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Wearable radio-frequency sensing of respiratory rate,
respiratory volume, and heart rate
Pragya Sharma 1✉, Xiaonan Hui1, Jianlin Zhou1, Thomas B. Conroy 1 and Edwin C. Kan 1

Many health diagnostic systems demand noninvasive sensing of respiratory rate, respiratory volume, and heart rate with high user
comfort. Previous methods often require multiple sensors, including skin-touch electrodes, tension belts, or nearby off-the-body
readers, and hence are uncomfortable or inconvenient. This paper presents an over-clothing wearable radio-frequency sensor
study, conducted on 20 healthy participants (14 females) performing voluntary breathing exercises in various postures. Two
prototype sensors were placed on the participants, one close to the heart and the other below the xiphoid process to couple to the
motion from heart, lungs and diaphragm, by the near-field coherent sensing principle. We can achieve a satisfactory correlation of
our sensor with the reference devices for the three vital signs: heart rate (r= 0.95), respiratory rate (r= 0.93) and respiratory volume
(r= 0.84). We also detected voluntary breath-hold periods with an accuracy of 96%. Further, the participants performed a breathing
exercise by contracting abdomen inwards while holding breath, leading to paradoxical outward thorax motion under the
isovolumetric condition, which was detected with an accuracy of 83%.
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INTRODUCTION
In addition to the effective treatment of diseases, modern
medicine has been extended towards an overall healthier living
with improved day-to-day quality of life1,2 and integrated end-of-
life care not restricted to clinical visits3,4. This requires novel
solutions for noninvasive vital-sign sensing without skin contact
that can be integrated effectively into various lifestyles over broad
age-groups. Such a technique could potentially help patients of
asthma, chronic obstructive pulmonary disease (COPD)5, and sleep
apnea by continuous monitoring of heartbeat and respiration.
In clinical practices, pulmonary function tests are generally

assessed by spirometry6 and physical examinations7. The latter
might not require any specialized instrument but is limited by the
experience of the physician and is not quantitative. Spirometry
provides detailed parameters characterizing lung function but
requires attentive participation of the patient with forced breath-
ing maneuvers, and is thus not feasible for continuous long-term
measurements, or patients suffering from asthma. Whole-body
plethysmography8 is used to measure absolute air volume in the
lungs and breathing resistances without extensive voluntary
exercises but still requires some patient cooperation. This poses
a challenge for respiratory disorder detection in patients that are
unable to follow the instructions due to weakness, coma, or other
cognitive failures. Other alternatives for respiratory monitoring9,10

require calibration for the volume estimate, including nasal
probes11 for airflow information, and strain or inductance belts
at thorax and abdomen9,12, which need to maintain reasonable
tension in all breathing conditions to measure chest-wall motion.
Local strain sensors13 are more comfortable, but require tight skin
contact to measure chest-wall motion. Gold-standard heartbeat
monitoring uses electrocardiogram (ECG) with multiple adhesive
skin-contact electrodes to monitor the electrical activity of the
cardiac muscle. Pulse oximetry is a less invasive method of
extracting the heartbeat, however, it requires a stable probe in
direct contact with the skin14–16. Other noninvasive and non-skin-
touch sensing technologies have been proposed, but also with

their limitations. Thoracic surface and body vibrations due to
heartbeat have been studied in detail using seismocardiography
(SCG)17–19 and ballistocardiography (BCG)17,20–22, respectively, for
signatures under different abnormalities. Both sensors measure
either displacement, velocity, or acceleration originated from the
heartbeat but observed at the body surface. Film-based displace-
ment sensors may be affected by artifacts from structural
vibrations in a moving wheelchair23 or ambulance. Integrated
solutions like smart shirts24 with ECG, chest belts, and accel-
erometers can provide detailed cardiopulmonary characteristics,
but have a large device form-factor, and are unsuitable for
bedridden and geriatric patients where snug-fit clothing and skin-
contact electrodes are impractical due to concerns of comfort and
bed sores25,26. Ambient optical27 and radio-frequency (RF)
sensing28 records surface motion from breathing and heartbeat
with limited signal-to-noise ratio (SNR)29,30, and requires the
reader to be in the line of sight (LoS) to the torso31,32. Far-field RF
has additional limitations on the maximum number of subjects
that can be measured simultaneously33. Respiratory volume (RV) is
even more difficult to retrieve, as it is affected by body posture
and orientation variation32,34 with respect to the antennas or
cameras. Some noticeable work has been done using RF in the
near-field region35,36 that can couple to internal dielectric
boundary change to clearly measure respiratory motion, but
heartbeat can only be extracted during breath-hold.
Near-field coherent sensing (NCS)37 is a noninvasive technique

that works by transmitting a low-power continuous wave (CW) RF
signal into the body with over-clothing antennas. The near-field
coupling to the internal dielectric boundary motion results in a
direct measurement of the heart, lung, and diaphragm motion, in
contrast to surface motion sensors. Detailed high-frequency
heartbeat characteristics associated with the S1 and S2 sounds
can also be potentially extracted from over-clothing placement38.
However, a detailed comparison with echocardiogram can help
clarify this observation, while a further improvement from possible
sensor fusion with SCG and phonocardiogram (PCG) needs to be
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investigated in future studies. The wearable RF sensor design has
high ambient motion tolerance with the receiver placed close to
the transmitter, making NCS less affected by environmental
changes compared to direct far-field reflection39, where ambient
motion within the antenna radiation pattern can cause significant
interference. Multiple sensors can be placed on the body to
couple to both respiratory and heartbeat motion with frequency
multiplexing and can be easily extended to monitor multiple
people in the same room. Owing to its simple transceiver
architecture, this sensor can be readily designed in a small,
convenient form factor, as well as made wireless-capable at
low cost.
In our earlier work, we have demonstrated preliminary NCS

results where RV and respiratory rate (RR) can be estimated with
high accuracy for one participant in sitting posture40. In this paper,
we present a setup to accurately estimate the heart rate (HR) and
respiratory effort, including RR and RV, over 20 participants with
varying body mass index (BMI) and gender. Further, as RV is
sensitive to body posture and breathing styles, we have presented
analyses over various postures, as well as during conscious and
spontaneous breathing exercises with a large breathing range of
0–45 breaths per minute (BPM) and a resting HR in the range of
50–90 beats per minute (BPM). A short calibration period by a
gold-standard pneumotachometer (PTM) was performed for each
subject and posture once, and the corresponding model was used
on NCS and chest belts for further voluntary breathing exercises.

