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Development and clinical deployment of a smartphone-based
visual field deep learning system for glaucoma detection
Fei Li 1,17, Diping Song2,3,17, Han Chen2,3,17, Jian Xiong1, Xingyi Li 1, Hua Zhong4, Guangxian Tang 5✉, Sujie Fan6,
Dennis S. C. Lam 7, Weihua Pan8, Yajuan Zheng9, Ying Li2, Guoxiang Qu2, Junjun He2, Zhe Wang 10, Ling Jin1, Rouxi Zhou1,
Yunhe Song1, Yi Sun1, Weijing Cheng1, Chunman Yang11, Yazhi Fan12, Yingjie Li13, Hengli Zhang 5, Ye Yuan7, Yang Xu4,
Yunfan Xiong4, Lingfei Jin8, Aiguo Lv6, Lingzhi Niu9, Yuhong Liu1, Shaoli Li1, Jiani Zhang1, Linda M. Zangwill14, Alejandro F. Frangi 15,
Tin Aung16, Ching-yu Cheng16, Yu Qiao2✉, Xiulan Zhang1✉ and Daniel S. W. Ting 16

By 2040, ~100 million people will have glaucoma. To date, there are a lack of high-efficiency glaucoma diagnostic tools based
on visual fields (VFs). Herein, we develop and evaluate the performance of ‘iGlaucoma’, a smartphone application-based deep
learning system (DLS) in detecting glaucomatous VF changes. A total of 1,614,808 data points of 10,784 VFs (5542 patients)
from seven centers in China were included in this study, divided over two phases. In Phase I, 1,581,060 data points from 10,135
VFs of 5105 patients were included to train (8424 VFs), validate (598 VFs) and test (3 independent test sets—200, 406,
507 samples) the diagnostic performance of the DLS. In Phase II, using the same DLS, iGlaucoma cloud-based application
further tested on 33,748 data points from 649 VFs of 437 patients from three glaucoma clinics. With reference to three
experienced expert glaucomatologists, the diagnostic performance (area under curve [AUC], sensitivity and specificity) of the
DLS and six ophthalmologists were evaluated in detecting glaucoma. In Phase I, the DLS outperformed all six ophthalmologists
in the three test sets (AUC of 0.834–0.877, with a sensitivity of 0.831–0.922 and a specificity of 0.676–0.709). In Phase II,
iGlaucoma had 0.99 accuracy in recognizing different patterns in pattern deviation probability plots region, with
corresponding AUC, sensitivity and specificity of 0.966 (0.953–0.979), 0.954 (0.930–0.977), and 0.873 (0.838–0.908), respectively.
The ‘iGlaucoma’ is a clinically effective glaucoma diagnostic tool to detect glaucoma from humphrey VFs, although the target
population will need to be carefully identified with glaucoma expertise input.
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INTRODUCTION
Glaucoma is the leading cause of irreversible blindness in the
world, accounting for 15% of the blindness globally1. By 2040, it is
estimated that ~100 million people will have glaucoma. Glaucoma
is an optic neuropathy characterized by increased cupping of the
optic disc, thinning of the neuro-retina rim with corresponding
characteristic visual field (VF) defects2.
In clinical practice, VF can be performed in various methods,

including static versus kinetic; automated versus manual and
different widths of VF coverage (10 degrees, 24 degrees or 30
degrees). For detection and follow-up of glaucoma patients, the
most commonly ordered VF test is 24–2 humphrey VF that covers
the central 24° field3,4 (Supplementary Fig. 1). In brief, the VF
report consists of five major maps, including numerical displays
(ND), numerical total deviation plots, total deviation probability
plots, numerical pattern deviation plots (NDPs) and pattern
deviation probability plots (PDPs). ND shows the patient’s retinal

