95% Cls for AUC were calculated non-parametrically through logit-
transformation-based Cls. In addition to AUC, the sensitivity and specificity
of each operating point in ROC curves were also measured with 2-sided
95% Cls. These Cls were calculated as Clopper-Pearson intervals, which are
exact intervals based on cumulative probabilities. In comparing the ISNT
scores of glaucoma and normal eyes, a Wilcoxon rank-sum test was used.
The chi-squared independence test was used when assessing the
increased sensitivity and specificity of doctors when referenced HDLS
diagnosis over independent diagnosis. All statistical tests were performed
using SPSS (Statistical Product and Service Solutions) software.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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