RESULTS
NCS sensor and test system architecture
The NCS sensing approach is based on the near-field coupling of
ultra-high frequency (UHF) waves with the nearby dielectric
boundary motion. The dielectric composition in the near-field
region of an antenna will modulate its characteristics. For a single
antenna, this change can be measured from the antenna
reflection parameter S11. For an antenna pair, this can be derived
from the cross-coupling S21. As the transmitter (Tx) and receiver
(Rx) signal chains are better isolated in the S21 measurements with
less self-interference and higher SNR, we opt to place an antenna
pair as part of the NCS sensor to the region of interest, where the
intended surface and internal boundary motion can be retrieved
after baseband demodulation. Notice that UHF has reasonable
penetration into dielectrics in the near-field, and thus the internal
dielectric motion during breathing and heartbeat can be locally

modulated onto the specific antenna pair. We have placed two
NCS sensors on the chest, one below the xiphoid process close to
the diaphragm, and another near the heart. These sensors
measure the abdomen and thorax respiratory motion as well as
the heartbeat, by effectively capturing the geometrical changes in
these organs along with other associated muscles.
Figure 1a shows the NCS system architecture with sensor

placement, data collection and processing flow. It also shows the
reference sensors by BIOPAC (BIOPAC Systems, Inc., Goleta, CA),
including ECG, chest belts and PTM connected to a facemask. A
participant wearing all sensors in the sitting posture is shown in
Fig. 1b. Two NCS sensors are held on the body with loosely placed
belts. The abdomen sensor is placed slightly below the xiphoid
process to be close to the diaphragm, and the thorax sensor close
to the heart, so that it can couple both heartbeat and lung motion.
These lightweight and small sensing units consist of RF Tx and Rx
antennas connected to the software-defined radio (SDR) transcei-
ver (Fig. 1c) to perform NCS measurements with a low RF power of
less than —10 dBm (Fig. 1d), well under the safety limits set by
occupational safety and health administration (OSHA)41.
The acquired BIOPAC and NCS signals are processed to estimate

RV, RR, and HR statistics. The normalized BIOPAC thorax and
abdomen chest-belt signals are shown as reference in Fig. 2a.
Figure 2b shows normalized unfiltered NCS data from thorax and
abdomen sensors, with strong respiratory motion modulation.
Heartbeat is also modulated clearly on the NCS thorax waveform
and can be properly filtered to remove respiratory motion.
Supplementary Fig. 1 shows the filtered heartbeat waveform
from NCS and the HR extraction techniques under motion artifact.

RV calibration model
A calibration model is developed to estimate RV from NCS and
chest belts in various postures and breathing conditions using
airflow estimates from the pre-calibrated PTM connected to a
facemask (Fig. 1b). While PTM is a kind of spirometer, we have
referred to it as such to state explicitly that the airflow is estimated
from the pressure change. The facemask design includes a
separator between nose and mouth and is tightly strapped on to
minimize any air leakage from the mouth. Participants are
requested to inhale and exhale by mouth only, and they can feel
rather uncomfortable during PTM measurements. Thus, PTM is
removed from the participant except during the short initial
calibration routine of 30 s, with 15 s of each normal and deep
breathing. Instantaneous volume is computed by integrating the

Fig. 1 The experimental system. a Schematics of NCS and BIOPAC sensors and data flow. b Experimental setup with the participant wearing
NCS and BIOPAC sensors in the sitting posture. The photo was taken and published with the written informed consent of the subject. c The
NCS sensor consisting of SDR as well as the Tx and Rx antennas in a 3D-printed package. d Spectrogram of thorax and abdomen NCS sensors
at their respective carrier frequencies of 1.82 GHz (−12.84 dBm) and 1.9 GHz (−10.42 dBm).
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airflow rate for each breath cycle to get VolPTM. Waveforms from
both BIOPAC chest belts and filtered NCS respiration waveforms
are then calibrated by the least-square fitting of linear relation:

a � RespTh þ b � RespAbd þ c ¼ VolPTM; (1)

where RespTh and RespAbd are thorax and abdomen respiratory
waveforms, respectively. Figure 2c shows PTM airflow waveform
during the calibration, with the corresponding VolPTM and
calibrated NCS and chest-belt volumes in Fig. 2d. RV is defined
as the volume of the air exchanged during each inhalation and
exhalation and is calculated as the peak height of each breath
cycle. Figure 2e shows estimated RV from chest belts and NCS
data shown in Fig. 2a, b, which have similar trends but NCS has
shown more minute variations. This is consistent with Fig. 2d
around 18 s, where the small perturbation in airflow is captured by
NCS but not chest belts.
For RV calibration, as the posture can affect the breathing

pattern and lung capacity, separate calibration is necessary12 for
supine, lateral recumbent, and sitting postures for each partici-
pant. As the chest circumference has a significant variation across
different postures, BIOPAC chest-belt tension requires re-
adjustment to accurately measure respiration. The NCS sensor,
on the other hand, only requires stable placement in the near-field
region and does not require changes across different postures.
Furthermore, during the sitting posture, we performed two more
experiments with participants in relaxation and attention-task
states without additional calibration. Frequent involuntary posture
changes were observed during both states, either for comfort or in
response to task failure or success. With these posture changes,
tension-based BIOPAC belts inclined to move toward a stable,
minimal-circumference position, i.e., lower for the thorax and
upward for the abdomen belt, resulting in loss of tension and
erroneous measurements. As the NCS belts and sensors were
loosely placed, a posture change could cause the antennas to

move closer or further away from the body, thus scaling the
waveform amplitude. RV of BIOPAC and NCS during the known
normal breathing sections were tested to apply a scaling
correction. Detailed correction steps are discussed in the “Data
Processing” section.