sensitivity at specific retina region in dB (within the central 24°
field). The numerical total deviation is the difference between the
measured values and the age-matched controls, with the
probability total deviation plot shown below. For the probability
plot, it is divided into <0.5%, <1%, <2%, and <5%, with <0.5%
being the most severe deviation from the normal population. For
NDP and PDP, it is adjusted for general reductions in retinal
sensitivity due to media opacities, uncorrected refractive error,
age, and pupil size. Mean deviation (MD) is the average deviation
of light sensitivity of the patients compared with age-controlled
normal subjects, while pattern standard deviation (PSD) repre-
sents the irregularity of the VF by summing the absolute value of
the difference between the threshold value for each test point and
the average VF sensitivity at each point. Visual field index (VFI) is
expressed as a percentage of visual function; with 100% being a
perfect age-adjusted VF and 0% represents a perimetrically
blind VF.
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The interpretation of the VF reports, however, remain challen-
ging as it requires extremely steep learning curve5. Many
glaucoma patients were missed due to the suboptimal expertise
in detecting glaucoma from VFs by general ophthalmologists or
non-glaucoma specialists, especially those with early-stage
glaucoma. Global parameters such as MD and PSD in VFs provide
an overall picture of average glaucomatous damage; however,
they rarely are aligned with the actual clinical condition nor with
localized spatial information related to disease progression6.
To date, many groups have applied machine learning and deep

learning methods in VF interpretation to detect glaucoma and
predict glaucoma progression7–12. Most algorithms, however, are
trained using single glaucoma parameter such as MD or PDP. In
addition, limited study demonstrated the software development
and clinical deployment of VF-based application tool for instant
glaucoma diagnosis. The purpose of this study was to evaluate a
multimodal VF-based deep learning algorithm, iGlaucoma, a
smartphone, cloud-based glaucoma detection tool in a multi-
center study.

RESULTS
Patients’ demographics
A total of 1,614,808 data points of 10,784 VFs (5542 patients) from
seven centers in China were included in this study. Phase I
involved a total of 1,581,060 data points from 10,135 VF reports.
Table 1 shows the patients’ and ocular characteristics of the
glaucoma versus non-glaucoma patients. Of note, there were
significant differences in age (P < 0.001), VFI (P < 0.001), MD (P <
0.001), and PSD (P < 0.001) between the two groups. Details about
the demographic characteristics in different datasets are shown in
the Supplementary Table 1. For Phase II, a total of 649 eyes of
437 subjects (33,748 data points) were included, and the baseline
characteristics of the study subjects are summarized in Supple-
mentary Table 2. There were significant differences in age (P <
0.001), VFI (P= < 0.001), MD (P < 0.001), and PSD (P < 0.001)
between glaucoma and non-glaucoma groups. The intergrader
agreement on the VF classification were substantial for both Phase
I (median kappa 0.755) and Phase II (median kappa 0.824).

Phase I: validation dataset
In the validation dataset of 598 VF reports for PDP (PDP-CNN), ND
(ND-CNN), NDP (NDP-CNN), all CNNs achieved comparable AUCs

with ND, NDP, and PDP to detect glaucoma, ranging from 0.798 to
0.862 (ND), 0.825 to 0.885 (NDP), and 0.844 to 0.900 (PDP),
respectively. The corresponding sensitivities at 80% specificity
were 0.704 (ND), 0.698 (NDP), and 0.740 (PDP), respectively. In the
ensemble model (combining PDP, ND, and NDP), the DLS achieved
the highest AUC of 0.874, with a sensitivity of 0.746 at 80%
specificity. (Supplementary Table 3 and Supplementary Fig. 2).

Phase I: test datasets
A total of 1113 VF reports from 781 subjects were included in
three independent test sets. Similar to the validation dataset, the
ensemble model combining PDP/ND/NDP achieved the best
diagnostic performance, with a 0.873 AUC (0.822–0.924), 0.922 sen-
sitivity (0.876–0.969), 0.676 specificity (0.567–0785) in test set 1;
0.834 AUC (0.796–0.873), 0.831 sensitivity (0.749–0.888), 0.709 spe-
cificity (0.611–0.783) in test set 2; and 0.877 AUC (0.844–0.910),
0.851 sensitivity (0.801–0.901), 0.688 specificity (0.560–0.832) in
test 3. The individual results of PDP, ND and NDP were shown in
Supplementary Table 4.

Comparison of DLS vs attending ophthalmologists
Using test dataset 1, the DLS using a combination of ND, NDP, and
PDP outperformed all six ophthalmologists in detecting glaucoma
(Table 2 and Fig. 1).