Overall statistics
With tests in multiple postures and under different breathing
exercises, we have performed analyses of 100 experiments, with
over 590 min of total recorded data for 20 participants. Figure 3
shows the results across all three postures, with different
breathing styles. We can achieve a high correlation of NCS and
BIOPAC for RV ðrRV ¼ 0:84Þ, RR ðrRR ¼ 0:93Þ, and HR ðrHR ¼ 0:95Þ,
as shown in the scatter plots in Fig. 3a–c. We have employed the
Bland-Altman (B&A) plot to quantify the agreement between NCS
and BIOPAC, both of which may have errors. This agreement is
estimated by the mean ðmÞ and standard deviation ðσÞ of the
measurement differences. B&A plots can also identify possible
outliers visually by a XY scatter plot, with the Y axis as the pairwise
difference, and the X axis as the mean of the two measurements.
The systematic bias is estimated as the mean difference m, and
limits of agreement (LoA) within which 95% of the differences are
expected to lie, are estimated as LoA ¼ m± 1:96 � σ, assuming a
normal distribution. Figure 3d–f show good agreement of both
the sensors with low mean deviations (mRV ¼ 9:6mL, mRR ¼ 0:05
BPM, mHR ¼ �0:5 BPM) and narrow LoA, as denoted by the
dashed lines around the mean value. The results for each
participant individually are shown in Supplementary Table 1.

Variation over breathing patterns
As breathing is a hybrid voluntary-autonomous process, we have
collected data during both conscious and spontaneous states.
During conscious state, participants performed guided normal,

Fig. 2 Examples of the sensor outputs and estimated RV, RR, and HR. a, b The normalized BIOPAC chest-belt signals (a) and normalized
unfiltered NCS signals (b) showing respiration waveforms during tidal (normal) breathing. The NCS thorax signal shows strong heartbeat
motion as well. c The PTM airflow signal with detected inspiration and expiration start points. d The extracted instantaneous volume VolPTM
(dotted green) from the airflow, and calibrated chest belts (blue) and NCS (dashed-dotted red) respiration volume waveforms. e–g The analysis
of the data shown in a and b; e and f show RV and RR, respectively, from NCS and BIOPAC chest belts; g shows the HR from NCS and
BIOPAC ECG.

P. Sharma et al.

3

Scripps Research Translational Institute npj Digital Medicine (2020)    98 



deep, fast breathing and breath-holds. For the spontaneous tests,
no breathing instructions were provided and instead, participants
were first asked to relax and then execute an attention-engaging
task. As performing the task required the participants to be seated,
spontaneous breathing tests were performed only in the sitting
posture. Figure 3 showed the results over all the experiments with
breathing styles denoted by different markers. As normal breath-
ing is similar to spontaneous breathing, most of these points are
overlapped. The fast breathing pattern is centered around the
instructed 40 BPM in the RR plots. Deep breathing is indicated by
low RR around 6 BPM, as well as high RV. These points are also
spread out with a low correlation between NCS and chest belts,
possibly due to data distortion from the large motion, resulting in
nonlinear strain gauge response, as well as NCS sensor motion
relative to the body. Breath-hold periods have low RR at the
beginning of the hold period and may also be accompanied with
deep breaths after the long holding period, thus are seen closer to
the deep-breathing points in both RV and RR plots. Zero RR is not
marked, but these periods are treated separately during the
breath-hold detection stage. Supplementary Fig. 2 shows an
example of one participant following the conscious breathing
protocol in the supine posture, and the extracted RV, RR and HR
over time with consistent observations. Table 1a compares the
correlation and B&A statistics for different breathing patterns. The

relaxation state with spontaneous breathing shows the highest
correlation of NCS and BIOPAC sensors for RV and HR estimates,
close to conscious normal breathing results. This could be due to
the regular breathing pattern with few motion artifacts. In
comparison, participants tended to move in response to stress
during the attention test, leading to motion artifacts.

Variation over postures
Adjusting body postures can lead to RV variations, as respiratory
mechanisms are affected by different resistance or compliance of
the lung and chest-wall components. Thus, we performed tests
with the guided breathing protocol in three postures: laying on a
bed in supine and left lateral recumbent postures and sitting in a
chair. The average reference RV, calculated over all 20 participants
during the identical protocol of voluntary breathing exercises, is
observed to be highest at 329mL in the supine posture, followed
by sitting and lateral recumbent at 317 and 263mL, respectively.
The RR has the opposite trend with average RR of 17.3, 19, and
19.5 BPM in supine, sitting, and lateral recumbent postures,
respectively. The average HR is highest during sitting at 67.6 BPM,
compared to 65.3 and 63.8 in supine and lateral recumbent
postures, respectively. These results are summarized in Supple-
mentary Table 2. The detailed statistics for each posture are shown
in Table 1b. Good correlation is observed across all the postures,

Fig. 3 Correlation and agreement between NCS and BIOPAC estimate of RV, RR, and HR over the entire data. The label shows a marker for
each breathing style, including conscious normal, deep, fast and breath-hold (BH), as well as spontaneous breathing in relaxation and
attention states. a–c Scatter plots of NCS vs. BIOPAC RV, RR, and HR, respectively, with denoted Pearson’s correlation coefficient, r, showing a
high correlation between the two sensors. d–f B&A plots of NCS and BIOPAC showing the bias m at the center (solid line) and the
corresponding LoA (dotted lines) given by m± 1:96 � σ.