Characteristics of misinterpretations by DLS
The characteristics of the misinterpretations by the Fusion-CNN in
test datasets were summarized in Supplementary Table 5. The
features of false-positive results (n= 118) include: (1) diffuse
decrease of light sensitivity caused by cataract (n= 87); (2) retinal
diasease (n= 19); (3) neuro-ophthalmic diaseses (n= 2); (4) high
myopia (n= 10). False-negative results (n= 103) were mainly due
to: (1) VF of preperimetric glaucoma (n= 67); (2) superior/inferior
peripheral scotoma (n= 16); (3) glaucoma with high myopia
(n= 8); and (4) glaucoma with cataract (n= 12).
Figure 2 displays the heatmaps of the typical samples of eyes

with and without glaucoma detected by the DLS, and the false-
positive/negative samples judged by the DLS. In the analysis of
the false-positive results, the PDPs showed diffuse defects caused
by cataract or retinal diseases, which is similar to the VF pattern
of moderate or advanced glaucoma. The DLS focused on the
defects in the VF caused by other ocular diseases and
misclassified as glaucoma. For the false-negative samples,
because preperimatric subjects have few defects, no heated area
was identified among them.

DLS performance stratified by age, site of eye, and mean deviation
Supplementary Table 6 and Supplementary Fig. 3 shows the
results of the subgroup analysis in the validation and test sets. All
DLS performances for different age groups (<60 vs 60 years or
more), laterality of eye (right vs left) and severity of glaucoma (MD
better than −6 dB vs −6 dB or worse) showed no statistical
significance except the AUCs of the younger and older age group
in test dataset 1.

Phase II: test dataset
For clinical deployment, we developed the iGlaucoma app which
can capture the printed VF reports and make diagnosis based on
the captured PDP images (Supplementary Video 1: using the app
to diagnose glaucoma VF; Supplementary Video 2: using the app
to diagnose non-glaucoma VF). The recognition accuracy and
diagnostic performance of the iGlaucoma app on printed VF
reports were evaluated in this phase. First, the general recognition
accuracy of different patterns on PDP map was 99.85%
(Supplementary Table 7). The recognition accuracies of blank

Table 1. Baseline characteristics of study participants in Phase I.

Characteristics Non-
glaucoma group

Glaucoma group P valuea

Patients (eyes) 1761 (3030) 3324 (4482) –

Images, n (%) 3566 (35.2) 6569 (64.8) –

Left/Right 1834/1732 3206/3363 –

Age, mean (SD)
(years)

48.4 (17.7) 55.2 (16.4) <0.001

VFI, median
(IQR) (%)

98 (5) 91 (19) <0.001

MD, median
(IQR) (dB)

−2.78 (3.96) −5.92 (7.58) <0.001

PSD, median
(IQR) (dB)

1.89 (1.71) 3.97 (5.99) <0.001

VFI visual field index, MD mean deviation, PSD pattern standard deviation,
SD standard deviation, IQR interquartile range.
aComparison of the demographic and VF parameters between non-
glaucoma and glaucoma groups by Wilcoxon rank sum test.
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space, >5%, <5%, <2%, <1%, and <0.5% patterns were 0.999,
0.999, 0.996, 0.996, 0.995, and 1.000, respectively. Second, the
software DLS application achieved an AUC of 0.966 (0.953–0.979)
with a sensitivity of 95.4% and specificity of 87.3% on the PDP
map, while for ophthalmologists, they were 0.850 (0.819–0.992),
85.8% (95% CI), and 84.3% (95%CI), respectively (Supplementary
Table 8). The total time taken to analyze the PDP map on 549 VF
reports was 9.3 min for software application, and 50.6 min for
ophthalmologists.

DISCUSSION
In the assessment of slightly over 1.6 million data points from
seven tertiary glaucoma centers in China, this study demonstrated
the translation of a robust smartphone-based DLS, iGlaucoma,
from bench-to-bedside in detection of glaucoma from VF over two
phases. Several major findings are as below. First, the combination
of PDP/ND/NDP yielded the best diagnostic performance (AUC
0.873, sensitivity 0.922, and specificity 0.676) in detecting

glaucoma in Phase I, compared to the individual parameter alone.
This suggests that the potential benefits of including multi-
dimensional VF data to train a DLS to detect glaucoma from VF.
Additionally, this level of performance, judged solely based on
VFs, is more superior than all 6 general attending ophthalmolo-
gists, suggesting that this could be an useful DLS to be
incorporated into the VF machine to help with decision making
to diagnose the possibility of glaucoma. Second, iGlaucoma, an
enhanced DLS version, is one of the world’s first smartphone-
based applications that is capable of detecting glaucoma from the
PDP map of humphrey VFs. It was shown to have robust and
superior diagnostic performance, as compared to general
ophthalmologists, to detect glaucoma on a real-world prospective
dataset (Phase II), with excellent AUC (0.96), sensitivity (95.4%) and
specificity (87.3%). This has high clinical utility value in helping
general ophthalmologists or optometrists to diagnose glaucoma,
preventing one of the major causes of irreversible blindness. Third,
the time taken for iGlaucoma was five times faster than general
ophthalmologists, suggesting that this could be used as one of the
future glaucoma diagnostic tools in the primary eye care
community, although future research is of great importance to
thoroughly evaluate the cost-effectiveness of iGlaucoma. Fourth,
the iGlaucoma was designed to be compatible with both iOS and
Android, although the patients will still require to have Humphrey
VF test performed by trained technician. Previous studies have
explored the way to use virtual reality to perform perimetry at
home13,14. In the future, if the Humphrey Field Analyzer could be
transplanted into a virtual reality goggle, then we may combine
the VR and deep learning techniques to create a smart VF testing
and diagnostic device. This has enormous potential for mass
clinical deployment for both developed and developing countries.
In this study, we also analyzed the mis-diagnosed cases by the

DLS. False-negative results were mainly due to glaucoma with
preperimetric changes or superior peripheral defects. Given that
the gold standard diagnosis was made based on clinical,
functional and structural information, it would be difficult for
the DLS to detect preperimetic changes as it is trained purely-
based on VF. The few cases with superior peripheral scotoma
were not detected by the DLS, as these early VF changes did not
follow the classic glaucoma changes (nasal steps or temporal
wedges). On the other hand, false-positive results were mostly
due to cataract. Although these changes were supposed to be
accounted by PDP, the VF changes may still persist in patients
with severe cataracts.

Table 2. Performance of the CNNs and ophthalmologists in test set 1.

AUC (95%CI) Sensitivity Specificity P valuea

Ophthalmologists

Attending ophthalmologist #1 0.712 (0.632–0.792) 0.741 (0.668–0.814) 0.683 (0.566–0.801) <0.001

Attending ophthalmologist #2 0.689 (0.613–0.765) 0.525 (0.442–0.608) 0.852 (0.763–0.941) <0.001

Attending ophthalmologist #3 0.636 (0.553–0.718) 0.583 (0.501–0.665) 0.689 (0.572–0.805) <0.001

Glaucoma professor #1 0.656 (0.576–0.736) 0.525 (0.442–0.608) 0.787 (0.684–0.890) <0.001

Glaucoma professor #2 0.683 (0.617–0.750) 0.580 (0.497–0.662) 0.787 (0.684–0.890) <0.001

Glaucoma professor #3 0.717 (0.652–0.783) 0.647 (0.568–0.727) 0.787 (0.684–0.890) <0.001

CNN

ND+NDP+ PDP 0.873 (0.822–0.924) 0.922 (0.876–0.969) 0.676 (0.567–0.785) –

ND 0.870 (0.817–0.923) 0.915 (0.867–0.963) 0.732 (0.629–0.835) 0.81

NDP 0.857 (0.802–0.913) 0.798 (0.729–0.868) 0.817 (0.727–0.907) 0.06

PDP 0.861 (0.808–0.914) 0.868 (0.810–0.927) 0.718 (0.614–0.823) 0.06

CNN convolutional neural network, ND numeric displays, NDP numerical pattern deviation plots, PDP pattern deviation probability plots. AUC, area under curve.
aComparison of AUC between the ND+NDP+ PDP and the other groups using Z test.