Table 1. Correlation and B&A statistics.

Measurement (a) Different breathing patterns (b) Different postures with breathing protocol

Normal Deep Fast Hold Relaxation Attention Supine Lateral recumbent Sitting

RV (mL) r 0.88 0.80 0.76 0.84 0.93 0.76 0.81 0.89 0.81

m 0 60 18 33 −10 11 2 18 27

σ 89 186 144 138 65 97 121 115 132

RR (BPM) r 0.95 0.91 0.89 0.77 0.93 0.87 0.94 0.93 0.93

m 0.05 0.02 −0.49 −0.13 0.11 0.19 −0.06 0.06 −0.08

σ 2.48 2.58 6.66 4.09 1.72 2.48 2.84 3.60 3.52

HR (BPM) r 0.95 0.93 0.90 0.96 0.98 0.95 0.96 0.93 0.94

m −0.69 −0.98 −1.70 −0.80 −0.23 0.04 −0.70 −0.62 −1.22

σ 2.90 3.45 4.38 2.92 1.81 3.67 2.72 3.54 3.20
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with supine showing the least bias (m) for RV and RR estimates
with narrow LoA (small σ), possibly due to the stable posture. No
other clear trend is observed, indicating that the estimates are
more sensitive to breathing types and patterns than to the
posture. Supplementary Fig. 3 shows the correlation and B&A
plots for different postures, both with and without the simulated
breathing exercises.

Breath-hold detection accuracy
Each participant was instructed to perform two breath-holds in
both supine and lateral recumbent postures for a maximum
duration of 20 s, simulating central sleep apnea (CSA), which is
indicated by breath cessation for at least 10 s42. A simple detection
algorithm was implemented based on the inspiration peak-to-
peak interval. Overall, both NCS and BIOPAC performed well for
breath-hold detection, as shown in Table 2, which shows both
sensors detected 74 cases out of 80 annotated cases, with each
missing 3 non-overlapping instances. The errors possibly originate
from the participant’s incompliance to the breath-hold protocol.
Small torso motion is coupled differently to the two sensors,
leading to incorrect peak detection during breath-hold. Supple-
mentary Fig. 4 shows the NCS and BIOPAC respiratory waveforms
with detected peaks during breath-holds for representative good
and poor cases.

Paradoxical abdomen-thorax motion detection accuracy
To test the separate thorax and abdomen motion, the participants
were asked to perform an isovolumetric abdomen exercise while
holding breath. With no airflow, the inward abdomen contraction
results in outward motion of the thorax, as the total lung volume is
conserved43, simulating paradoxical abdomen-thorax motion
similar to obstructive sleep apnea (OSA) with complete closure
of the airway. We used the slope-product of thorax and abdomen
respiration waveforms to detect paradoxical motion in BIOPAC
and NCS waveforms, as shown in Fig. 4, where three instances of
isovolumetric maneuver are successfully detected by both the
sensors. While some participants were able to successfully perform
breath-hold and abdomen contraction, anomalous instances
when paradoxical behavior was not observed can be attributed
to the following possible reasons. (1) Placement sensitivity of
sensors: the BIOPAC thorax belt placed near the xiphoid process
may be coupled to the abdomen motion, and similarly the NCS
sensor can be coupled to the accessory muscles. Cross-coupling
between the two motions will reduce the paradoxical motion
detectability. (2) Participants were unable to perform the
isovolumetric exercise correctly during the intended period while
following the breath-hold constraint. (3) The signal is lost due to
sensor instability during the large chest circumference change
resulting from the abdomen contraction. Overall, the algorithm
was designed to be able to detect even slight paradoxical motion,
resulting in the similar performance of both sensors as shown in
Table 2. Both NCS and BIOPAC can detect 42 out of 58 instances,
with fewer missed cases for BIOPAC (6) than for NCS (9).
Supplementary Fig. 5a, b show two examples of poor detection
for NCS and BIOPAC, respectively. While the algorithm performs
well, as seen in these figures, it is more sensitive to baseline drift

and other motion artifacts. Thus, sensor placement needs to be
further investigated for robust paradoxical motion recognition.

Motion interference with NCS
Our wearable NCS sensor setup has a high tolerance for ambient
motion interference. As shown in Supplementary Fig. 6, there is no
interference from a nearby walking person on the NCS data, due
to the strong near-field coupling. Additional tests are performed
with the motion of different body parts during breath-holds, as
shown in Supplementary Figs. 7 and 8. There is no effect of hand
motion on BIOPAC sensors, nor the NCS sensors unless it is very
close to the antenna pair. ECG becomes noisy with the hand
motion, likely due to electromyogram (EMG) interference. During
arm motion, both BIOPAC thorax and abdomen belts show signal
anomalies, while only the thorax NCS is affected. Additional
studies are required to examine internal muscle motion inter-
ference resulting from near-field coupling, and separate the
external arm motion coupling, as abdomen NCS still shows clear
signal without any interference.
While external motion causes limited interference, large

spurious torso motion results in motion artifacts. Respiratory
measurements from BIOPAC chest belts can be interfered with
belt displacement due to body movement, and an entire signal
segment can be missed if the participant performs heavy or forced
exhalation that leads to loss of tension. NCS waveforms are prone
to motion artifact due to the current antenna pair packaging,
which is loosely placed over the clothes with semi-isotropic
radiation patterns. Free antenna movement relative to the body
surface may result in signal artifacts, making NCS well-suited for
static and quasi-static conditions, for example, when a person is
typing, driving, or sleeping.

Table 2. Detection of breath-hold (BH) and paradoxical abdomen-thorax (PAT) motion.

BH ðn ¼ 80Þ NCS PAT ðn ¼ 58Þ NCS

Detected Missed Detected Missed

BIOPAC Detected 74 3 BIOPAC Detected 42 9

Missed 3 0 Missed 6 1

Fig. 4 An example of normalized thorax and abdomen respiration
waveforms during the isovolumetric maneuver by one partici-
pant. a Normalized BIOPAC chest-belt waveforms and b Filtered NCS
respiration waveforms. The intended paradoxical motion windows
are marked by green-shaded areas and detected instances are
shown by the positive value of dotted green lines. Timing of
abdomen contraction, hold, and relaxation is denoted during the
second cycle of the NCS waveform. Both BIOPAC and NCS can detect
all three instances of paradoxical abdomen-thorax motion.
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As errors in either BIOPAC or NCS respiratory data will result in
inconsistent RV and RR, which reduces the reported accuracy, data
quality score is defined, where poor respiration data quality
intervals are rejected. Similarly, poor heartbeat data is also
discarded based on NCS data quality. Further quality estimation
details are discussed in the “Data Processing” section.

DISCUSSION
Following the prescribed routines, the subjects performed breath-
ing exercises with large RR variation, from breath-holds and slow
deep-breathing around 6 BPM to panting around 40 BPM. Our
sensor and algorithm can achieve high accuracy under these large
variations, with no special clothing or environmental require-
ments, thus promoting the applicability in real-life conditions for
continuous monitoring of healthy subjects. A brief comparison
with other noninvasive techniques focused on respiration is
presented in Table 3. Different statistics are reported, including
percentage accuracy and root mean square error (RMSE), apart
from the ones used in this paper, r, m, and σ. Our proposed NCS
method provides a good estimation of both heart and respiratory
motion characteristics with increased user comfort. The accuracy
tolerance for a well-calibrated gold-standard spirometer is ±3%6.
For example, a quiet breath of 0.4 L will be measured as 0.4
± 0.012 L, and a deep breath of 2 L will be measured as 2.0
± 0.060 L. Table 1a shows the σ for different breathing patterns,
with low values in spontaneous normal breathing conditions,
σRelax ¼ 0:065 L, σAttention ¼ 0:097 L, and σNormal ¼ 0:089 L during
the breathing protocol. While these values are higher than
acceptable clinical values, they can be utilized for preliminary
analysis where quantitative evaluation of respiratory efforts
including both RR and RV along with HR is helpful, especially for
geriatric patients with low cognitive function, where dyspnea
information can only be currently determined from self-reporting
or a caregiver’s visual observation44,45.

The limitations of the current setup include data distortion due
to antenna motion relative to the body, sensor placement
sensitivity and arduous calibration requirements. The former issue
of antenna motion can be readily resolved by improved antenna
packaging and garment integration of the antenna with
conductive fibers46. While sensor placement requirements are
less stringent for most routines, it becomes more important for
accurate paradoxical abdomen-thorax motion monitoring, as NCS
sensor coupling to diaphragm and lungs is observed to be
position sensitive and needs to be carefully deployed. Our
calibration protocol requires participants to breathe only through
the mouth while wearing a facemask for a brief duration. This
calibration is mainly to give an absolute scale in RV and can be
omitted if the percentage volume change is sufficient.
Additionally, the NCS sensor with its small form-factor and

simple transceiver architecture can be incorporated inconspicu-
ously into the fabric with an improved wireless design and can be
worn over multiple layers of clothing without requiring any direct
skin contact. We have used frequency division for multiplexing
two sensors, which can be easily extended to place more sensors
at different locations on the body, as well as on multiple people
simultaneously. The Tx signal can be further modulated with a
unique pseudo-noise code known to the corresponding Rx. These
design options in NCS provide higher signal isolation against
ambient interferences and inter-sensor collision than implementa-
tions based on the direct far-field RF and optical sensors. The
detailed respiratory and heartbeat characteristics also open other
areas of applications, including cough monitoring, stress detec-
tion, and overall ambulatory healthcare monitoring.

METHODS
Hardware setup
The NCS sensor prototype is implemented by an Ettus universal software
radio peripheral (USRP) B200mini47 SDR, with monopole helical antennas

Table 3. Comparison with other noninvasive methods.

Paper Sensor Statistics Experimental
conditions

Respiratory rate Respiratory volume Heart rate

Massagram
et al.34

Far-field doppler RF;
1 m LoS

– Sitting: r= 0.77; m= 39mL;
σ= 107mL
Supine: r= 0.72;
m= 24mL; σ= 129mL

– • 8 healthy
• spirometer

Nguyen et al.32 Directional far-field CW RF – Bed accuracy: 95.4% (error
58mL)

– • 6 healthy
• spirometer

Adib et al.33 Far-field FMCW RF;
1–8m LoS

Accuracy: 99.3%
(error 0.09 BPM)

– Accuracy: 98.5%
(error 0.95 BPM)