Fig. 1 Comparison of diagnostic performance of the 2D-Fusion-
CNN in VF interpretation with ophthalmologists in test set 1. The
figure shows receiver operating curve of glaucoma diagnosis by the
2D-Fusion-CNN (ND+NDP+ PDP) in test set 1. 2D-Fusion-CNN
combining pattern deviation probability plots (PDPs), numerical
pattern deviation plots (NDPs), and numeric displays (NDs) as
training data outperformed all the ophthalmologists with an AUC
of 0.873.
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The diagnosis of glaucoma requires multimodal information,
including clinical data (risk factors), examination findings
(iridocorneal angle, intraocular pressure, central corneal thick-
ness), structural imaging (e.g., fundus photo, optical coherene
tomography (OCT) or Heidelberg Retinal Tomography) and
functional imaging (VFs)15. Several DLS studies showed the
effectiveness of fundus or OCT imaging in detecting glaucoma
suspect or glaucoma16–21. These studies explored the diagnostic
performance of using structural information in automated
diagnosis of glaucoma. Interstingly, with supplement of OCT
images in training data, the discriminating ability of the DLS was
further enhanced, indicating the advantages of using multimodal
data in developing DLS19.
VF-based machine learning algorithms were broadly divided

into detection of glaucoma and prediction of glaucoma progres-
sion. Prior to deep learning, several studies have described using
machine learning approach to detect glaucoma22,23. In a total of
345 eyes (156 glaucoma and 189 non-glaucoma), Goldbuam et al.
reported that the Gaussian (MoG) model, among the machine
learning models, yielded the highest performance (AUC: 0.923) in
detecting glaucoma on 24–2 humphrey VF. With the advent of
deep learning, Kucur et al. utilized numerical total deviation plots

of 2267 24–2 VF samples (201 subjects) and a customized CNN to
train the deep learning system24, showing a precision score of
0.874 that is better than other conventional machine learning
models. For glaucoma progression. Yousefi et al. adopted
unsupervised Gaussian mixture model to predict glaucoma
progression from VF10. Using MD and total deviation values from
2085 VFs of 1214 subjects, the algorithm was more sensitive in
detecting glaucoma progression. Additionally, Wen et al. also
successfully trained a deep learning model on 32,443 VFs (4,875
patients) to forecast MD change over a 5 years’ period on VF,
showing an average difference of 0.41 dB between the predicted
and actual MD values25.
Compared to the above-mentioned algorithms, this study has

several unique features. First, the study sample size is large,
involving more than 1.6 million data points from 10,784 samples
(5542 patients) from seven centers. Second, the ground truth was
made based on multimodal data. Third, we utilized not only total
deviation plots but also pattern deviation plots to enhance the
performance of the algorithm. Most importantly, we have also
created a software solution to clinically deploy this algorithm. For
iGlaucoma, it is downloaded into the mobile application, and
linked to the DLS hosted in the cloud to increase the accessibility

Fig. 2 Representative heatmaps generated by the CNNs. The figure shows the heatmaps of the typical samples of eyes with and without
glaucoma detected by the PDP-CNN. a and b stand for the heatmaps generated in the true-positive and true-negative cases, while c and
d stand for the false-positive and false-negative cases.
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of the AI algorithm. It is estimated that there are about 1.4 billion
users of iOS and 2 billion users of Android. iGlaucoma supports
most of the portable devices running these operating systems,
granting it huge potential in assisting both patients and
ophthalmologists in glaucoma diagnosis. Nevertheless, the access
to a Humphrey VF machine, sometimes, could be an issue,
especially for the under-resourced countries. Thus, it is important
for the AI developers to work with the VF machine companies to
lower the cost by increasing the screening uptake, potentially
reducing the glaucoma-related blindness worldwide.
In Phase II, to perform an automated image analysis, the

recognition of the location of the image is extremely crucial. In
our study, there is a in-built “recognition algorithm” to detect the
cross of PDP map, and also to automatically recognize the
different pattern deviation on the PDP. Compared to general
ophthalmologists, iGlaucoma has higher diagnostic performance
with faster reading time. Having such assistive tool enables
general ophthalmologists to be more vigilant about the early
cases of glaucoma.
The performance of the DLS is better in Phase II. The main