• 14 healthy
• chest-belt/
oximeter

Reyes et al.27 Smartphone camera r =1.0; RMSE=0.4 BPM;
m=−0.02 BPM; σ=0.42 BPM

r = 0.98; RMSE= 182mL;
σ= 185mL

– • 15 healthy
• spirometer

Brüllmann
et al.12

RIP chest belts – Healthy: m= 0mL;
σ= 55mL
Patients: m= 20mL;
σ= 100mL

– • 5 healthy,
12 patients

• flow meter

Chu et al.13 On-skin strain sensor – r = 0.96; m=−77mL;
σ= 152mL

– • 7 healthy
• spirometer

NCS37,40 Wearable RF r= 0.93; m= 0.05 BPM;
σ= 2.93 BPM

r= 0.84; m= 10mL;
σ= 109mL

r= 0.95; m=−0.5 BPM;
σ= 3.32 BPM

• 20 healthy
• PTM

A comparison of the proposed NCS method (across all positions and breathing styles) with existing technologies, focused on respiration. Gold-standard
spirometer respiratory volume accuracy tolerance is ±3%6. Different performance metrics are used across papers, including percentage accuracy, root mean
square error (RMSE), correlation coefficient (r), mean (m) and standard deviation (σ) of the differences of measured and reference data (B&A statistics).
Experimental conditions show number of participants and the reference measurement device for each work. The last row shows the results of the
presented work.
LoS line of sight, FMCW frequency modulated continuous wave, RIP respiratory inductance plethysmography.
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(Taoglas TG.19.0112), packaged in a three-dimensional-printed case, as
shown in Fig. 1c. The relative antenna placement is designed to adjust the
direct Tx-Rx coupling and enhance the sensitivity to the reflected signal
from internal organs. Two SDR units are multiplexed by frequency, with the
carrier frequencies of 1.82 and 1.90 GHz. This setup is a variation of the
previous multiple-input multiple-output (MIMO) implementation40 to
improve sensor stability and participant comfort. The baseband tone is
set at fBB = 51 kHz, sampled at 2 ´ 106 samples per second (Sps), where the
quadrature baseband signals I tð Þ and Q tð Þ are simple sinusoidal tones. The
intended motion is modulated on the IQ amplitude (NCSamp) and phase
(NCSph), and can be extracted as,

NCSamp tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IRx tð Þ2þQRx tð Þ2
q

; (2)

NCSph tð Þ ¼ unwrap tan�1 QRx tð Þ
IRx tð Þ

� �

� 2πfBBt þ θ0
� �

; (3)

where θ0 is a constant phase offset including the initial phase and
accumulation from the Tx-Rx path and cables. While both amplitude and
phase contain the modulated motion, their coupling strength varies with
the sensor placement, which provides further resistance to noises when
both magnitude and phase are included for further analysis. Additional
studies are needed to clearly understand the coupling tradeoffs. For this
work, we opted to use the best reference-correlated signal during the
calibration phase for both thorax and abdomen sensors. For respiration,
chest-belt signals are taken as reference, and for heartbeat, bandpass
filtered (0.9–1.8 Hz) ECG signal is taken as the reference. The final
demodulated data is sent to the control computer by a universal serial bus.
The Tx powers are �12:84 dBm and �10:42 dBm for the thorax and
abdomen, respectively, as shown in Fig. 1d, significantly below the
allowable OSHA radiation exposure limit41.
Reference measurements are performed by BIOPAC sensors, including a

3-lead ECG SS2LB, two torso belts SS5LB and PTM SS11LB, placed as shown
in Fig. 1a, b. The pre-calibrated PTM measures the airflow rate in L/s from
the mouth using a facemask and is only placed on the subject for short
calibration periods. For the remaining breathing exercises, reference
respiration is only recorded by two belts placed at thorax and abdomen
that measure the change in local tension. During the experiment, male
participants wore the thorax belt at 2–3 cm below the armpits, while female
participants wore the belt below the breasts, close to the xiphoid process
and costal margin, considered as the dividing line between the rib cage and
abdomen. This placement is selected for belt stability and user comfort. All
sensors are connected to a 4-channel data acquisition unit BIOPAC MP36R48.

Participants and protocol
The human study protocol was approved by the Cornell Institutional
Review Board (IRB), and participants provided written informed consent to
take part in the study. Twenty-five healthy participants with no known
history of cardiopulmonary diseases were recruited and instructed to
follow breathing routines to the best of their abilities, without over-
exerting, in a sequence of three postures: supine, left lateral recumbent
and sitting upright in a chair. The instructions were provided to the
participants in real-time using LabVIEW in both audio and visual formats.
The data collection was carried out in a standard laboratory room with
drywalls and supporting metal frames, without any radiation-absorbent
material. The environment consisted of standard furniture, including a bed,
desks, and chairs, along with computers and various units of laboratory
equipment. The participant attire was not controlled, and the NCS sensors
were placed over their daily clothing, including shirts and loosely fitted
hoodies made of different fabric materials. Five participants’ data was
rejected due to poor calibration data in any one of the three postures,
which showed inconsistency due to either an inability to follow the mouth-
only breath instruction or from the loose placement of the facemask that
caused air leakage.
The 20 eligible participants included 14 females and 6 males with age

from 18 to 34-year-old (μ ¼ 22:9; σ ¼ 3:3), weight from 49.8 to 79.5 kg
(μ= 62.2, σ= 9.3) and height from 158 to 183 cm (μ ¼ 167; σ ¼ 6:8). The
body mass index (BMI) of the participants fell within the slightly
underweight to slightly overweight range from 18.3 to 26.8 kg=m2

(μ ¼ 22:2; σ ¼ 2:2).
A fixed breathing protocol of ~6min was executed in each posture after

calibration, which included:

1. Normal breathing for 120 s.
2. Deep breathing for 60 s.

3. Fast breathing for 30 s.
4. Normal breathing for 30 s.
5. Breath-hold for maximum 20 s, followed by normal breathing for

20 s. Repeat once.