reasons for this are as follows. Firstly, all the data in Phase II were
collected from the real-world eye clinics. In China, more than 80%
of the glaucoma patients already had symptoms before they first
went to glaucoma clinics and 75% of the patients with chronic
glaucoma were identified as moderate or advanced stage of
glaucoma in at least one eye at the diagnostic visit26. As a result,
the data in Phase II contains a lot of subjects in moderate or
advanced stages of glaucoma. And there would be more typical
VF patterns among these patients. Secondly, in the clinics, the
patients who receive 24–2 VF tests are mostly glaucoma or neuro-
ophthalmic disease patients. The patients with retinal diseases
don’t receive 24–2 VF tests as regular tests, and in the Phase II, the
proportion of subjects with retinal diseases is lower than Phase I.
This also partially contributed to the better performance of the
algorithm in Phase II. Considering the above condition, the
diagnostic accuracy of iGlaucoma would expect to be lower in
the community where there are many more preperimetric
glaucoma, glaucoma suspects or patients with VF defects from
other ocular pathologies.
This study has several limitations. First, this study is limited to

the Chinese population, and it is important to test this in the other
ethnicities (e.g., Caucasian whites, African American, Hispanic and
etc). Second, this DLS only utilizes VF, and future study will of
great value to combine clinical data, examination findings and
structural imagings to diagnose glaucoma. Third, we do not have
patients’ long term data to develop the predictive algorithm. It is
of great value to build DLS to predict the rate of glaucoma
progression, or conversion of preperimetric to perimetric glau-
coma, and this may be prevented by having early intervention in
lowering the intraocular pressures. Fourth, iGlaucoma requires
internet connection to link up with the cloud-based DLS
application for glaucoma detection. Future software development
is necessary to explore the possibility of deploying this DLS as an
API format inside the phone. Fifth, only recognition algorithm of
the PDP region was developed in Phase II. Updated algorithms
able to recognize the whole VF reports but not only PDP regions
are worth further investigation. Sixth, in Phase II all the patients
were recruited from glaucoma clinics, where many of them had
moderate to advanced glaucoma with typical VF deficits. Thus,
they would have worse MD value and VF indices. Future research
will be of great value to evaluate the generalizability of the DLS in
the general population. Seventh, the iGlaucoma was developed
based on the Humphrey Field Analyzer, which is the most widely
used model in clinics and researches. Data from other models,
such as Octopus by HAGG STREIT, are not supported due to
different number of test locations.
In conclusion, DLS outperformed general ophthalmologists in

the accuracy and timing in detecting glaucoma from VFs in the

tertiary glaucoma clinics, with the best performance achieved by
the combined PDP/ND/NDP algorithms. Future research is of great
value to further evaluate the feasibility of using ‘iGlaucoma’, a
smartphone and DLS-based application, as a screening tool in the
primary eye care settings to identify early glaucoma patients who
require intervention to prevent irreversible visual loss.

METHODS
Ethical approval and study registration
The current study was approved by the Ethical Review Committee of
Zhongshan Ophthalmic Center, The First Affiliated Hospital of Kunming
Medical University, The First Hospital of Shijiazhuang City, Handan City Eye
Hospital, C-MER (Shenzhen) Dennis Lam Eye Hospital, and The Eye
Hospital, WMU at Hangzhou and The Second Hospital of Jilin University.
The study was performed in accordance with the Declaration of Helsinki
for research involving human subjects. Informed consent was obtained
from all human participants before entering the study. The study has been
registered in clinicaltrials.gov (NCT03759483, NCT03268031).

Technical design of DLS
We exploited a convolutional neural network (CNN)—modified ResNet-
1827, was utilized to classify the VF into glaucoma vs non-glaucoma
(Supplementary Fig. 4). In brief, using optical character recognition (OCR)
technique, all PDP, ND, and NDP data points were extracted from the VFs
reports with intact spatial information as input data into several
convolutional layers, followed by a 2-D fully-connected layer and
softmax, to generate a score for glaucoma versus non-glaucoma,
respectively, while applying batch normalization after the convolutional
layers to reduce overfitting. All hidden layers use Rectified Linear Units
(ReLUs) behind the convolution layer, which acts as nonlinear activation
functions improving model. Dropout regularization is adopted to release
overfitting. Lastly, the Gradient-weighted Class Activation Mapping
(GradCAM) was applied to the CNN model to generate heat map on
the PDP regions suggestive of glaucoma28, aiding the physicians to make
diagnosis of glaucoma.

Clinical datasets
The study is divided into two phases (Fig. 3). In Phase I, to train, validate
and test the diagnostic performance of the DLS in detecting glaucomatous
VFs, the clinical data of both patients and normal subjects from electronic
medical records or clinical research databases were collected from seven
eye centers across mainland China from September 1, 2017, to March 1,
2019. Data were first divided into the training set (8424 samples from 5917
eyes of 3913 subjects) and validation set (598 samples from 586 eyes of
424 subjects), subsequently tested on three independent datasets (Test 1:
200 samples from 139 eyes of 97 subjects, Test: 2: 406 samples from 482
eyes of 372 subjects and Test 3: 507 samples from 370 eyes of
312 subjects). Phase 2 entails the development of the smartphone-based
software application that incorporate the Phase 1 DLS hosted in the cloud.
Using this application, a total of 649 VFs were utilized to test this
smartphone integrated DLS. All the VF reports of a single subject were
included in the training, valiadation or test sets to ensure these datasets
were unique at patient level.
All the VFs were automated white-on-white perimetry SITA

24–2 standard/fast VFs acquired by Humphrey Field Analyzers (Carl Zeiss
Meditec, Dublin, CA). Each ND, NDP, or PDP was composed of 52 data
points representing different locations in the VF. The inclusion criteria in
the study were: (1) All participants were ≥18 years old; (2) Study subjects
had definite diagnosis of glaucoma or non-glaucoma supported by VFs,
optical coherence tomography (OCT) and medical history records.
Exclusion criteria of the data include: (1) VFs with fixation losses of over
2/13 or false-positive rate over 15% or false-negative rate over 25%; (2) VF
reports without PD plots. If both eyes of the same subjects met the
inclusion criteria, both eyes would be recruited.
VF reports were classified (i.e., ‘yes’/‘no’) according to the presence of

glaucomatous optic neuropathy, including retinal nerve fiber layer (RNFL)
thinning and VF defects29. Glaucomatous optic neuropathy was diagnosed
based on the combination of VF and OCT reports. Glaucoma was
diagnosed if there is a thinning RNFL correlated with VF defects in
the corresponding position30. A glaucomatous VF defect was defined as
the presence of a cluster of at least three contiguous non-edge points on
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the pattern deviation plot with a probability of occurring in <5% of the
normal population (p < 0.05), with one of these points having a probability
of occurring in <1% of the normal population (p < 0.01)31. Preperimetric VF
reports without any deficit were excluded. All cases were evaluated in the
way as mentioned above.

Phase I: training and validation datasets
For training dataset, VF reports were acquired from 5 glaucoma clinics—
Zhongshan Ophthalmic Center; The First Hospital of Shijiazhuang City;
C-MER Shenzhen Dennis Lam Eye Hospital; The First Affiliated Hospital of
Kunming Medical University; The Eye Hospital, WMU at Hangzhou. For
validation dataset, a total of 598 VFs were randomly selected from the
above eye centers. Subjects’ demographic information, clinical examina-
tion data (intraocular pressure—IOP, status of the iridocorneal angle), OCT
reports and VF reports were sent to Zhongshan Ophthalmic Center and
graded by two expert glaucoma specialists (FL and XYL), arbitrated by a
3rd senior glaucomatologist should there be a discordant finding (XLZ).

Phase I: testing datasets
Test set 1 was collected from the same centers as the training and
validation set with no overlap. Test set 2 and 3 were were collected from
Handan City Eye Hospital and The Second Hospital of Jilin University,
respectively. Based on the observations in the validation dataset (598
VFs), we tuned the model’s hyper-parameters (e.g., kernel size, stride,
padding, the convolutional layer learning rate, weight decay, learning
rate scheduling method of the optimizer, the number of hidden layers).
Finally, the selected model is used to predict the responses in all three
test datasets. The DLS diagnostic performance (on PDP, ND, NDP, and
combined PDP/ND/NDP) was compared against three expert glaucoma-
tologists (reference standards) in all three test datasets. The diagnosis of
glaucoma made by these three glaucomatologists were based on clinical
history, examination and investigation findings. Additionally, using test
dataset 1 (200 VFs), a group of six attending ophthalmologists (three
junior and three senior general ophthalmologists) were asked to
diagnose glaucoma based solely on VFs, and the results were compared
against the DLS.