During normal or tidal breathing, no inhalation or exhalation instructions
were provided, but the participants were asked not to take any deep
breaths or long pauses. During deep breathing, real-time instructions were
given to start inhaling and exhaling with fixed durations of 4 and 6 s,
respectively, which gave a RR of 6 BPM. Similarly, instructions were given
for fast breathing at a rate of 40 BPM, with equal time for inhalation and
exhalation. These instructions were provided as a guideline, and
participants were advised to perform normal breathing if they felt
uncomfortable during any of the routines, resulting in some variations
around the expected rates. The procedure was clearly explained to the
participants, with short examples for practice, before recording the
calibration and main routines.
For observing separate thorax and abdomen motion, the participants

were asked to perform the isovolumetric exercise with the following steps
during breath-hold: contract the abdomen inwards, maintain the position
for 3 s, then relax abdomen back to normal. Three such maneuvers were
performed, separated by normal breathing intervals of 10 s to simulate
paradoxical abdomen-thorax motion as observed in OSA. As this motion is
difficult to perform without extended practice, this exercise was only
performed in the sitting posture, so that the participants could learn the
motion, while looking at their real-time NCS waveforms.
With the participants continued to be seated in a chair, an additional

series of exercises were performed to test the breathing patterns in the
relaxation state and under the given attention-engaging task. The
participants were asked to close their eyes and relax for 5 min. This
relaxed period allowed free-breathing over time without any instructions,
thus increasing the likelihood of non-voluntary tidal breathing. The next
routine was designed using PsyToolkit49,50 to render the participants under
an attentive and cognitive task, where they watched and reacted to
anomalous jumps of an on-screen rotating clock hand by pressing the
space bar. Instantaneous feedback was given by flashing an on-screen
indicator light of correct keypress, to ensure continuous attention. This
routine was performed for 6.5 min and rendered non-voluntary breathing
patterns under fast temporal variations due to induced stress. Both
routines utilized the RV calibration from the previous sitting posture.

Data processing
The synchronization among NCS and BIOPAC sensors is achieved by
system time stamps and improved by maximizing the correlation between
respiration data from two measurement systems, resulting in synchroniza-
tion on the order of hundreds of ms (<1 s). The data collected from both
sensors is downsampled to 500 Sps before further analysis in MATLAB.

Peak detection. For peak detection, a moving average-crossing algo-
rithm51 is implemented, which is effective for signals with varying
amplitude and frequency characteristics, such as the respiration signal
here with the RR in the range of 0–45 BPM, without any manual tuning. A
moving average is estimated at every point using a given window length,
resulting in a moving average curve (MAC). This window length is selected
to have approximately one respiratory cycle in each window and is
constantly updated by taking Fourier transform over a fixed period to
estimate the RR. The points where MAC crosses the original signal are
labeled as intercepts and are classified as up or down intercepts for
positive and negative slopes, respectively. Finally, a maximum is marked as
the maximal point between two up-down intercepts and a minimum is
also marked similarly. This algorithm is used in the estimation of all the
three parameters: RV, RR and HR.

RV estimation. PTM measures the airflow rate, from which the beginning
of each inhalation and exhalation points are identified by a simple zero-
cross detection algorithm, based on the change of sign before and after
the zero-crossing points, and the slope at these points. Integration is
performed over each inhalation and exhalation cycle to get the
instantaneous air volume, VolPTM, without aggregating a bias over time.
Least-square fitting is performed for solving Eq. (1) by a trust-region
algorithm with bounded constraints of a,b > 0. RV is estimated as the
average volume exchanged in each respiratory cycle over a window of
15 s, with at least two peaks in the window to get a robust estimate.
Owing to sensor motion over time, mostly resulting from a posture change,

the estimated RV may deviate from its original calibration. An additional
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corrective step is performed if the estimated RV during normal breathing
section of the breathing exercise routine RV Normalð ÞRoutine, deviates more
than ±5% from the calibrated RV Normalð ÞCalibration, derived from the first 15 s
of calibration. The NCS and BIOPAC RV is multiplied with a corresponding
scaling factor (SF) given as RV Normalð ÞCalibration=RV Normalð ÞRoutine, assuming
the normal breathing routine has nearly constant RV for the same person
over time. To validate this correction, an additional RV calibration consistency
study was conducted on one subject over three consecutive days in the
sitting posture. The subject performed the calibration, immediately followed
by the voluntary breathing exercise routine. Supplementary Table 3 shows
the detailed results, with RV before scaling correction, and the required SF to
improve the match when using day-1 calibration for all successive days. The
RV Normalð ÞCalibration lies within a narrow range of 0.37–0.43 L, showing
consistency in normal breathing volume for a healthy individual over time.
Little scaling is required to correct RV when calibrated immediately before the
routine, resulting in scaling factors close to 1 on day-1. Variations in sensor
placement and coupling strength result in scaling factors other than 1 to
correct the RV for the next two days. Supplementary Fig. 9a, b show
instantaneous volume and RV estimated on day-2 using day-1 calibration,
with NCS underestimating and BIOPAC overestimating the expected
RV Normalð ÞCalibration = 0.37 L, derived from day-1. The corrected scaled RV in
Supplementary Fig. 9c shows improved agreement of NCS and BIOPAC to
each other, as well as to the calibration value. As SF assumes accurate
RV Normalð ÞCalibration, some error may be introduced from inconsistencies in
the calibration and correction process, including variation due to small
calibration duration, difference in resistance when breathing through the
mouth, and change in RV Normalð Þ over time. The correction assumes
knowledge of normal breathing period, that can be potentially identified
based on the normal RR and HR range of an individual.
We have also studied the influence of different simulated airway resistances

on RV by introducing two resistances: (1) KN95 mask covering face and mouth
while breathing normally through the nose, and (2) straw with a 4mm inner
diameter while only breathing through the mouth. The extracted instantaneous
volume, RV and RR from chest belts and NCS are shown in Supplementary Fig.
10. RV calibration was performed before the entire routine. While breathing
through mask does not show any noticeable change in RV and RR estimates,
breathing through straw shows decreased RV towards the beginning with
constant RR, followed by an increase in RV with decreased RR. This opposite RV
and RR behavior indicate the increased respiratory effort required due to the
resistance offered by the narrow straw. The consistency of RV between the NCS
and BIOPAC suggests that the respective calibration remains reasonable within
the tested range of varying simulated airway resistance.