Fig. 3 Flow chart of the current study. The study is composed of two parts. In Phase I, we developed the deep learning algorithms for
classifying VFs. In Phase II, a smartphone app based on the deep learning algorithm was created and tested in the real world.
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Phase II: real-world clinical deployment
VFs with fixation losses of over 2/13 or false-positive rate over 15% or false-
negative rate over 25% or without PD plots were excluded. 13.6% of the
VFs were excluded due to the above reasons. None of the eyes in Phase I
was included in Phase II. From Phase I, the DLS, locked on the same
operating threshold for PDP model, was further enhanced and built into a
software application. An additional algorithm, “recognition algorithm”, was
developed to first to detect the cross in the central of PDP map and then to
determine one of the six patterns on the PDP map—blank spaces or five
levels of pattern deviation probabilities—>5%, <5%, <2%, <1%, and <0.5%.
To classify these six classes, a global average pooling layer with a 6-way
fully-connected layer was applied, using cross entropy loss as the loss
function for its characteristics.
For clinical deployment, the capturing and analysis steps are as follow:

First, a phone camera (iPhone X) can be utilized to capture the printed VF
reports on the PDP map on the VF printout using iGlaucoma app. The
software application will automatically send the image to the remote
server. Detection algorithm deployed at the server would detect the cross
at the center of the PDP map using the HRNet32 (Supplementary Fig. 5),
followed by recognition of the five deviation probabilities or the blank
space using the ResNet-18. Second, information of the data points in the
PDP regions would be transferred to the classification algorithm,
developed in Phase I, on the remote server. Then a diagnostic result
would be generated and transmitted back to the cell phone with instant
diagnosis of glaucoma status.
Following the development of this software application, a total of 649

VFs of 437 patients were prospectively recruited from three glaucoma
clinics between March 1, 2019 and September 1, 2019 (test dataset 4). Test
dataset 4 have been graded by DLS and three ophthalmologists, and
compared against the gold standard (three expert glaucomotologists). For
this grading process, each ophthalmologist was asked to log into the
central server to access the VF report which has been randomly separated
into three parts with equal samples, followed by determination of
glaucoma status. Using PDP, the DLS diagnostic performance was
compared against three ophthalmologists, with reference to the three
glaucoma experts’ grading.
The time taken for DLS versus three ophthalmologists’ grading was

recorded. For DLS, the time was recorded between the uploading of the
PDP maps to the DLS, and the generation of diagnosis; whereas for
ophthalmologists, it was from the display of the VF report on the computer
screen to the selection of diagnosis by the ophthalmologists.

Statistical analyses
First, in this study, the area under curve (AUC), sensitivity and specificity
with 95% confidence interval was initially calculated based on the training
and validation datasets. Second, using the optimal operating threshold
determined by Youden index, the DLS diagnostic performance was
calculated for AUC, sensitivity and specificity on Phase I (three test datasets
on PDP, ND, NDP, combination of PDP/ND/NDP) using the predetermined
operating threshold (primary outcome measure). Third, the DLS perfor-
mance was compared against 6 ophthalmologists on test dataset 1, with
reference to three expert glaucomatologists. The Z test was used to
calculate p values for comparison of AUCs between groups. Fourth, the
misclassified VF samples were further analyzed to ascertain the respective
characteristics. Fifth, the the accuracy of “recognition” algorithm was
calculated for the software application in phase II. Sixth, the DLS
performance was compared against three ophthalmologists, with refer-
ence to the three expert glaucomatologists on detection of glaucoma
using PDP map. Seventh, the time taken to grade a VF between DLS and
attending ophthalmologists were calculated. Eighth, a subgroup analysis
was further performed to evaluate the DLS performance on the site of eye
(left vs right), age group (<60 years vs ≥60 years), and severity of light
sensitivity (MD value >−6 dB vs MD value ≤−6 dB). All statistical analyses
were performed using R software, with continuous variables being
presented as means (standard deviations, SDs), or median (interquartile
range). The Wilcoxon rank sum and Chi-square tests were utilized for
numerical and categorical data, respectively. The level of agreement
between the two graders of VF reports was evaluated using a weighted
kappa statistic. All the hypotheses tested were two-sided, and we
considered p value of less than 0.05 to be statistically significant.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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