RR estimation. The NCS signal is bandpass filtered with the cut-off
frequencies of 0.05 and 0.8 Hz to derive the respiration waveforms from
both the sensors. As the diaphragm and resulting abdomen motion is
usually larger, the respiration waveform from the abdomen NCS sensor
alone is used to estimate RR. This sensor also has a weaker heartbeat
coupling, and thus filtering requirements are less stringent during fast
breathing and breath-hold. Similarly, the BIOPAC abdomen belt is also
used to estimate RR with the same algorithm. RR is calculated as the
number of detected breath cycles over the maximum window of the past
15 s. For each window, the number of cycles is calculated as the number of

inhalation peaks minus 1, and the total time is the interval between first
and last inhalation peaks. If no complete cycle is detected during the entire
window, the RR is marked as 0. Figure 2f shows calculated RR from NCS
and BIOPAC during a normal breathing section, between 12–17 BPM.
Supplementary Fig. 2d shows estimated RR over varying normal, deep and
fast breathing and breath-holds, in the range of 0–45 BPM.

HR estimation. The heartbeat waveform is modulated strongly on the
thorax sensor and can be separated from the respiration by proper
filtering. However, during the fast breathing exercise, the RR can be around
40 BPM, close to the HR, resulting in filtering ambiguity. Therefore, we have
used the second harmonic of the heartbeat waveform (Supplementary
Fig. 1) to estimate the peak-to-peak heartbeat interval with reduced
interferences from respiration and motion. The Fourier transform is used to
first estimate the approximate HR, which guides the filtering to retrieve the
second harmonic with a bandwidth of 0.8 Hz. The same peak detection
method is then used to find peaks of the second-harmonic waveform.
Instantaneous HR is estimated as an inverse of each heartbeat interval,
taken as the sum of two neighboring peak-to-peak periods, as shown in
Supplementary Fig. 1. This HR is averaged over a window of 10 s to
suppress any outliers. The reference HR is estimated from the ECG
waveform with bandpass filtering between 0.4 and 20 Hz, which removes
any baseline drift and suppresses the low-frequency P and T waves. The
sharp QRS complex peak is then detected with a simple slope-based peak
detection algorithm. Figure 2g shows the average HR by both the sensors.
Supplementary Fig. 2b shows the strong heartbeat modulated on the
thorax NCS sensor while performing different breathing exercises,
especially visible in the breath-hold periods, with the corresponding HR
from both sensors in Supplementary Fig. 2e.

Breath-hold detection. This is based on estimating the time interval
between two peaks at the end of inspiration, which consists of one
exhalation and one inhalation duration. True detection is marked if a
breath-hold period is larger than a fixed duration in the annotated breath-
hold period, otherwise a missed detection is marked. To simulate CSA
characterized by repeated interruptions in breathing during sleep42, we
used our breath-hold data collected in supine and lateral recumbent
postures, with participants performing two consecutive breath-holds in
each posture, separated by normal breathing periods. For consistency, the
same algorithm is used to estimate the numbers of pauses from both
BIOPAC abdomen belt and NCS.

Paradoxical abdomen-thorax motion detection. Isovolumetric exercises
lead to opposite slopes of thorax and abdomen respiration waveforms
during abdomen contraction and relaxation periods, denoted by a
negative product of instantaneous slopes, which are scaled to [−1, 1]
using a tanhðÞ function before estimating the product, then moving-
averaged over a window of 1 s and thresholded (<0) to give the detected
instances. The ground-truth window is manually labeled, and a true
detection is marked if it overlaps with the detected periods, otherwise, a
missed detection is marked. As the slope sign is independent of waveform
scaling, this detection does not require PTM calibration.

Fig. 5 The quality score for respiration and heartbeat waveforms with motion artifact instance between 60–80 s. A fixed, empirically
selected threshold is used to reject poor data, given by a low quality score. a Normalized NCS thorax and abdomen respiration waveforms.
b Respiration quality score in the range [0,1], showing poor quality with a score less than the threshold (0.4). c Normalized filtered NCS
heartbeat waveform modulated on the thorax sensor, with most of the artifact filtered out. d Quality score normalized by tanhðÞ in the range
[−1, +1]. A low threshold of 0 is selected, as the second-harmonic method used for heart rate estimate provides even higher motion
tolerance.
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Data quality estimation. Different approaches are followed for respiration
and heartbeat data quality estimation.
(1) Respiration data quality: As thorax and abdomen sensors are

independently placed, motion artifacts may be present differently, leading
to a poor correlation between the two measurements. Also, data from NCS
and BIOPAC chest belts can show dissimilar artifacts, with both or only
either one of them showing the artifact. Thus, correlations between thorax
and abdomen chest belts, and NCS and chest belts for both thorax and
abdomen are calculated with an epoch duration of 5 s. Final data quality is
taken as an absolute of the product of all these correlations, with higher
values indicating better quality, as shown in Fig. 5a, b. A fixed threshold is
empirically selected, below which the RR and RV estimates are discarded.
(2) Heartbeat data quality: As the NCS heartbeat waveform is only

extracted from the thorax sensor, a different artifact detection algorithm is
used, similar to that presented in our previous work52. An outlier detection
algorithm based on one-class support vector machine (OCSVM)53 is
implemented to detect artifacts in the filtered heartbeat waveform. To
speed up signal processing, the motion detection algorithm is implemen-
ted on a window of 4 s. The algorithm is trained on the entire routine and a
window is marked as an outlier if the tanhðÞ normalized score is <0. Figure 5c, d
show the filtered heartbeat waveform from the NCS thorax sensor and the
corresponding score, respectively. For ECG waveforms, QRS complex peaks
are less sensitive to noise, and thus no separate artifact detection is
implemented. HR estimation is discarded if the window contained any
poor-quality period.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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